Aspetti economici della gestione delle risorse idriche

Antonio Massarutto
University of Udine e IEFE-Bocconi
antonio.massarutto@uniud.it

Università di Firenze 24 settembre 2015

Cercate l'intruso

- La percezione comune sugli economisti
 - «Quelli che sanno il prezzo di ogni cosa ma non conoscono il valore di nessuna»
 - Approccio «ragionieristico»
 - «logica del profitto», «mercificazione», privatizzazione
 - Dal referendum 2011 a papa Francesco: «alla larga dal bene comune, non è cosa per voi»
- WFD: un paradosso?
 - Norma che più di ogni altra ha sancito il primato dell'ambiente sull'economia (BSE come obiettivo non derogabile)
 - Eppure, nella WFD l'economia ha un ruolo fondamentale

Il ruolo dell'analisi economica nella WFD

- La WFD attribuisce un ruolo di primo piano all'analisi economica
 - Analisi economica degli usi (art.5)
 - Valore economico associato alle diverse funzioni ambientali.
 - Determinanti economiche della domanda e dei fattori di pressione sulle risorse
 - "Bilancio economico" ⇔ struttura dei costi e le modalità di finanziamento
 - Recupero dei costi attraverso le tariffe e "bilancio economico" dei servizi idrici che chiarisca le modalità di copertura del costo (art. 9)
 - "tenere in considerazione" FCR e garantire "adeguata" copertura tariffaria dei costi
 - applicare il polluter-pays principle ⇔ strumenti economici di politica ambientale
 - Evitare che gli utilizzatori ricevano incentivi distorti
 - Analisi economica del programma di misure (art. 11)
 - Costi-efficacia delle misure per raggiungere gli obiettivi minimi ("buono stato ecologico")
 - Costi-benefici delle misure aggiuntive (valore sociale vs. costo sociale)
 - Accessibilità dei costi e della praticabilità di azioni nel caso di corpi idrici altamente compromessi
 - Impiego degli strumenti economici come incentivo per indirizzare gli usi verso modalità sostenibili

Sustainability in 4 objectives

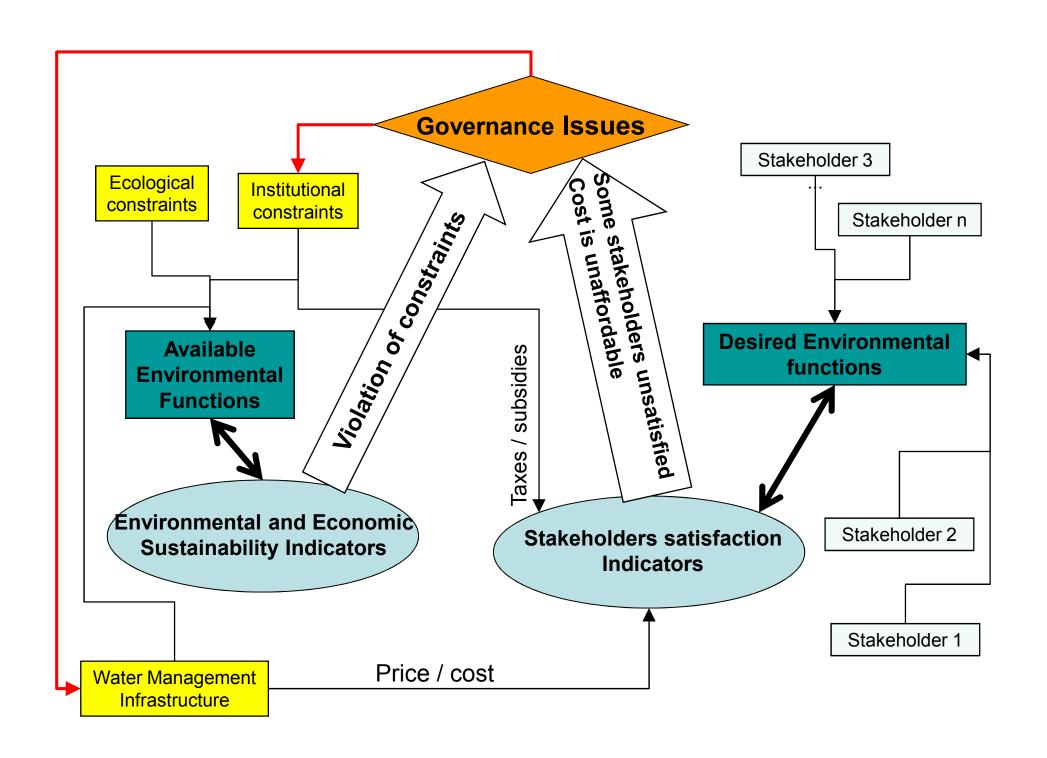
Environmental sustainability Discourage depletion of critical natural capital

