La pesca professionale, l’acquacoltura e lo stato delle risorse ittiche nel mare toscano (1)

Rapporto finale relativo al Programma annuale pesca professionale e acquacoltura 2006

Livorno – gennaio 2008
A cura di:

ARPAT- Agenzia regionale per la protezione ambientale della Toscana

AREA MARE – Area per la tutela dell’ambiente marino, lagunare, lacustre, costiero e dell’ittiofauna
RIBM – Risorse ittiche e Biodiversità marina

Via Marradi 114, 57126 LIVORNO
tel. +39-0586-263495, fax +39-0586-263477, e-mail f.serena@arpat.toscana.it

Responsabile: Fabrizio Serena

Redazione : Romano T. Baino

Gruppo di lavoro:

Alvaro J. Abella
Enrico Cecchi
Cecilia Mancusi
Michela Ria
Roberto Silvestri
Alessandro Voliani
1 Premessa

La Regione Toscana è stata la prima tra le regioni italiane ad interpretare nella maniera corretta il trasferimento delle competenze dal ministero in materia di pesca in mare, producendo una legge vera, applicativa e non di semplice assistenzialismo. Il percorso non è stato semplice ed ha richiesto alta professionalità e dedizione soprattutto nel continuo confronto con le direttive europee. Tutto ciò è stato possibile grazie a lavoro attento dell’Ufficio Regionale che è riuscito a fondere, in una sinergia ben strutturata, i soggetti che a vario livello in Toscana sono coinvolti in questo importante settore produttivo.

La Toscana, guardando alle sue competenze, sta dando vita ad uno strumento di gestione unico, auspicabile anche a livello nazionale. Questo strumento è composto dall’amministrazione centrale, in questo caso la Regione, dal suo strumento tecnico scientifico, l’ARPAT, dal mondo della ricerca e dalla cooperazione. Già in passato questi soggetti hanno lavorato insieme al fine di fornire lo stato dell’arte della pesca e dell’acquacoltura in Toscana, oggi si aggiunge un aspetto fondamentale nel percorso delle conoscenze, cioè poter dare indicazioni anche sullo stato delle risorse senza le quali difficilmente potrebbero avere successo le iniziative di gestione.

ARPAT e CIBM sono coinvolti da oltre 20 anni nel coordinamento nazionale e internazionale per la valutazione delle risorse ittiche dei nostri mari. In questi anni hanno acquisito una mole enorme di informazioni tali da consentire una seria programmazione gestionale da mettere al servizio della Regione. Questo rapporto ne è un chiaro esempio e pone le basi per un proficuo lavoro da sviluppare in futuro al fine di dare risposte certe ai pescatori professionisti della Toscana, ma soprattutto apre ad una reale gestione sostenibile delle risorse in un’ottica integrata e di precauzione.
2 Introduzione

Oggetto di questa relazione è quindi fornire un primo aggiornamento delle conoscenze disponibili in Toscana relativamente al comparto ittico, sia in mare, sia nelle acque interne. Partendo da un’analisi delle caratteristiche della flotta, del pescato e degli stocks oggetto della pesca professionale in Toscana; verranno affrontati anche aspetti legati alla sostenibilità delle popolazioni ittiche, all’acquacoltura e soprattutto si cercherà di focalizzare gli aspetti conoscitivi che necessitano di ulteriori approfondimenti.

Nell’ambito dei prossimi Programmi annuali della pesca professionale e acquacoltura si provvederà all’integrazione delle informazioni provenienti da ulteriori elementi conoscitivi già disponibili ed è ipotizzabile la fattibilità di un database centralizzato che raccoglia e organizzi un vasto insieme di dati già raccolti, ma che sono dispersi su più vari tipi di supporto e presso numerose istituzioni.

Nell’ambito del Mediterraneo europeo le acque della Toscana ricadono nella GSA n°9, la Geographical Sub-Area secondo quanto stabilito dal General Fisheries Commission for the Mediterranean, organismo regionale tecnico-scientifico della FAO creato per la definizione ed il coordinamento delle politiche della pesca. Come è evidente dalla figura successiva (fonte MEDITS), ad esclusione dell’Adriatico, dell’Egeo e in minor misura del Canale di Sicilia, l’estensione dei fondali pescabili di fronte alla Toscana è particolarmente rilevante e questi si spingono fino al confine delle acque corse: complessivamente si tratta di un’area di 21.000 km² ripartiti pressoché a metà tra la zona a nord e quella a sud dell’Isola d’Elba.
Da notare comunque che la quasi totalità dell’attività di pesca in Toscana si realizza nella fascia costiera e solo raramente interessa i fondali a profondità superiori alla platea continentale (l’area di mare più chiara nella cartina seguente).
3 La flotta da pesca professionale

3.1 Caratteristiche generali nella GSA 9

La FAO tramite la General Fisheries Commission for the Mediterranean (GFCM) ha suddiviso l’area mediterranea in numerose Geographical Sub-Area (GSA): la Toscana è inserita nella GSA 9 indicata come Ligurian and North Tirrhenian Sea nella figura seguente.

Il naviglio dell’intera GSA9 comprende quindi le flotte della Liguria, della Toscana e del Lazio, ed è costituito da circa 1860 imbarcazioni, aventi in ciascun’area caratteristiche abbastanza simili sia in termini di potenza sia per le dimensioni delle stesse.

La relazione tra la misura della stazza internazionale (GT) e quella nazionale (TSL) dovrebbe essere lineare anche se, laddove si dispone di entrambe le unità di misura per la stessa barca, alcuni punti tendono a discostarsi da tale linearità. Inoltre, da tale constatazione è possibile anche evidenziare come le imbarcazioni del naviglio toscano siano maggiormente di piccole dimensioni (inferiori a 10 TSL) pertanto in massima parte appartenenti alla pesca artigianale.
Ciò è anche confermato dalla relazione tra la lunghezza fuori tutto (LFT) e la stazza (TSL), rappresentata nella seguente figura, in cui si evidenzia che la maggior parte delle imbarcazioni è inferiore ai 10-15 metri di lunghezza.

Nel grafico successivo è invece riportata, su scala logaritmica, la relazione tra la potenza del motore (kW) e la stazza lorda (TSL) per il solo naviglio toscano.
3.2 Censimento del naviglio da pesca toscano

Nel novembre del 2006 è stato richiesto a tutte le strutture periferiche delle Capitanerie di Porto della Toscana un estratto dei propri archivi del naviglio da pesca. Ovviamente le località minori, con una decina o meno di motobarche, hanno potuto rispondere in breve tempo, mentre le marinerie maggiori hanno richiesto tempi più lunghi per la verifica dei dati.

I dati pervenuti sono stati incrociati e verificati con quelli delle altre fonti disponibili ed in particolare con quelli dei seguenti organismi (tra parentesi l’anno di aggiornamento):

- 27 Capitanerie di Porto toscane (2007) = 620 imbarcazioni (+ 55 a Orbetello)
- IREPA– Istituto di Ricerche Economiche per la Pesca e l’Acquacoltura (2005) = 662 imbarcazioni
- CESIT– Centro di Sviluppo Ittico Toscano (2005) = 626 imbarcazioni
- ARPAT – per alcuni porti con sopralluoghi eseguiti nel 2005-2006-2007

Indipendentemente dalla data di aggiornamento degli archivi, che può comportare lievi variazioni nel numero di imbarcazioni, anche altri elementi concorrono a far sì che si ottengano stime non coincidenti. Il fattore di maggior rilevanza sono le 55 piccole imbarcazioni che operano all’interno della Laguna di Orbetello, sia come supporto all’acquacoltura (e quindi vengono escluse
Dal naviglio da pesca) sia per la pesca con bertovelli o reti da posta (ed in tal caso sono incluse nel naviglio da pesca). Un ulteriore elemento di dubbia interpretazione è costituito da una decina di barche d’appoggio alla pesca subacquea professionale che, pur non essendo registrate come imbarcazioni da pesca, rappresentano a tutti gli effetti naviglio di supporto all’attività di pesca.

Le imbarcazioni che effettuano la pesca esclusivamente nelle acque interne non sono ovviamente incluse negli elenchi delle Capitanerie e saranno quindi trattate separatamente.

A seguito delle verifiche realizzate sia dai confronti delle varie fonti, sia dai sopralluoghi sul campo (talvolta le piccole o piccolissime imbarcazioni hanno collocazioni provvisorie ed un uso saltuario) si può concludere che le caratteristiche descritte sono da considerarsi nel complesso significative, sebbene siano possibili scostamenti comunque inferiori al 5%.

Nella cartina e nella tabella seguente sono riportate le 27 sedi delle Capitanerie di Porto che hanno fornito le informazioni (in totale 680 imbarcazioni) suddivise anche per Compartimento marittimo e Provincia di appartenenza.

<table>
<thead>
<tr>
<th>n-s</th>
<th>sigla</th>
<th>marineria</th>
<th>note</th>
<th>Prov</th>
<th>n°M/P inviati</th>
<th>Capit</th>
<th>Tipo</th>
<th>Comando</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MC</td>
<td>Marina di Carrara</td>
<td>era 1VG</td>
<td>MS</td>
<td>43</td>
<td>MC</td>
<td>Capitaneria di Porto</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3VG</td>
<td>Forte dei Marmi</td>
<td>MS</td>
<td>0</td>
<td>MC</td>
<td>Delegazione di Spiaggia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>VG</td>
<td>Viareggio</td>
<td>LU</td>
<td>16</td>
<td>VG</td>
<td>Ufficio Locale Marittimo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>LI</td>
<td>Livorno</td>
<td>PI</td>
<td>10</td>
<td>LI</td>
<td>Ufficio Locale Marittimo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>LI</td>
<td>Castiglioncello</td>
<td>LI</td>
<td>15</td>
<td>LI</td>
<td>Ufficio Locale Marittimo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>LI</td>
<td>Vada</td>
<td>LI</td>
<td>23</td>
<td>LI</td>
<td>Ufficio Locale Marittimo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>LI</td>
<td>Isola di Gorgona</td>
<td>LI</td>
<td>0</td>
<td>LI</td>
<td>non esiste più</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>LI</td>
<td>Capraia Isola</td>
<td>LI</td>
<td>4</td>
<td>LI</td>
<td>Ufficio Locale Marittimo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>LI</td>
<td>Porto Santo Stefano</td>
<td>LI</td>
<td>48</td>
<td>LI</td>
<td>Ufficio Circondariale Marittimo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>LI</td>
<td>Porto Ercole</td>
<td>GR</td>
<td>20</td>
<td>LI</td>
<td>Ufficio Locale Marittimo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nella gestione degli archivi del naviglio e delle sue caratteristiche sono stati rilevati inoltre i seguenti elementi di criticità:

- incompleta registrazione dei dati
- refusi nella trascrizione dei valori numerici
- potenza registrata indifferentemente in Hp o KW
- stazza registrata come TSL o GT
- mancato aggiornamento delle nuove immatricolazioni
- mancata eliminazione delle imbarcazioni trasferite o non più operative
- licenza per più attrezzature da pesca di cui una sola utilizzata
- presenza permanente o temporanea in porti diversi da quello di registrazione
- mancato aggiornamento di modifiche strutturali (es. sostituzione del motore)
3.3 Caratteristiche del naviglio inserite nel database

Sulla base delle informazioni fornite da Capitanerie, MiPAF e IREPA è stato strutturato un database che raccoglie 29 parametri, ove possibile, per ogni imbarcazione secondo l’esempio riportato nella seguente tabella (N.B. i valori e i dati riportati in tabella per motivi di privacy provengono in maniera casuale da diverse imbarcazioni dell’archivio).

<table>
<thead>
<tr>
<th>1</th>
<th>marineria</th>
<th>Capraia</th>
<th>Rio Marina</th>
<th>Porto S.Stefano</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>matricola</td>
<td>16L82</td>
<td>5PF365</td>
<td>2L2658</td>
</tr>
<tr>
<td>3</td>
<td>Nr UE</td>
<td>26068</td>
<td>11243</td>
<td>5244</td>
</tr>
<tr>
<td>4</td>
<td>Cat</td>
<td>IV^</td>
<td>IV^</td>
<td>III^</td>
</tr>
<tr>
<td>5</td>
<td>NOME</td>
<td>Spigola II</td>
<td>Stefania</td>
<td>Mirella</td>
</tr>
<tr>
<td>6</td>
<td>Nom. INT.</td>
<td>IWF C</td>
<td>IFL J2</td>
<td>I N U D</td>
</tr>
<tr>
<td>7</td>
<td>TSL</td>
<td>4.7</td>
<td>4.86</td>
<td>45.02</td>
</tr>
<tr>
<td>8</td>
<td>GT</td>
<td>2</td>
<td>2.28</td>
<td>55</td>
</tr>
<tr>
<td>9</td>
<td>LFT</td>
<td>7.9</td>
<td>3.44</td>
<td>19.02</td>
</tr>
<tr>
<td>10</td>
<td>LFT INT</td>
<td>8.1</td>
<td>7.18</td>
<td>7.06</td>
</tr>
<tr>
<td>11</td>
<td>Lungh. Perp.</td>
<td>6.84</td>
<td>6.64</td>
<td>6.29</td>
</tr>
<tr>
<td>12</td>
<td>KW</td>
<td>67.5</td>
<td>32</td>
<td>294.12</td>
</tr>
<tr>
<td>13</td>
<td>Hp</td>
<td>132</td>
<td>35</td>
<td>44</td>
</tr>
<tr>
<td>14</td>
<td>anno di costruzione</td>
<td>2002</td>
<td>1976</td>
<td>1969</td>
</tr>
<tr>
<td>15</td>
<td>anno di iscrizione</td>
<td>1979</td>
<td>1997</td>
<td>1990</td>
</tr>
<tr>
<td>16</td>
<td>armatore</td>
<td>Soc. srl S. Maria Assunta</td>
<td>Dessi Giorgio</td>
<td>Milani Massimo</td>
</tr>
<tr>
<td>17</td>
<td>recapito armatore</td>
<td>Massa via delle Pinete</td>
<td>Imbrò Paolo nato a Viareggio il 06.08.1979 residente in Via F.Lenci, 18 Livorno</td>
<td>P. Giovine Italia n°14</td>
</tr>
<tr>
<td>18</td>
<td>proprietario</td>
<td>Milani Nicola</td>
<td>Dessi Giorgio</td>
<td>Milani Massimo</td>
</tr>
<tr>
<td>19</td>
<td>recapito proprietario</td>
<td>Via Magnani, 9</td>
<td>nato a Portoferroia il 28.02. residente a Campo nell’Elba</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>tipo di pesca</td>
<td>PCL 6MG</td>
<td>PCL 3MG</td>
<td>P.C.L.(x)</td>
</tr>
<tr>
<td>21</td>
<td>sistema</td>
<td>attrezzi da posta, palangari</td>
<td>attrezzi da posta, palangari</td>
<td>Strascico costiera ravvicinato</td>
</tr>
<tr>
<td>22</td>
<td>porto</td>
<td>Capraia</td>
<td>Rio Marina</td>
<td>Porto S. Stefano</td>
</tr>
<tr>
<td>23</td>
<td>note</td>
<td>altro motore di 20.6KW</td>
<td></td>
<td>costruzione 1969/70</td>
</tr>
<tr>
<td>24</td>
<td>altro</td>
<td>Barca a remi</td>
<td>Barca a remi con motore</td>
<td>costruzione 1963/64</td>
</tr>
<tr>
<td>25</td>
<td>Tipo</td>
<td>M/m</td>
<td>M/b</td>
<td>M/b</td>
</tr>
<tr>
<td>26</td>
<td>Mater</td>
<td>legno</td>
<td>PRFV</td>
<td>Vetroresina</td>
</tr>
<tr>
<td>27</td>
<td>data iscrizione</td>
<td>29553</td>
<td>29661</td>
<td>29988</td>
</tr>
<tr>
<td>28</td>
<td>R.I.P.</td>
<td>101/II</td>
<td>1034/prima</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>N° licenza</td>
<td>1317/2000</td>
<td>1334/2000</td>
<td>13375/1</td>
</tr>
</tbody>
</table>

3.4 Localizzazione geografica del naviglio

Nelle seguenti cartine sono rappresentate le localizzazioni del naviglio toscano: l’area delle bolle è proporzionale al valore numerico. I numeri più consistenti sono a Viareggio e Livorno mentre, prendendo in considerazione il tonnellaggio o la potenza, anche Porto S. Stefano assume la sua rilevanza. La pesca a circuizione è localizzata quasi esclusivamente all’Isola d’Elba, mentre quella artigianale si distribuisce abbastanza uniformemente lungo tutta la costa toscana.
Numero di imbarcazioni da pesca

Elba
Orbetello
Livorno
Viareggio
Follonica
Cecina

tonnellaggio (GT) complessivo

Viareggio
Livorno
Cecina
Follonica
Elba
Orbetello
pesca a circoluzione (GT complessivo)

Elba
Orbetello
Livorno
Viareggio
Follonica
Cecina

pesca a strascico (GT complessivo)

Viareggio
Livorno
Cecina
Follonica
Elba
3.5 Distribuzione spaziale e tipologica del naviglio

Con l’esclusione delle Delegazioni di Spiaggia di Gorgona, non più attiva, e di Marina di Massa (le cui imbarcazioni sono registrate a Marina di Carrara), il naviglio risulta costituito da 617 imbarcazioni distribuite in 25 porti secondo lo schema riportato nella tabella seguente.
<table>
<thead>
<tr>
<th>Nu. imbarcazioni</th>
</tr>
</thead>
<tbody>
<tr>
<td>circuizione</td>
</tr>
<tr>
<td>strascico</td>
</tr>
<tr>
<td>artigianale</td>
</tr>
<tr>
<td>NUM</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>27</td>
</tr>
<tr>
<td>Totale complessivo</td>
</tr>
</tbody>
</table>

Nei grafici delle pagine seguenti sono riportate per ogni località le principali caratteristiche strutturali del naviglio per tipologia di pesca, sia come consistenza complessiva, sia come valore medio.

Da tali rappresentazioni si possono ricavare tutta una serie di indicazioni, ad es. che lo strascico è localizzato soprattutto a Viareggio e Livorno nell’area settentrionale, e a Porto S. Stefano e Castiglione della Pescaia nell’area meridionale e che le imbarcazioni in questi ultimi porti risultano essere sensibilmente più grandi che non a Viareggio o Livorno. E’ inoltre possibile osservare che la dimensione o l’età delle imbarcazioni dedite alla pesca sono molto uniformi su tutto il territorio con una lunghezza media di 7 m per la pesca artigianale, 16 per lo strascico e 22 per la circuizione.
potenza motrice (KW) media

lunghezza (LFT) media in metri
3.6 Correlazioni strutturali

Dal momento che le informazioni strutturali sul naviglio sono talvolta incomplete, soprattutto per i nuovi parametri legati alla normativa internazionale (es. GT o KW), si è reso necessario determinare dei modelli di conversione per poter stimare i dati mancanti e poter disporre degli indicatori globali, sia su base territoriale (es. potenza complessiva per marineria) sia per tipologia di pesca.