- Guarantee ecological functions of water natural capital
- Minimize the recourse to "supply side"
- Minimize the alteration of natural outflow patterns
- Guarantee financial stability of water systems
- Attract economic resources (financial and human capital)
- Reward adequately economic resources that are used as inputs
- Cash flows should guarantee the conservation of value of physical assets
- Each new infrastructure binds the next generation to cover its cost in the future \Leftrightarrow minimize the creation of artificial capital

Financial sustainability Guarantee long term reproduction of physical assets

Equity

Guarantee that "merit uses" have due access to water resources under fair and equitable conditions


- Identify "water needs" (⇔ basic environmental functions)
- Keep level and dynamics of prices below the threshold that makes it unaffordable for some users
- Achieve an equitable and democratically accepted way to share the cost of managing water resources
- Allocative efficiency: available water should be allocated in order to privilege uses with the highest social value
- Allocative efficiency: the cost of provision of water services (to non-merit uses) should be confronted to their value
- X-efficiency: costs should be as close as possibile to the minimum (intended in dynamic terms)
- Not encourage over-capacity, over-staffing, gold-plating etc
 - Cost coverage should be intended as for efficient costs only
 - Regulation should ensure an optimal allocation of risks among shareholders, users and taxpayers

Efficiency

Guarantee that water is allocated to its most beneficial uses and economic resources are not wasted

Verso un nuovo paradigma per le politiche idriche

- Politiche tradizionali si basano sull'idea che alla scarsità di risorse naturali si debba ovviare attraverso le infrastrutture
 - Possibilità di intervenire non è limitata dalla tecnica ma dal costo economico ⇔ "non è l'acqua a essere scarsa, ma il denaro"
 - Fabbisogno idrico e carico inquinante come conseguenze automatiche e inevitabili dello sviluppo economico
 - Soddisfazione dei fabbisogni intesa come diritto (e conseguente responsabilità del politico nel garantirlo)
 - Logica «more from farther»; «mito della cornucopia»
- Crisi del modello tradizionale:
 - Consapevolezza della fragilità degli ecosistemi idrici e delle interrelazioni che interessano gli usi dell'acqua a livello di bacino ⇔ esternalità crescenti
 - «Triangolo di ferro»
 politica dell'acqua governata dalle «lobby» in funzione del potere e della capacità di influenzare la decisione dello stato
 - Importanza crescente dei "non-usi" e dell'importanza sociale del patrimonio idrico
 - Costi economici crescenti
 - Crisi fiscale dello stato ⇔ chi usa, paga (ma se paga, vuole contare, e vuole essere sicuro che gli altri pagano quanto lui)
 - Consapevolezza che l'artificializzazione del sistema carica la collettività di costi alla lunga non sopportabili

Il concetto di "carrying capacity"

- Esiste un limite superiore alle dimensioni del sistema economico e sociale, in relazione alla disponibilità di risorse idriche ?
 - Il limite ovviamente esiste, ma può essere "spinto all'indietro" attraverso le infrastrutture e i servizi
 - Questa possibilità però non vale in modo indefinito: esiste un punto oltre il quale non è possibile andare
- Concetto di "carrying capacity" risulta dall'incrocio delle componenti ecologiche, economiche e sociali
 - Necessario un approccio integrato alla valutazione
 - In particolare: fondamentale ruolo di analisi economica e di una "razionalità" economica principio di efficienza

La carrying capacity risulta da molteplici "limiti":