Nei grafici seguenti sono riportati i patterns da cui derivano modelli di conversione corrispondenti alle seguenti formule:

\[
\begin{align*}
\text{GT} &= 1,1256 \times \text{TSL} - 0,3151 \quad \text{R}^2 = 0,9276 \\
\text{KW} &= 0,1709 \times \text{GT} - 2,8392 \quad \text{R}^2 = 0,7467 \\
\text{LFT} &= 5,6819 \times \text{GT}^{0,337} \quad \text{R}^2 = 0,9257
\end{align*}
\]
4 Struttura dimensionale del naviglio da pesca

Le caratteristiche dimensionali in stazza (TSL e GT), potenza (KW) e lunghezza (LFT) sono riassunte in classi nei grafici seguenti per tipologia di pesca. E’ evidente come la quasi totalità delle imbarcazioni della pesca artigianale non siano superiori a 10 TSL, 15 m e 100 KW.
5 Età del naviglio da pesca toscano

Utilizzando l’informazione inerente all’anno di immatricolazione delle barche da pesca del naviglio toscano è possibile fare alcune valutazioni circa l’andamento storico della flotta. L’analisi può essere utile anche ai fini di una valutazione del turnover di imbarcazioni verificatosi nella flotta toscana negli ultimi anni. Nel grafico seguente è riportato il numero di nuove imbarcazioni in ogni biennio di tutto il naviglio attualmente operativo.
E' possibile osservare un primo picco nel 1959 relativo all’iscrizione delle barche della Laguna di Orbetello. Un secondo picco è evidente durante il biennio 1968-1969 dovuto all’alto numero di immatricolazioni verificatesi in tale periodo: durante il 1968 sono state infatti registrate 63 nuove barche, generalmente di piccole dimensioni, e dedite alla pesca artigianale con strumenti da posta. In media queste hanno dimensioni intorno a 1,2 TSL e 6,4 m LFT ed, essendo dotate di solo motore fuori bordo, erano prima escluse dalla registrazione. Negli anni successivi, ed in modo particolare a partire dalla metà degli anni ’70 fino alla fine degli anni ’80, si ha un sensibile aumento del numero di barche: tale aumento si arresta negli anni successivi sino ad oggi, dove siamo tornati ad una situazione analoga a quella precedente al 1968. In quest’ultimo decennio si hanno in media 5-10 immatricolazioni di barche all’anno in tutta la Toscana.

Un’informazione analoga è derivabile dai grafici successivi, che prendono in considerazione il decennio di costruzione dell’attuale flotta peschereccia toscana o l’età media per tipologia di pesca.
6 Tipologie di pesca

6.1 Attrezzi da pesca utilizzati

La definizione degli attrezzi da pesca utilizzati dalla marineria toscana ricade nelle tre tipologie: a strascico, a circuizione, pesca artigianale. Con quest’ultima categoria si comprendono un diverso numero di licenze e le imbarcazioni dotate di questa licenza alternano l’uso di vari attrezzi durante il corso dell’anno per meglio adattarsi alle condizioni locali.

Il numero delle licenze assegnate in Toscana (spesso più di una per ogni imbarcazione) è riassunta nella tabella e nel grafico seguenti.

<table>
<thead>
<tr>
<th>tipologia di attrezzo</th>
<th>numero di licenze</th>
<th>incidenza percentuale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attrezzi da posta</td>
<td>554</td>
<td>34%</td>
</tr>
<tr>
<td>Palangari</td>
<td>445</td>
<td>28%</td>
</tr>
<tr>
<td>Circuizione</td>
<td>186</td>
<td>11%</td>
</tr>
<tr>
<td>Strascico</td>
<td>170</td>
<td>11%</td>
</tr>
<tr>
<td>Lenze</td>
<td>158</td>
<td>10%</td>
</tr>
<tr>
<td>Scialbica</td>
<td>64</td>
<td>4%</td>
</tr>
<tr>
<td>Rastrello</td>
<td>21</td>
<td>1%</td>
</tr>
<tr>
<td>Volante</td>
<td>9</td>
<td>1%</td>
</tr>
<tr>
<td>Arpione</td>
<td>6</td>
<td>0,4%</td>
</tr>
<tr>
<td>Ferrettara</td>
<td>5</td>
<td>0,3%</td>
</tr>
</tbody>
</table>

Gli attrezzi effettivamente utilizzati nella pesca professionale non rispecchiano la distribuzione delle licenze che appare nel grafico precedente. Alcuni attrezzi che sono attualmente poco utilizzati dalla pesca professionale, come ad esempio i palangari e le lenze, sono ancora molto rappresentati nelle licenze concesse in tempi non recenti. Un discorso analogo vale per la circuizione, in Toscana non molto praticata, che risulta avere addirittura più licenze dello stesso strascico.
6.2 Catture per sistema di pesca

Secondo la classificazione operativa, i principali tipi di pesca presenti nell’area toscana possono essere suddivisi tra lo strascico, la circuizione e la pesca artigianale.

Lo strascico rappresenta uno dei sistemi di pesca più diffusi in Italia e viene effettuato grazie ad una rete a sacco collegata ai divergenti che consentono l’apertura della bocca della rete una volta che questa è trascinata in mare. In Toscana lo strascico comprende quattro principali tipologie di attrezzo: la tartana, la volantina, la francese e il rapido. La tartana è una rete asimmetrica che raggiunge un’apertura orizzontale variabile tra 5 e 20 m, mentre quella verticale al massimo è di un metro e mantiene un rapporto di stretto contatto con il fondo. La volantina può arrivare ad un’apertura verticale della bocca della rete superiore ai 2 metri e comporta un minor contatto con il fondo marino mentre il sistema francese prevede una rete simmetrica rispetto alla tartana, ha uno scarso contatto con il fondo marino e può raggiungere un’apertura verticale maggiore, anche fino a 3-4 metri. Il rapido ha una struttura rigida alla bocca ed è specificatamente indirizzato a specie con abitudini di vita strettamente legate ai fondi sabbiosi.

Per quanto riguarda la volantina e la francese il target è un insieme di specie senza una evidente dominanza di alcuna anche se le condizioni ambientali, la profondità di pesca e il reclutamento possono far sì che alcune specie risultino più comuni in certi periodi dell’anno o in certe aree. Le specie principalmente catturate in Toscana sono il nasello (*Merluccius merluccius*), la cicala (*Squilla mantis*), la seppia (*Sepia officinalis*), la triglia (*Mullus barbatus*) e numerose altre. In certi periodi dell’anno le catture della triglia (*Mullus barbatus*) e del moscardino (*Eledone cirrhosa*) possono raggiungere livelli molto elevati: nel caso della triglia questo si verifica soprattutto tra la fine di agosto e la fine di novembre quando la specie si concentra nella zona costiera in conseguenza dell’avvenuto reclutamento. Nel caso del moscardino si assiste ad un incremento dei tassi di cattura durante il periodo tardo primaverile ed estivo quando cioè tali organismi risultano essere molto concentrati in acque più profonde, tra 60 e 100 m.

Nella pesca con la tartana, le specie catturate sono estremamente varie, es. nasello, triglia, seppia, cicala, moscardino e decine di altre. In acque profonde, la specie più significativa, anche economicamente, è lo scampo (*Nephrops norvegicus*) che arriva a rappresentare il 40% dello sbarcato, seguito da altre specie con valori economici abbastanza ridotti quali la mostella (*Phycis blennoides*), con circa l’8%, e il potassolo (*Micromesistius poutassou*) che rappresenta poco più del 5%.

Il rapido è una variante del sistema a strascico nel quale la bocca viene mantenuta aperta grazie ad una intelaiatura di ferro con denti arcuati che consentono la penetrazione nel fondo marino. Tale rete è molto adatta alla cattura di specie che vivono in prossimità del fondo quali ad esempio sogliole, rombi, razze. La sogliola (*Solea vulgaris*) in teoria rappresenta la specie target di tale attrezzo (20% circa delle catture) anche se in realtà la specie maggiormente catturata risulta essere la razza stellata (*Raja asterias*) che rappresenta circa il 30% delle catture nell’area di Viareggio. Altra specie degna di nota è la seppia (*Sepia officinalis*) che costituisce poco più del 10% delle catture ottenute con tale attrezzo.

Nel compartimento di Viareggio esisteva fino a pochi anni fa una decina di imbarcazioni che praticavano lo strascico utilizzando un tipo di rete particolare, costituita da 3 sacchi di maglia diversa sovrapposti, per la cattura del rossetto (*Aphia minuta*). Le specie maggiormente catturate, oltre al rossetto che rappresenta circa il 35% delle catture, sono sugarelli (*Trachurus mediterraneus*) con il 13%, triglia (*Mullus barbatus*) con circa il 10% e nasello (*Merluccius merluccius*) con poco più del 5% del catturato totale.

La pesca a circuizione si suddivide in due principali tipologie, quella al pesce azzurro e quella al pesce bianco.
La circoluzione al pescezzuro viene effettuata con il ciacciole e con l’ausilio di fonti luminose che richiamano i banchi di pesce e permettono di poterli circondare. Questa rete viene calata da un peschereccio principale con l’ausilio di barche più piccole di appoggio tra cui le “lampare”. Le catture talvolta estremamente abbondanti sono comunque costituite quasi esclusivamente da sarde (Sardina pilchardus), acciughe (Engraulis enchrasicolus), sardinelle (Sardinella aurita) e talvolta sgombri (Scomber sp.).

La circoluzione al pesce bianco avviene senza l’ausilio di fonti luminose e può essere di tipo diurno o notturno. Le imbarcazioni che effettuano tale tipo di pesca sono in Toscana un numero molto limitato e operano principalmente intorno alle Secche della Meloria e alle Secche di Vada. Nel caso della circoluzione diurna al pesce bianco la specie maggiormente catturata è la ricciola (Seriola dumerillii) seguita dalla palamita (Sarda sarda).

Le specie maggiormente catturate con questa circoluzione notturna sono la salpa (Sarpa salpa), l’orata (Sparus auratus) e l’occhiata (Oblada melanura). Nel caso della circoluzione diurna al pesce bianco la specie maggiormente catturata è la ricciola (Seriola dumerillii) seguita dalla palamita (Sarda sarda).

Per quanto riguarda la pesca artigianale, o piccola pesca, gli attrezzi principalmente utilizzati sono le reti da posta, i palangari, la sciabica e le nasse. Un’attività diffusa a livello locale di pesca artigianale è quella indirizzata ai molluschi lamellibranchi effettuata con i rastrelli o da operatori subacquei.

Le reti da posta sono destinate a sbarrare gli spazi acquei allo scopo di ammagliare i pesci o gli altri organismi che le incontrano: sono costituite da lunghi pannelli rettangolari di rete e possono presentare un solo pannello di rete (imbrocco) o tre pannelli nel caso del tremaglio. La rete ad imbrocco cattura gli organismi che rimangono stretti dalle maglie nella zona branchiale. Il tremaglio è costituito da due pannelli esterni a maglie grandi e uno interno a maglie molto più piccole. La cattura avviene per ammagliamento dal pannello interno dopo aver attraversato il primo pannello. Una variante del tremaglio è rappresentata dalla rete incastellata costituita da un tremaglio sormontato da una rete di struttura simile a quella ad imbrocco. Le catture ottenute con tali attrezzi sono molto diversificate per zona, stagione, tipo di fondale, condizioni meteomarine, ecc. e interessano un centinaio di specie diverse. Ad esempio, per quanto riguarda il tremaglio circa il 20% delle catture è costituito dagli scorfani (Scorpaena sp.), il 17% è costituito dalla seppia (Sepia officinalis) e un altro 17% è costituito dal polpo di scoglio (Octopus vulgaris). Nel caso della rete ad imbrocco circa il 15% delle catture è costituito da Sarpa salpa, circa l’11% è costituito da Liza ramada mentre valori intorno all’8% sono rappresentati da Mugil cephalus, Chelon labrosus e Lythognathus mormyrus. Le catture della rete incasellata sono rappresentate per il 25% dalla seppia (Sepia officinalis), per il 13% dalla razza chiodata (Raja clavata), per il 10% dalla salpa (Sarpa salpa) e per circa il 9% da Liza ramada.

Il palangaro, fisso o derivante, è l’attrezzo ad ami più utilizzato a livello professionale ed è costituito da una serie di lenze (bracciuoli) appese ad un cavo (trave); ogni lenza porta un amo con un esca. Questa pesca viene usualmente esercitata di notte con l’attrezzo che viene calato al tramonto e salpato all’alba. Le specie target per il palangaro derivante sono i grandi pelagici quali il pesce spada (Xiphias gladius), il tonno (Thunnus thynnus), l’allaterato (Euthynnus alletteratus) e la palamita (Sarda sarda). Nel caso dei palangari fissi la specie maggiormente catturate sono saraghi (Diplodus sp.), orate (Sparus auratus), dentici (Dentex dentex), pagelli (Pagellus sp.), tanute (Spondyliosoma canthus), gronghi (Conger conger) e gallinelle (Frigla lucerna) e il nasello (Merluccius merluccius).

La pesca con la sciabica in Toscana è mirata alla cattura del rossetto (Aphia minuta) e prevede una tecnica particolare: la pesca inizia con la ricerca di banchi di rossetto mediante l’ecosondaggio, quando il segnale rileva la presenza di quantità soddisfacenti di pesce i pescatori calano la rete in modo da circondare i pesci stessi. La rete viene poi salpata mediante l’utilizzo di un verricello, mentre il sacco terminale viene salpato a mano in quanto molto fragile e costituito da maglie di soli
3 mm. Di conseguenza questo tipo di pesca risulta essere praticamente monospecifico ed è regolato dalla normativa delle pesche speciali che ne prevedono l’utilizzo esclusivamente in inverno.

Le nasse sono realizzate secondo una vasta tipologia di forme e materiali in quanto indirizzate alla cattura di una grande varietà di pesci, molluschi o crostacei. Concettualmente, il sistema di cattura è comunque costituito da un’apertura ad imbuto che facilita l’entrata degli organismi impedendone però allo stesso tempo l’uscita. Generalmente al suo interno vengono messe delle esche per facilitare l’attrazione delle prede. Le specie principalmente catturate in Toscana da tali attrezzi sono le seppie (Sepia officinalis), i polpi (Octopus vulgaris), le aragoste (Palinurus elephas) e gli astici (Homarus gammarus). Specie accessorie possono essere il grongo (Conger conger), la murena (Murena haelena), i serranidi (Serranus sp.), gli sparidi (Diplodus sp.) e la tanuta (Spondyliosoma cantharus).

I molluschi lamellibranchi, soprattutto telline (Donax trunculus), sono pescati con i rastrelli, solitamente retini di metallo con denti o lama che si infossano, in acque di limitata profondità. I rastrelli possono essere usati sia manualmente, sia da un’imbarcazione, ma la loro diffusione è estremamente limitata.

La pesca subacquea di cannolicchi (Solen marginatus) viene esercitata da operatori in immersione con l’utilizzo di un’asta lunga 40 cm che presenta, alla sua estremità, un’ogiva a forma di cono: quest’asta viene introdotta nei fori sul fondale sabbioso permettendo l’estrazione del mollusco che vi si attacca. Con tale tecnica sono possibili anche catture superiori a 10 kg all’ora.

In conclusione, comunque, manca un’informazione omogenea e diffusa sulle specie target di ogni frazione tipologica e territoriale della flotta, nonché sulle catture sia totali, sia per unità di sforzo.

6.3 Pesca professionale nelle acque interne

Le province devono individuare i corpi idrici nei quali è consentita la pesca professionale: la legge precisa che la scelta deve essere effettuata in un quadro di sostenibilità nei confronti della risorsa sfruttata. È’ evidente che questo implica una conoscenza della risorsa da sfruttare e della catturabilità degli attrezzi utilizzabili. In realtà le conoscenze attualmente disponibili sono decisamente scarse e, da una prima indagine, al momento non risulta che alcuna provincia abbia prodotto atti in tal senso dopo l’emanazione della L.R n°7/05.

In Provincia di Siena esiste un Regolamento per la disciplina del diritto esclusivo di pesca nei laghi di Chiusi e Montepulciano approvato con delibera del Consiglio Provinciale n° 102 del 13/12/2004 che può essere interpretato in tal senso. Nelle altre province dove è praticata la pesca professionale (Lucca, Livorno, Pisa e Grosseto), le aree interessate sono note e in genere sono storicamente sfruttate, ma non esiste un atto della Provincia che le identifichi. Nella Provincia di Lucca esiste una regolamentazione da parte del Parco Regionale di Migliarino, S. Rossore e Massaciuccoli (esclusivamente all’interno del quale viene esercitata la pesca professionale in acque interne) che, ai sensi della legge n°394 del 1991 (legge quadro aree protette), con la delibera n° 7375 del 6/8/93 intende dettare le norme per praticare la pesca sia sportiva che professionale. In realtà gli articoli 8 e 13 fanno riferimento alla 25/84 e successive modifiche, non includendo in effetti alcun tipo di regolamentazione per la pesca professionale. Le licenze di pesca professionale sono comunque rilasciate dal parco con l’obiettivo del riequilibrio ittico. Un caso a parte è
rappresentato dalla Provincia di Pistoia, dove, pur non essendo state concesse licenze di pesca professionale, è stata concessa un’autorizzazione a 2 pescatori della Provincia di Lucca per la pesca del gambero della Louisiana nel Padule di Fucecchio.

Le province di residenza del richiedente rilasciano le licenze di pesca professionale a seguito della dimostrazione della avvenuta costituzione della impresa di pesca. Il rilascio della licenza è quindi un semplice atto amministrativo dovuto da parte delle Province, senza alcun tipo di controllo relativo agli aspetti gestionali. Del resto non esiste alcun vincolo geografico per i pescatori professionisti, né all’interno della regione, né per quelli provenienti da altre regioni.

Le licenze sono rilasciate dalle Amministrazioni Provinciali che devono mantenere un elenco aggiornato dei titolari di licenza. Nel settembre 2006 risultano attive in Toscana 51 licenze, suddivise come dalla tabella seguente.

Numero di licenze di pesca professionale in acque interne

<table>
<thead>
<tr>
<th>Provincia</th>
<th>N° licenze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arezzo</td>
<td>-</td>
</tr>
<tr>
<td>Firenze</td>
<td>1</td>
</tr>
<tr>
<td>Prato</td>
<td>-</td>
</tr>
<tr>
<td>Pistoia</td>
<td>-</td>
</tr>
<tr>
<td>Lucca</td>
<td>18</td>
</tr>
<tr>
<td>Massa-Carrara</td>
<td>-</td>
</tr>
<tr>
<td>Siena</td>
<td>4</td>
</tr>
<tr>
<td>Pisa</td>
<td>9</td>
</tr>
<tr>
<td>Grosseto</td>
<td>13</td>
</tr>
<tr>
<td>Livorno</td>
<td>6</td>
</tr>
<tr>
<td>TOTALE</td>
<td>51</td>
</tr>
</tbody>
</table>

Le quattro licenze in provincia di Siena sono state rilasciate dalla Provincia di Perugia, ma si tratta comunque di pescatori che praticano l’attività nelle acque toscane. Nelle province di Pisa e Livorno, alcune licenze che figuravano attive nel 2006 non sono state rinnovate: in particolare a Pisa in genere si trattava di pensionati che usavano i bertovelli per le anguille ed essendo stato richiesto che il pescatore fosse titolare di impresa ittica, quasi tutti hanno rinunciato, per cui solo 2 licenze sono attualmente ancora attive.

In conclusione la situazione che risulta al novembre 2007 in Toscana indica che i pescatori potenzialmente attivi sono scesi a 42 unità.

Le province possono limitare l’esercizio della pesca professionale, riconoscendo una precedenza ai professionisti residenti, e definendo un numero massimo di pescatori che possono operare in una certa area. Al momento, l’unica limitazione di cui si è a conoscenza, è quella relativa al diritto esclusivo di pesca operante in provincia di Siena, già citato precedentemente. Un caso a parte è la Laguna di Orbetello, area esclusiva di pesca, ma i cui pescatori non praticano la propria attività nell’ambito della normativa per le acque interne in quanto sono considerate acque demaniali e conseguentemente i pescatori non devono richiedere licenza di pesca alla Provincia di Grosseto.