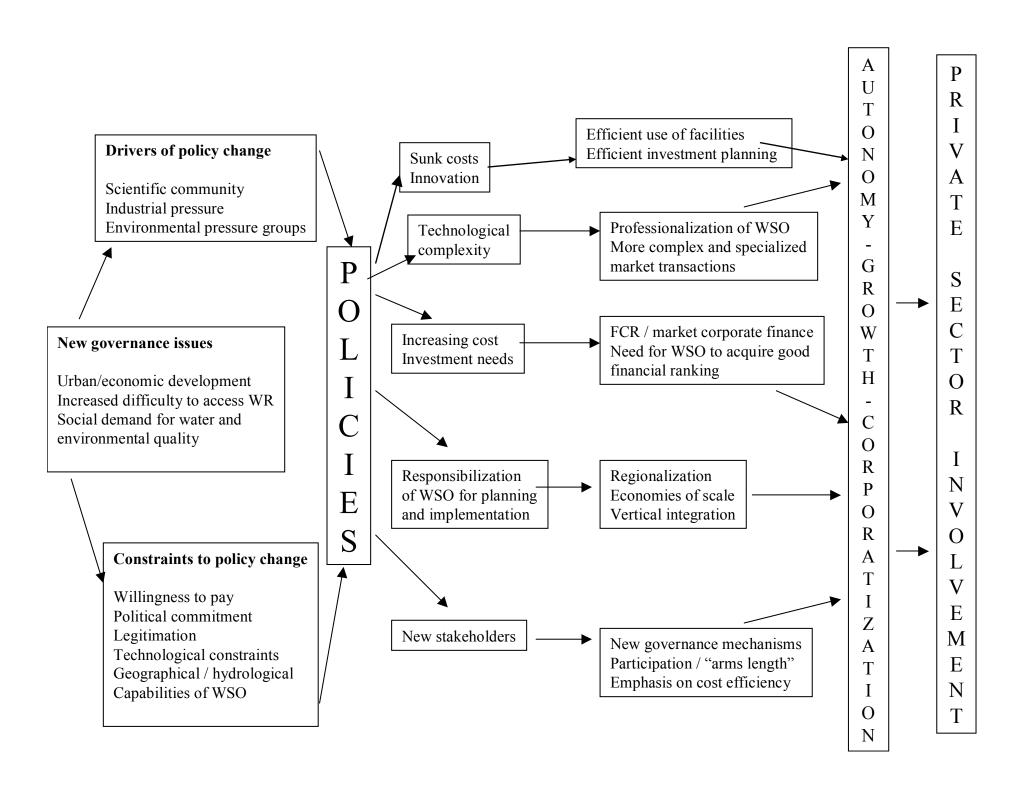
- Limits to growth ⇔ incapacità di risolvere le "governance issues", che risulta:
 - Dalla sfera naturale
 - Disponibilità limitata dal deflusso idrico naturale
 - Disponibilità qualitativamente limitata anche per effetto di carico antropico
 - Dalla sfera sociale:
 - La società non è disposta ad accettare la perdita di alcune funzioni ambientali critiche
 - Le conseguenze della sostituzione tra capitale naturale e artificiale sono inaccettabili
 - Dalla sfera istituzionale:
 - I "diritti di proprietà" non garantiscono la conservazione della risorsa
 - I processi di decisione collettiva non riescono a produrre soluzioni
 - Difficoltà di modificare il quadro esistente e i "diritti acquisiti" per far posto a nuove esigenze
 - Incapacità di garantire un adeguato "enforcement"
 - Incapacità di attirare risorse economiche e imprenditoriali
 - Dalla sfera economica
 - Le alternative sono tecnicamente fattibili ma troppo costose rispetto agli attuali livelli di reddito, sviluppo economico, capacità di investimento etc
 - Le alternative sono disponibili, ma non efficienti (valore < costo)

Verso una "nuova cultura dell'acqua"

	Da	A
Interesse	Infrastrutture per incrementare	Gestione integrata delle risorse
generale	l'uso dell'acqua	orientata alla sostenibilità
Focus su	Opere pubbliche	Gestione e risoluzione dei conflitti
Finanza	Bilancio pubblico e tassazione	Tariffazione al costo e incentivi
i ilializa		economici
Approccio	Supply-side	Demand-side
	"iron triangles": burocrazia	Processo decisionale aperto e
Processo	pubblica, industria delle	partecipato
decisionale	costruzioni e "grandi utilizzatori"	
decisionale		
	Tecnocrazia	Coinvolgimento
Scala territoriale	Centralizzazione	Decentramento
Valutazione	ACB	Valutazione integrata - AMC
Key expertise	Ingegneria civile	Interdisciplinare
Costi	Opere pubbliche	Sia opere che "mancati usi"
Gestione	Ammistrazione pubblica	Gestione privata e commerciale