Ai sensi della L.R. n°7/2005 (comma 6), i pescatori professionisti sono obbligati a fornire alla provincia (non è specificato se a quella che ha rilasciato la licenza o a quella interessata per territorio) i dati semestrali sui prelievi effettuati; in caso di omissione, la provincia può sospendere la licenza di pesca professionale. A proposito di questo comma è opportuno fare alcune
Le informazioni statistiche sul pescato sono di rilevanza fondamentale per poter affrontare una effettiva gestione delle risorse: è quindi molto importante che il comma 6 venga applicato sebbene vi siano alcuni problemi applicativi. Innanzitutto le Province rischiano di non ricevere l’informazione completa in quanto i pescatori faranno certamente riferimento alla Provincia che ha il potere di sospensione della licenza, mentre saranno molto meno solleciti a fornire informazioni alle altre Province dove possono eventualmente praticare la pesca. Inoltre dovrebbero essere meglio specificate le caratteristiche delle informazioni che devono essere fornite (numero di uscite e luoghi di pesca, catture suddivise per specie, caratteristiche e quantità degli attrezzi utilizzati, ecc.). Nel complesso, il fatto che le licenze non possano essere commisurate alla disponibilità e sostenibilità della risorsa complica il processo gestionale; una soluzione, anche se parziale, sarebbe la creazione di una banca dati a livello regionale che raccolga tutta l’informazione proveniente dalle province. Attualmente sono disponibili informazioni statistiche sul pescato, almeno parziali, relative alle province di Siena, Pistoia, Grosseto, Livorno e Lucca.

Le imbarcazioni utilizzate nelle acque interne sono generalmente di dimensioni molto piccole, in legno o in legno vetroresinato, condotte a remi o con piccoli motori fuoribordo (in alcuni casi, es. Massaciuccoli, è imposto il motore elettrico). Per lo più le barche non hanno registrazione, salvo nelle province costiere quando le imbarcazioni sono anche utilizzate per la pesca in mare e sono quindi immatricolate presso la Capitaneria di competenza.

All momento non esiste alcuna regolamentazione degli attrezzi che possono essere utilizzati per la pesca professionale, ad eccezione dei laghi di Chiusi e Montepulciano, dove possono essere utilizzate solo reti da posta (definite localmente altane) e trappole (tofoni e bertovelli); in tale contesto sono anche regolamentati il numero, le dimensioni massime, l’apertura delle maglie e i periodi d’uso.

Nelle altre province sono utilizzate soprattutto trappole e bilance lungo i corsi d’acqua (primalmente nelle zone di foce), mentre nelle aree lacustri agli attrezzi già citati si aggiungono le reti da posta, con caratteristiche diverse da zona a zona, e la volantina per la pesca del latterino nel Lago di Massaciuccoli. Negli ultimi anni si è diffusa anche la pesca ai gamberi con le nasse.

Segue una descrizione sommaria dei principali attrezzi attualmente utilizzati dalla pesca professionale nelle acque interne toscane.

Bertovelli, tofoni ed altri attrezzi ad inganno. Attrezzi di forma conica, costituiti da diversi anelli, di dimensione decrescente, che sostengono una rete esterna. All’interno sono collocate altre reti di forma conica che costituiscono l’inganno vero e proprio disposte con il vertice dell’una che si inserisce nella base della successiva, in modo che la preda riesca facilmente ad introdursi senza poi poter uscire. All’imboccatura dell’attrezzo, sono spesso associate delle “ali” che inducono la preda a penetrare nell’inganno. Assume denominazioni diverse a seconda della zona e delle dimensioni. Le maglie sono in genere di 8 mm di lato.

Tramagli. Rete verticale da posta costituita da tre panni, dei quali i più esterni a maglia larga (circa 10 cm), per predisporre la formazione del sacco di cattura, e quello centrale di maglia non inferiore a 20 mm di lato.

Reti ad imbrocco, giapponesi, barracuda, ecc. Reti verticali da posta a panno unico che, a differenza del tramaglio, operano l’azione catturante solamente mediante imbrocco in prossimità delle branchie del pesce.

Nasse. Trappole a gabbia di varia forma e costruite con materiali diversi. Presentano una o più aperture alle estremità, di cui talvolta una grande per l’ingresso della preda e una piccola per inserire l’esca e togliere le prede catturate. Recentemente sono utilizzate con continuità per la pesca del gambero della Louisiana.

Altri attrezzi. Attualmente sono utilizzati altri attrezzi per la pesca professionale nelle acque interne. Alcuni, come la bilancia fissa e la bilancia da imbarcazione, sono attrezzi simili a quelli
analoghi utilizzati per la pesca dilettantistica, ma con caratteristiche che li pongono fuori dai parametri definiti dalla legge regionale (in genere per le dimensioni più ampie). Un attrezzo specificamente utilizzato per la pesca del latterino nei mesi invernali nel Lago di Massaciuccoli è la cosiddetta volantina. Si tratta di una rete a maglie fini sostenuta da dei pali e posizionata davanti alla prua dell’imbarcazione: l’azione di pesca viene esercitata procedendo ad andatura molto lenta e quindi spingendo in avanti la rete in prossimità della superficie dell’acqua.

Le specie pescate sono prevalentemente pesce gatto (*Ictalurus melas*), carassio (*Carassius carassius*), carpa (*Cyprinus carpio*) e gambero della Louisiana (*Procambarus clarkii*) in provincia di Siena; anguille (*Anguilla anguilla*) e spigole (*Dicentrarchus labrax*) in provincia di Pisa; anguille, carpe, lucci (*Exos lucius*), latterini (*Atherina boyeri*) e gamberi nella zona di Massaciuccoli, nella provincia di Lucca; spigole, orate (*Sparus auratus*), muggini (*Liza spp.*, *Mugil cephalus*, *Chelon labrosus*) e anguille in provincia di Grosseto.

In generale è da segnalare lo sviluppo che ha avuto la pesca del gambero della Louisiana che, per quanto si tratti di una specie invasiva ed alloctona, è ormai diffuso in quasi tutta la regione. Nelle zone di foce e comunque in acque salmastre è ancora praticata la pesca del novellame di specie marine pregiate da utilizzare in acquicoltura (spigole, orate, muggini, anguille, ecc.), attività che comunque necessita di una apposita autorizzazione ministeriale del MiPAF (non è chiaro però se sia anche necessaria la licenza per le acque interne).

In conclusione la pesca professionale nelle acque interne richiede un inquadramento conoscitivo globale, la quantificazione delle attività e delle popolazioni ittiche, valutando anche eventuali possibilità di espansione in invasi quali Chiusi, Bilancino, Montedoglio, ecc.

7 Evoluzione del naviglio da pesca toscano

7.1 Analisi del periodo 1985-2006

Un’analisi della riduzione della flotta da pesca negli ultimi trent’anni è possibile utilizzando i dati dei censimenti realizzati dall’allora CRIP (Consorzio Regionale di Idrobiologia e Pesca) a partire dagli anni ’80. Globalmente si è osservata una riduzione uniforme pari a circa il 3% all’anno, con minime variazioni tra gli indicatori come evidenziato dalla tabella e dai grafici seguenti.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>numero di imbarcazioni (N)</td>
<td>1206</td>
<td>979</td>
<td>856</td>
<td>769</td>
<td>617</td>
</tr>
<tr>
<td>stazza complessiva (TSL)</td>
<td>13285</td>
<td>11243</td>
<td>9200</td>
<td>7719</td>
<td>5630</td>
</tr>
<tr>
<td>potenza complessiva (KW)</td>
<td>75829</td>
<td>67219</td>
<td>58609</td>
<td>48678</td>
<td>46206</td>
</tr>
<tr>
<td>addetti alla pesca</td>
<td>2550</td>
<td>1830</td>
<td>1600</td>
<td>1440</td>
<td>1150</td>
</tr>
<tr>
<td>diminuzione annua N imbarcazioni</td>
<td>3,8%</td>
<td>2,5%</td>
<td>2,0%</td>
<td>3,3%</td>
<td></td>
</tr>
</tbody>
</table>
stazza (TSL) complessiva della flotta peschereccia

potenza (KW) totale della flotta peschereccia
numero di addetti alla pesca

<table>
<thead>
<tr>
<th>Anno</th>
<th>Numero Addetti</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>2550</td>
</tr>
<tr>
<td>1990</td>
<td>1830</td>
</tr>
<tr>
<td>1995</td>
<td>1600</td>
</tr>
<tr>
<td>2000</td>
<td>1440</td>
</tr>
<tr>
<td>2006</td>
<td>1150</td>
</tr>
</tbody>
</table>
7.2 Analisi del periodo 1990-2002

Nel corso degli ultimi 15 anni il numero delle imbarcazioni della flotta toscana è andato progressivamente riducendosi, da circa 1300 imbarcazioni a meno di 700. Le tabelle seguenti illustrano la situazione del 2005 in termini di numero di imbarcazioni e dei valori medi di GT, kW e LFT per Compartimento Marittimo e tipologia di pesca.

<table>
<thead>
<tr>
<th>NUM IMBARCAZIONI</th>
<th>LI</th>
<th>MC</th>
<th>PF</th>
<th>VG</th>
<th>Totale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuizione</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Fuori pesca</td>
<td>11</td>
<td>1</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passivi</td>
<td>303</td>
<td>36</td>
<td>66</td>
<td>87</td>
<td>492</td>
</tr>
<tr>
<td>Strascico</td>
<td>77</td>
<td>2</td>
<td>59</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>399</td>
<td>38</td>
<td>75</td>
<td>150</td>
<td>662</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>avg GT</th>
<th>LI</th>
<th>MC</th>
<th>PF</th>
<th>VG</th>
<th>Totale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuizione</td>
<td>22</td>
<td>58</td>
<td>77</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Fuori pesca</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>51</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passivi</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Strascico</td>
<td>38</td>
<td>17</td>
<td>22</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>10</td>
<td>2</td>
<td>10</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>avg KW</th>
<th>LI</th>
<th>MC</th>
<th>PF</th>
<th>VG</th>
<th>Totale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuizione</td>
<td>159</td>
<td>286</td>
<td>337</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Fuori pesca</td>
<td>30</td>
<td>96</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>191</td>
<td>206</td>
<td>196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passivi</td>
<td>48</td>
<td>17</td>
<td>70</td>
<td>29</td>
<td>45</td>
</tr>
<tr>
<td>Strascico</td>
<td>213</td>
<td>148</td>
<td>139</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Totale complessivo</td>
<td>88</td>
<td>24</td>
<td>96</td>
<td>81</td>
<td>84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>avg LFT</th>
<th>LI</th>
<th>MC</th>
<th>PF</th>
<th>VG</th>
<th>Totale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuazione</td>
<td>17</td>
<td>22</td>
<td>25</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Fuori pesca</td>
<td>5</td>
<td>12</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>18</td>
<td>15</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passivi</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Strascico</td>
<td>18</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Totale complessivo</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

![Diagramma del numero di imbarcazioni tra 1990 e 2002 per Livorno, Viareggio, Portoferraio e Marciana]{attachment://diagram.png}
Come è possibile vedere dalla figura precedente la flotta più consistente, come numero, si ha a livello del Compartimento di Livorno, seguito da quello di Viareggio, di Portoferraio e di Marina di Carrara.