Water as an economic good

- What does it meen exactly?
 - Water has an economic value ⇔ there is an economic demand for water, meaning that one would be willing to pay (WTP) for having it
 - Water is scarce ⇔ nothing to do with absolute quantity !!
 - Water on the moon is not "scarce" in economic terms
 - Water in the Po basin is scarce (although natural availability is one of the highest in Europe)
 - Scarcity is a function of *rivalry* ⇔ a resource is scarce if there is competition for using it
 - Human impact on water ecosystems is largely driven by economic factors
 - Trade-offs more widespread and systematic (sectoral, geographical, social)
- What are the implications?
 - Economic scarcity of water adds a new dimension to water management
 - Policy shift: from "supply side" to IWRM
 - Economics is not only a part of the problem, but also a part of the solution
 - Modernization of water management system is needed in order to fill the (increasing) gap between natural resources and human demands


Perspectives on (water) scarcity

Scarce resource = money

- Water abundant, but costly to mobilize
- Social value of water > private value market demand not enough
- Emphasis on water service infrastructure as public goods
- Key economic driver: financial cost
- Policy: funding water services from the public budget
- Emphasis on supply-side and infrastructure (limit = social ATP)
- IWRM not a priority unless for sharing the cost of infrastructure: each use has its own water policy

Scarce resource = cheap water

- Available resources can be increased, but the social value is lower than the extra cost
- Key economic driver: resource cost
- Policy
 - Regulation of water use
 - Attention to the economic dimensions of water management
 - Attention to economic dimensions behind pressure factors
- Emphasis on:
 - Demand management
 - Addressing pressure factors
 - Increasing efficiency of use
 - Increase multilateral externalities
- IWRM as an opportunity for sharing water in a more effective way

Le dimensioni del conflitto quando l'acqua è un bene comune

Typology	Description	Dimension	Critical aspects
Acce s s	Who has the right to use the resources?	Sectoral	Property rights allocation / tradability
	What criteria are used for allocating water rights?	Territorial	Historical rights
	Are those that cannot have access to water being compensated in some way? And by whom?	Economic	Planning criteria
Segregation of uses	some users' actions make water unusable or unaccessible to other users	Sectoral	Externalities
	Some users generate externalities that are suffered by other (potential) water users or by	Territorial	Regulatory institutions
	society as a whole	Economic	Planning criteria
Status and identity	Local communities fear to become "the garbage can" of other communities or to be forced to	Territorial	Balance of power (central /
	share resources and problems with other communities;	Social	Planning dimension
	Conflicts among different government layers		
	Local communities lose control over what they perceive as "their" territory and resources	Political	Finance of new
			i n fra s tructure
Democracy	The increased technical complexity of decision forces the community to delegate decision to		Participation
	professionals and "experts" and to subtract power to the individuals and the community;	Cultural	Tranparence
	Users with large political or market power can weigh more in the political decision	Institutional	Representation of interests
	Local govs have to cede power to basin institutions		Tradition
	Changing patterns of governance from direct management to shareholding + regulation		Social conflict
			Regulatory institutions
Ecology	Basic ecological functions of water systems threatened by economic and urban development		Research
	Resilience of water management systems and capacity to adapt to future challenges	l m t n u m n m n u n t i n m n l	Investment
	Conservation of NC for the next generation is not guaranteed because conflicting demands		Collective understanding of
	tend to overuse it and next generations are not represented		water as a constraining
	tend to overuse it and next generations are not represented		factor

Le dimensioni del conflitto quando l'acqua è un bene di club

Actors of conflict	Example		
Club members	Cost sharing and tariff setting (polluter-pays, user-pays, rich-pays)		
	Admissibility of cross-subsidies (among user categories, territorial areas, rich &		
	poor, among services etc)		
	Degrees of freedom (connect or not, opt out or not, integrate w/ self-supply or not)		
	UWS as providers of individual services vs. collective utilities		
Club members	Extension of networks to suburbs		
vs. would-be	Extension of sanitation networks to suburbs and rural areas		
members	Universal service definition (eg- quality and continuity of supply)		
Club vs. other	Deterioration of resources induced by urban growth and industrial pollution		
clubs/users	UWS subtracting water to other users		
	UWS segregating land use in catchment areas		
	UWS affecting water quality for downstream uses		
Club members	Privatization		
vs. managers/	Governance of UWS management, regulation and public participation		
Operators	Commercialization of UWS		
	Financing of investment		
Club members	Affordability of impositions concerning environmental quality		
vs. state	Inter-governmental conflicts		
	Degree of integration and meaning of solidarity		