Per quanto riguarda la composizione della flotta toscana in base alla tipologia di pesca, è possibile osservare una riduzione generalizzata e uniforme, anche se nel tempo la tipologia di pesca di una piccola parte delle imbarcazioni (indicata nn) non è nota e non può quindi essere attribuita alla categoria appropriata, parte peraltro andata riducendosi negli anni.
E’ inoltre possibile osservare la variazione del numero di imbarcazioni della flotta toscana raggruppandole nelle 3 principali attività di pesca: artigianale, strascico e pelagico.

Oltre al numero delle barche è possibile osservare le variazioni della stazza (TSL) a livello delle tipologie di pesca e dei diversi Compartimenti.
L’analisi nel tempo, sia della potenza delle imbarcazioni (kW) sia della stazza (TSL), permette di evidenziare valori medi che si sono mantenuti pressoché inalterati durante tutto il periodo considerato.

8 La valutazione delle risorse ittiche

8.1 L’ambiente marino e la pesca

Gli ecosistemi marini sono entità molto delicate nelle quali fenomeni naturali, d’origine abiotica (temperatura, salinità, ecc.) o di tipo biotico (relativi ai rapporti interspecifici di predazione, competizione, ecc.), possono alterare il loro "equilibrio" in diversi modi.

Negli ultimi secoli, le attività antropiche si sono inserite fra le principali cause di modificazione degli ecosistemi. Queste attività, molte volte, hanno avuto infatti effetti catastrofici. Insieme ai fenomeni d’inquinamento prodotti dall’industria, dai reflui urbani, dall’agricoltura e
dall'allevamento a terra e in mare, c'è anche l'attività di pesca che agisce direttamente sulle specie marine presenti modificando fortemente la loro abbondanza e dinamica della popolazione.

L'azione umana incide sull'ecosistema nel suo complesso, depauperando certe zone di specie pregiate, alterando sia le strutture demografiche delle popolazioni sia certi fenomeni biologici, e soprattutto modificando quali-quantitativamente i rapporti interspecifici. L'azione della pesca ha influenza diretta o indiretta anche sulle popolazioni che non hanno interesse commerciale. Un esempio è l’uso della rete a strascico che, in certe zone costiere, può rimuovere o distruggere organismi presenti sul fondale (flora e fauna bentonica) in un modo indiscriminato. La protezione degli ecosistemi presenti nei fondali è molto importante, non solo a scopo di conservazione della flora e fauna, ma anche perché questi organismi hanno un importante ruolo negli ecosistemi e sono inseriti all’interno delle stesse reti trofiche di molte specie che sono oggetto di pesca commerciale.

Le ricerche sulle risorse oggetto di pesca nella nostra regione, date le limitate risorse umane ed economiche, non permettono di considerare tutti gli aspetti che una complessa attività come la pesca ha, ed in particolare, di valutare il reale impatto dell'attività sull'intero ecosistema né gli aspetti relativi alle interazioni tecniche (fra diverse modalità di pesca che possono competere nella cattura di certe risorse) o di tipo biologico (competizione fra specie per cibo, spazio, rapporti predatore-preda). Tuttavia, le ricerche eseguite ci hanno permesso di cominciare a capire il complesso ecosistema e i rapporti fra attività di pesca, risorse rinnovabili e l’ambiente in generale.

8.2 Definizione dello stato di sfruttamento delle popolazioni ittiche

Il gruppo RIBM (Risorsa Ittica e Biodiversità Marina) di ARPAT-AREA MARE (ex CRIP) si occupa da quasi 25 anni del monitoraggio della situazione degli ambienti marini in Toscana, con particolare attenzione alla valutazione dello "stato di salute" delle specie oggetto di pesca commerciale. Similmente, secondo protocolli coordinati il CIBM (Consorzio Interuniversitario di Biologia Marina) conduce analoghe campagne di monitoraggio nelle aree a sud dell’Isola d’Elba.

Per soddisfare gli obiettivi gestionali, si utilizza un insieme di strumenti e metodologie scientifiche che fanno parte di quello che genericamente viene definito come "scienza della pesca". Questa scienza è un ibrido derivato da diverse discipline: biologiche, ecologiche, matematico-statistiche, tecnologiche, e socio-economiche.

Per valutare lo stato di sfruttamento delle risorse ittiche e fare previsioni sulle conseguenze che possono risultare dall'applicazione di modalità alternative di sfruttamento delle stesse, si ricorre all’uso di modelli che descrivono i principali fenomeni del dinamica delle popolazioni sfruttate: crescita, mortalità (naturale e da pesca), reclutamento (relativo all'ingresso della nuova generazione all'attività di pesca), migrazioni. Questi modelli permettono inoltre di valutare, attraverso simulazioni, in che modo la quantità e le modalità del prelievo possono incidere su queste variabili.

Le principali fonti d’informazione disponibili, utili per la stima dei parametri da inserire in questi modelli, sono le campagne scientifiche in mare (che forniscono dati d'abbondanza, dati biologici, oceanografici, ecc.) e i dati statistici provenienti dalla cattura commerciale (catture, sforzo di pesca, struttura di taglie delle specie catturate, costi, guadagni, ecc.). La realizzazione di queste attività di raccolta dati e le successive analisi, realizzate sia dal RIBM sia dal CIBM, hanno permesso di ottenere una fotografia abbastanza precisa dell'attività di pesca ed in particolare di valutare lo stato di sfruttamento delle principali specie nell’area toscana.

I modelli di valutazione dello stato di sfruttamento delle specie più diffuse, che utilizzano l’informazione raccolta da queste fonti, possono essere raggruppati in due tipi principali: i modelli globali e i modelli analitici.
I primi sono quelli che puntano l'attenzione sull'andamento delle biomasse nel tempo senza considerare la struttura demografica degli stocks. Questi approcci sono principalmente basati sull'informazione proveniente dall'attività commerciale di pesca in diverse fasi di sviluppo, confrontando inputs e outputs a “scatola chiusa” (black box approach), senza tentare di conoscere né di modellizzare ciascuno dei fenomeni interni di tali processi quali la crescita, il reclutamento, la diversa vulnerabilità per taglia, ecc. (anche se questi fenomeni sono considerati in forma implicita nei modelli). Questi approcci sono denominati "modelli globali" o "di produzione", mentre le più recenti versioni, che non assumono situazioni in equilibrio né per l'attività né per la struttura della popolazione, sono conosciuti come "modelli dinamici in biomassa". L'informazione base che è utilizzata nelle versioni più tradizionali di questi modelli è relativa alla cattura per specie e allo sforzo di pesca impiegato per ottenerla. Le difficoltà maggiori per l'applicazione di questi approcci sono legate alla disponibilità di dati precisi e lunghe serie storiche. Per essere realmente utili (più informativi), questi dati dovrebbero comprendere situazioni sufficientemente diverse verificatesi nel tempo relativamente ai livelli di sforzo impiegati e alle loro relative rese.

Il secondo gruppo, i modelli analitici, tenta di conoscere e di descrivere, attraverso altre formulazioni matematiche, tutti i principali fenomeni che possono incidere sull'abondanza, la struttura e dinamica della popolazione (crescita, mortalità da pesca e naturale, reclutamento) e di stimare i cambiamenti nelle rese e nella capacità di autorinnovo che si possono verificare come conseguenza di interventi sulle variabili sotto controllo umano (pressione di pesca, selettività dell'attrezzo in uso, tempi di pesca, ecc.). Questa famiglia di modelli analitici è anche conosciuta come "modelli strutturali". Spesso i fenomeni che si tenta di modellizzare sono troppo complessi e la formulazione concettuale scelta è troppo semplicistica, di conseguenza, non sempre questi riescono a rappresentare in modo sufficientemente realistico la situazione, sebbene forniscano varie indicazioni sulle conseguenze nel tempo dei cambiamenti nelle modalità e intensità di sfruttamento.

Molte volte, la scelta di uno o dell’altro approccio dipende dai dati disponibili e, conseguentemente, la precisione delle stime ottenute risulta essere molto legata alla frequenza e alle modalità di campionamento. Mentre per l'utilizzo di modelli di produzione in genere è necessario disporre di dati sulla pesca commerciale, per l'applicazione di alcuni modelli analitici si può in qualche modo prescindere da quel tipo di fonte, anche se in quest'ultimo caso l'utilità dei risultati ai fini gestionali risulta in genere più limitata.

8.3 Campionamento dell'attività di pesca commerciale

Caratteristica peculiare della pesca in Mediterraneo è la multispecificità: diverse centinaia sono le specie di pesci, crostacei o cefalopodi che più o meno con regolarità vengono catturate e sbarcate in Toscana. Un esempio relativo alla flotta di Viareggio è riportato nella figura seguente.
Il monitoraggio dell’attività di pesca consiste in sopralluoghi periodici nei porti (o nei siti di sbarco) dove si raccoglie l’informazione, attraverso interviste o mediante la raccolta di moduli riempiti a bordo, sulle catture per specie e per imbarcazione (quantità espressa in casse o in kg) sbarcate dalla flotta nella giornata del campionamento. Insieme a queste informazioni se ne raccolgono altre, ad esempio: nome o matricola dell’imbarcazione (da cui si possono ricavare le caratteristiche strutturali), ore effettive di pesca (sforzo), attrezzo utilizzato, area e profondità di pesca, ecc.. Vengono inoltre raccolti anche i dati disponibili presso le Capitanerie di porto, i mercati ittici, le cooperative di pescatori, ecc., che sono utili per conoscere le caratteristiche strutturali del naviglio, i sistemi di stoccaggio, distribuzione, conservazione, commercializzazione del prodotto e l’importanza socio-economica del settore. Queste informazioni sono attualmente richieste ai governi nazionali da parte dell’Unione Europea nel quadro del “Data Collection Regulation” e le strutture di ricerca esistenti nella Regione Toscana fanno parte del gruppo nazionale di raccolta dati.

L’obiettivo principale del programma è quello di monitorare le catture per singole specie, per strategia di pesca e categoria di imbarcazione al fine di evidenziare eventuali cambiamenti (trends) temporali dell’ammontare delle catture, degli indici di abbondanza (catture per unità di sforzo), della composizione specifica, dei costi e dei guadagni. Per alcune specie possono essere raccolti dei campioni da misurare per ricostruire la struttura per taglia della cattura commerciale.

Dall’analisi di queste serie temporali possono essere fatte previsioni a breve termine abbastanza accurate (per i 2 o 3 anni successivi) relativamente all’andamento dei tassi di cattura nel caso che l’attuale pressione di pesca non vari significativamente. Ad esempio nella figura seguente è rappresentato il trend delle catture per unità di sforzo degli scampi (marineria del porto di Viareggio) analizzato con il programma DEMETRA-EUROSTAT.

Assunto che lo sforzo di pesca si mantenga invariato, nella figura seguente la linea continua rappresenta la previsione futura e le linee punteggiate indicano i suoi intervalli di confidenza con p=0.95. I dati raccolti successivamente, durante questi ultimi tre anni, hanno infatti confermato le previsioni fatte nel 2003 di un arresto della tendenza al rialzo per la specie cominciata nel 1996-1997 e proseguita fino al 2003.

Tutte le informazioni raccolte attraverso questi programmi possono anche fornirci indicazioni sui cambiamenti dell'ecosistema marino (riduzione dell'abbondanza in mare di certe specie, modifiche della struttura per taglia, sostituzione di specie, ecc.). Inoltre, la struttura di taglia presente nella cattura commerciale spesso è molto diversa da quella che risulta dalle campagne di
pesca scientifica. Questo è dovuto al fatto che, nelle attività commerciali, i pescatori sono condizionati da aspetti economici e legali nella scelta delle specie bersaglio e delle aree da frequentare e quindi le aree dove andare a pescare non sono decise in modo casuale. In genere la pesca professionale frequenta le zone dove la pesca è consentita e dove si assume la presenza abbondante di specie e taglie tali da assicurare buone rese economiche, considerando il rapporto tra costi e benefici.

Altre informazioni relative alla frequenza dell'uso dei diversi tipi di attrezzi, alla scelta delle specie bersaglio e alle aree di pesca frequentate permettono di descrivere eventuali cambiamenti che possono verificarsi in senso spazio-temporale nelle strategie di pesca. Le informazioni di tipo socioeconomico su costi, ricavi, personale impiegato, ecc., sono inserite in specifici data-bases e vengono poi analizzate con potenti strumenti di analisi statistica georeferenziata.

La raccolta di dati dalla flotta commerciale fornisce informazioni che risultano impossibili da ricavare direttamente in mare attraverso campagne scientifiche. Quello ricavabile in mare, per quanto riguarda lo stato delle specie sfruttate (abbondanza attuale, struttura demografica, ecc.) è comunque fondamentalmente il risultato dell'azione della pesca. Disponendo solamente dei dati delle campagne scientifiche non conosciamo come si è arrivati a tale situazione: con quale attrezzo sono stati prelevati gli individui, quanto sforzo di pesca è stato necessario per la loro cattura, come si è distribuita nel tempo e nello spazio la pressione di pesca, quante barche e con quali caratteristiche hanno operato da ogni porto, qual è il potere di pesca di ciascun tipo d'imbarcazione o attrezzo, quali sono le caratteristiche economiche dell'attività, ecc.

Inoltre, gli specifici strumenti di cattura e le metodiche solitamente usate durante le campagne scientifiche (es. distribuzione casuale delle cale e loro breve durata) difficilmente permettono, per tutte le specie, un campionamento rappresentativo della popolazione in mare. Infatti, la struttura per taglia della cattura di ciascuna specie dipende dagli attrezzi impiegati e dalle modalità di utilizzo. I pescatori scelgono gli strumenti più adatti a massimizzare le rese e a catturare gli individui della taglia desiderata, ma questo è anche condizionato dalle aree operative, dalla loro profondità e tipo di fondo. Ad esempio, la rete a strascico non è molto efficiente per la cattura di naselli oltre una certa dimensione mentre gli individui di taglia grande sono più vulnerabili ad attrezzi fissi usati dalla pesca artigianale (gillnets e palangresi). Se per conoscere la composizione dimensionale dei naselli in mare o nelle catture commerciali utilizziamo solamente i dati provenienti dalla pesca a strascico, senza considerare le catture della specie ottenute con altre tecniche, possiamo ottenere erronee rappresentazioni della struttura in taglia.

La scarsa conoscenza delle reali modalità di pesca e sulla struttura delle catture non permetteranno di definire il reale stato della risorsa né di fornire adeguati suggerimenti gestionali. Occorre ricordare che solo stime reali dello stato delle risorse e proposte gestionali adeguate a alla situazione possono garantire la sostenibilità sia del prelievo sia dell'attività economica ad esso legata.

Una delle limitazioni principali dei dati provenienti dalla pesca commerciale è di tipo spaziale: la flotta commerciale, infatti, difficilmente copre tutta l'area di distribuzione delle diverse specie come potrebbe farlo una campagna scientifica. In compenso, la raccolta di questo tipo di dati permette di avere un maggior numero d'osservazioni riducendo enormemente l'incertezza dei risultati ottenuti.

La raccolta dati esclusivamente dello sbarcato non permette inoltre la determinazione dei quantitativi di pesce scarlati a bordo e gettati in mare ormai morti. Informazioni su questa frazione della cattura (variabile da specie a specie e nel tempo) può essere ricavata solo attraverso il riempimento a bordo, da parte dei pescatori, di appositi moduli o, meglio ancora, mediante un campionamento ad hoc attraverso imbarchi di osservatori sui pescherecci commerciali.

Lo scarto nella cattura può essere quantitativamente molto importante, anche oltre il 30%, e trascurarlo potrebbe condurre a sottovalutazioni dell'impatto della pesca su certe specie o sulle
frazioni di minor taglia di alcune popolazioni. Diverse campagne per valutare lo scarto realizzato con differenti sistemi di pesca sono state realizzate negli ultimi anni con finanziamento dell’UE.

A titolo esemplificativo si riporta nella tabella seguente la frazione scartata sul totale sbarcato e sul totale delle catture per alcune specie bersaglio della pesca a strascico nella nostra area (GSA 9) rilevati nel 2006 attraverso il Programma Nazionale Raccolta Dati Alieutici (ex Reg. CE 1543/2000 e 1639/2001). Si può rilevare che la parte scartata può anche superare quella effettivamente commercializzata, come nel caso del capone, o comunque rappresentarne più di un terzo (es. rana pescatrice o nasello).

<table>
<thead>
<tr>
<th>Nome Latino</th>
<th>Nome Italiano</th>
<th>Scarto Totale</th>
<th>Sbarcato Totale</th>
<th>% scarto sul commerciale</th>
<th>% scarto sul totale</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. antennatus</td>
<td>Gambero viola</td>
<td>0,00</td>
<td>92698,01</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>A. foliacea</td>
<td>Gambero rosso</td>
<td>0,00</td>
<td>62609,95</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>E. cirrhosa</td>
<td>Moscardino bianco</td>
<td>1057,09</td>
<td>919534,4</td>
<td>0,11</td>
<td>0,11</td>
</tr>
<tr>
<td>E. gurnardus</td>
<td>Capone gorno</td>
<td>3495,78</td>
<td>2661,58</td>
<td>131,34</td>
<td>56,77</td>
</tr>
<tr>
<td>E. moschata</td>
<td>Moscard. muschiato</td>
<td>0,00</td>
<td>80641,19</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>L. budegassa</td>
<td>Budego</td>
<td>31035,12</td>
<td>85470,56</td>
<td>36,31</td>
<td>26,64</td>
</tr>
<tr>
<td>L. piscatorius</td>
<td>Rana pescatrice</td>
<td>2257,80</td>
<td>64757,44</td>
<td>3,49</td>
<td>3,37</td>
</tr>
<tr>
<td>L. vulgaris</td>
<td>Calamaro comune</td>
<td>167,00</td>
<td>253761,18</td>
<td>0,07</td>
<td>0,07</td>
</tr>
<tr>
<td>M. merluccius</td>
<td>Nasello</td>
<td>413088,10</td>
<td>1167181,56</td>
<td>35,39</td>
<td>26,14</td>
</tr>
<tr>
<td>M. barbatus</td>
<td>Triglia di fango</td>
<td>157687,00</td>
<td>997371,15</td>
<td>15,81</td>
<td>13,65</td>
</tr>
<tr>
<td>M. surmuletus</td>
<td>Triglia di scoglio</td>
<td>1760,59</td>
<td>77132,74</td>
<td>2,28</td>
<td>2,23</td>
</tr>
<tr>
<td>N. norvegicus</td>
<td>Scampo</td>
<td>4063,30</td>
<td>247390,76</td>
<td>1,64</td>
<td>1,62</td>
</tr>
<tr>
<td>P. erythrinus</td>
<td>Pagello fragolino</td>
<td>17361,39</td>
<td>125351,88</td>
<td>13,85</td>
<td>12,17</td>
</tr>
<tr>
<td>P. longirostris</td>
<td>Gambero rosa</td>
<td>9289,60</td>
<td>462366,02</td>
<td>2,01</td>
<td>1,97</td>
</tr>
<tr>
<td>S. mantis</td>
<td>Pannocchia</td>
<td>4820,57</td>
<td>340165,67</td>
<td>1,42</td>
<td>1,40</td>
</tr>
<tr>
<td>S. officinalis</td>
<td>Seppia comune</td>
<td>162,86</td>
<td>182234,53</td>
<td>0,09</td>
<td>0,09</td>
</tr>
<tr>
<td>S. vulgaris</td>
<td>Sogliola comune</td>
<td>0,00</td>
<td>85112,63</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>T. lucerna</td>
<td>Gallinella</td>
<td>824,40</td>
<td>20803,77</td>
<td>3,96</td>
<td>3,81</td>
</tr>
</tbody>
</table>

Da tali indagini si ricava anche la distribuzione di taglia degli individui che vengono scartati che, seppure non presenti nelle catture allo sbarco, sono comunque rimossi dalla popolazione presente in mare. Nei grafici seguenti sono riportate le taglie degli scarti di nasello e triglia rilevati nel 3° trimestre del 2006 sempre relativi alla GSA 9.