Conseguenze per la politica idrica

- Un modello sostenibile di gestione del'acqua sottintende una modernizzazione del sistema
 - Efficienza ⇔ concorrenza, meccanismi di mercato
 - Strumenti innovativi per la gestione integrata (CES; WQT)
 - Maggiore integrazione tra usi e sistemi di gestione
 - Maggiore integrazione territoriale
- E questo comporta una serie di sfide
 - Modelli di governance innovativi
 - Non è più così facile dividere «i buoni» dai «cattivi»
 - Gestione imprenditoriale ⇔ coinvolgimento del settore privato
 - Risorse non possono più venire solo dalla tassazione; necessario costruire un modello di finanza «endogena», anche facendo leva sul mercato dei capitali

La «scienza triste»

- Importanza della componente economica
 - L'acqua non è «solo» un bene economico
 - Ma dimenticarsi che è «anche» un bene economico può essere pericoloso
 - Tema interdisciplinare ⇔ lost in translation
- Errori da evitare
 - Confondere «l'economia» (the economy) con «la scienza economica» (economics)
 - Relegare l'analisi economica a misurare «quanto costano le cose e dove si trovano i soldi per farle»
- Che contributo può dare la ricerca economica
 - Collocare nella giusta prospettiva il tema del «water stress»
 - Allocare la risorsa in modo efficiente presuppone la conoscenza dei valori (economici e non economici) in gioco, sia sul lato della domanda che dell'offerta
 - Studiare la dinamica dei fattori di pressione e i fattori (anche) economici che li influenzano
 - Studiare meccanismi che incentivino i comportamenti degli attori del sistema economico
- II «dovere di avere doveri»
 - Valutare se e a quali condizioni il vincolo economico debba prevalere sugli altri obiettivi
 - Comprendere a cosa dobbiamo rinunciare se vogliamo acqua pulita e per tutti ⇔ tradeoff economici: non ci sono «pasti gratis»

Contributo dell'analisi economica

- Analisi economica va invece intesa in modo più ampio, facendo riferimento al concetto di "carrying capacity" appena visto
 - Comprensione delle "funzioni ambientali" dell'acqua, dei valori ad esse associati e degli eventuali trade-off
 - Comprensione della "sostituibilità" del capitale naturale e/o delle funzioni ambientali ⇔ individuazione delle componenti "critiche" del capitale naturale
 - Scelta delle priorità allocative relative sia all'acqua, sia a capitale e lavoro impiegato nei servizi idrici

 comprensione del trade-off fra le diverse componenti della sostenibilità
 - Analisi delle dinamiche economiche che muovono i fattori di pressione
 - Analisi delle determinanti economiche della domanda (inclusi i prezzi) e della reazione degli utilizzatori alla manovra di queste variabili
 - Analisi delle modalità con cui i costi delle politiche e dei servizi idrici vanno a distribuirsi sugli attori sociali (a livello individuale, settoriale e territoriale)
 equità
- Analisi economica è funzionale a una decisione partecipata in quanto rivela agli attori coinvolti le dimensioni di valore in gioco

Temi rilevanti per l'analisi economica

- Temi micro-economici ⇔ economia ambientale
 - Le modalità di allocazione dell'acqua sono efficienti ? Potrebbero essere migliorate trasferendo diritti da alcune funzioni ad altre ?
 - La società ricaverebbe un beneficio se si espandessero le infrastutture rendendo disponibili funzioni ambientali ulteriori ?
 - I prezzi funzionano come strumento allocativo ? Gli utilizzatori dell'acqua ricevono segnali corretti dal mercato e dalle regole allocative attuali ? Chi paga per i servizi idrici ?
- Temi macro-economici e istituzionali ⇔ economia ecologica
 - A quale scala territoriale si deve intendere l'acqua come "capitale naturale critico"?
 - Esistono dei "limiti alla crescita" che determinano l'uso massimo che la collettività può fare delle risorse idriche esistenti ? Esiste un "limite all'artificializzazione" ?
 - Quali sono le forze che determinano la domanda sociale di funzioni legate all'acqua ?
 Quali fattori economici possono essere influenzati per governare queste forze ?
 - Le modalità di allocazione dell'acqua e dei relativi costi sono eque e accettabili socialmente ? E' desiderabile introdurre misure perequative ?
 - Le tendenze in corso (relativamente alla disponibilità e alla dinamica degli usi) sono in equilibrio ? La società sarà in grado di far fronte alla domanda in futuro ?