Tali distribuzioni di taglia possono anche essere espresse per classi d’età come esemplificato nelle tabelle successive per nasello e triglia.
M. merluccius (trimestre III)
n=12180

![Graph of M. merluccius](image)

M. barbatus (trimestre III)
n=54985

![Graph of M. barbatus](image)
Chiave età-lunghezza (cm) del totale degli esemplari scartati di *E. gurnardus* e *M. merluccius*.

<table>
<thead>
<tr>
<th>E. gurnardus</th>
<th>Età (anni)</th>
<th>LT (cm)</th>
<th>0</th>
<th>Totale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3,5</td>
<td>26</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>4,0</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>4,5</td>
<td>44</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>5,0</td>
<td>83</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>5,5</td>
<td>181</td>
<td></td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>6,0</td>
<td>58</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>6,5</td>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>7,0</td>
<td>93</td>
<td></td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>7,5</td>
<td>98</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>8,0</td>
<td>50</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>8,5</td>
<td>124</td>
<td></td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>9,0</td>
<td>76</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>9,5</td>
<td>39</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>10,0</td>
<td>59</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>10,5</td>
<td>15</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>11,0</td>
<td>48</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>11,5</td>
<td>32</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>12,0</td>
<td>10</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>12,5</td>
<td>14</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>6</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Totale</td>
<td>1104</td>
<td></td>
<td></td>
<td>1104</td>
</tr>
<tr>
<td>Lm</td>
<td>7,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ds</td>
<td>2,2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M. merluccius</th>
<th>Età (anni)</th>
<th>LT (cm)</th>
<th>0</th>
<th>1</th>
<th>Totale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3,5</td>
<td>47</td>
<td></td>
<td></td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>4,0</td>
<td>7</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>4,5</td>
<td>34</td>
<td></td>
<td></td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>5,0</td>
<td>626</td>
<td></td>
<td></td>
<td>626</td>
</tr>
<tr>
<td></td>
<td>5,5</td>
<td>1263</td>
<td></td>
<td></td>
<td>1263</td>
</tr>
<tr>
<td></td>
<td>6,0</td>
<td>2576</td>
<td></td>
<td></td>
<td>2576</td>
</tr>
<tr>
<td></td>
<td>6,5</td>
<td>3153</td>
<td></td>
<td></td>
<td>3153</td>
</tr>
<tr>
<td></td>
<td>7,0</td>
<td>5741</td>
<td></td>
<td></td>
<td>5741</td>
</tr>
<tr>
<td></td>
<td>7,5</td>
<td>3678</td>
<td></td>
<td></td>
<td>3678</td>
</tr>
<tr>
<td></td>
<td>8,0</td>
<td>4282</td>
<td></td>
<td></td>
<td>4282</td>
</tr>
<tr>
<td></td>
<td>8,5</td>
<td>4806</td>
<td></td>
<td></td>
<td>4806</td>
</tr>
<tr>
<td></td>
<td>9,0</td>
<td>4553</td>
<td></td>
<td></td>
<td>4553</td>
</tr>
<tr>
<td></td>
<td>9,5</td>
<td>3654</td>
<td></td>
<td></td>
<td>3654</td>
</tr>
<tr>
<td></td>
<td>10,0</td>
<td>3469</td>
<td></td>
<td></td>
<td>3469</td>
</tr>
<tr>
<td></td>
<td>10,5</td>
<td>3035</td>
<td></td>
<td></td>
<td>3035</td>
</tr>
<tr>
<td></td>
<td>11,0</td>
<td>2788</td>
<td></td>
<td></td>
<td>2788</td>
</tr>
<tr>
<td></td>
<td>11,5</td>
<td>2270</td>
<td></td>
<td></td>
<td>2270</td>
</tr>
<tr>
<td></td>
<td>12,0</td>
<td>2941</td>
<td></td>
<td></td>
<td>2941</td>
</tr>
<tr>
<td></td>
<td>12,5</td>
<td>2619</td>
<td></td>
<td></td>
<td>2619</td>
</tr>
<tr>
<td></td>
<td>13,0</td>
<td>2382</td>
<td></td>
<td></td>
<td>2382</td>
</tr>
<tr>
<td></td>
<td>13,5</td>
<td>1729</td>
<td></td>
<td></td>
<td>1729</td>
</tr>
<tr>
<td></td>
<td>14,0</td>
<td>1583</td>
<td>109</td>
<td>1692</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14,5</td>
<td>840</td>
<td>142</td>
<td>982</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15,0</td>
<td>896</td>
<td>100</td>
<td>996</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15,5</td>
<td>354</td>
<td>132</td>
<td>486</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16,0</td>
<td>233</td>
<td>180</td>
<td>413</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16,5</td>
<td>28</td>
<td>60</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17,0</td>
<td>70</td>
<td>337</td>
<td>407</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17,5</td>
<td>14</td>
<td>51</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18,0</td>
<td>26</td>
<td>112</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18,5</td>
<td>3</td>
<td>29</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19,0</td>
<td>4</td>
<td>38</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20,0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20,5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21,0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22,0</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totale</td>
<td>59704</td>
<td>1296</td>
<td></td>
<td>61000</td>
<td></td>
</tr>
<tr>
<td>Lm</td>
<td>9,5</td>
<td>16,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ds</td>
<td>2,6</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Come accennato precedentemente si rileva che per cappone, nasello, triglia, rana pescatrice e pagello, lo scarto incide in maniera rilevante in relazione alla biomassa totale catturata. Per il nasello nella GSA 9 è stato stimato uno scarto annuale di circa 413 tonnellate, che rappresenta approssimativamente un quarto del totale catturato. Per la triglia la cifra stimata è pari a 160 tonnellate e per il pagello a 17 tonnellate che rappresentano tra il 12 ed il 13% delle catture totali.
delle specie, mentre per il budego le 31 tonnellate di scarto rappresentano circa il 25% della frazione sbarcata. In tutti e tre i casi, lo scarto è costituito in prevalenza da esemplari di piccole dimensioni.

Lo scarto di una parte del pescato può essere dovuto a diversi fattori, fra cui lo scarso (o nullo) valore economico della specie, la scarsa richiesta di mercato di una specie potenzialmente di valore commerciale, il valore irrisorio degli esemplari di piccola taglia o la presenza di una taglia legale minima di sbarco. Inoltre, alcuni individui possono essere scartati anche perché danneggiati durante le operazioni di cattura o di cernita del pescato.

Considerando l’entità del problema e la necessità di evitare la cattura inutile di specie o di taglie di specie commerciali, è necessario identificare soluzioni efficienti per evitare il prelievo di questi individui. Occorre considerare che una volta catturati, quando sono rigettati in mare, questi pesci sono ormai morti o sono facile preda degli uccelli marini e, anche potendo sfuggire, avranno comunque poche possibilità di sopravvivere. L’uso di attrezzi più selettivi o l’instaurazione di aree di protezione dove gli esemplari giovanili si concentrano, il divieto di pesca in determinati periodi vietati possono essere misure alternative per proteggere questi individui. Un maggior controllo a terra della taglia legale nelle procedure di sbarco può servire come deterrente per scoraggiare la frequentazione delle aree di concentrazione dei giovanili.

In conclusione, l'elevata dispersione dei siti di sbarco, l'enorme quantità di specie sbarcate, l'uso di molteplici tecniche di pesca, il problema dello scarto, rendono la raccolta di dati affidabili sulla cattura commerciale tuttora molto difficoltosa e costosa.

8.4 Esempi di utilizzo dei dati della pesca commerciale

Uno degli usi più frequenti, anche a livello mondiale, dei dati provenienti dalle flotte commerciali è indirizzato alla conoscenza della ripartizione dello sforzo di pesca. Le specie non si distribuiscono uniformemente nello spazio e quindi lo sforzo di pesca di una flotta non viene necessariamente esercitato uniformemente né nello spazio né come impatto fra le specie catturate.

Alcune flotte che utilizzano attrezzi particolari (es. varianti della rete tradizionale) hanno una o più specie come bersaglio e si concentrano su particolari aree o intervalli batimetrici, dove si assume che queste specie siano più abbondanti. Siccome molte risorse mostrano variazioni stagionali nella loro disponibilità, si verificano in conseguenza anche variazioni stagionali nella distribuzione spaziale delle flotte.

Quando si deve valutare la reale pressione di pesca su ogni singola specie (o su un certo gruppo di specie che è catturato insieme) è necessario definire la ripartizione precisa dello sforzo fra le diverse specie o i loro assemblaggi.

Si riporta quale esempio l’indagine condotta nell’area di Viareggio: attraverso periodiche interviste ai pescatori realizzate allo sbarco del pesce in banchina, sono raccolti i dati georeferenziati sulla zona di pesca di ciascun peschereccio e la cattura associata. Questa ricerca, incominciata nel 1990 e proseguita senza interruzioni fino ad oggi, ha permesso di costruire le cartine riportate di seguito, che rappresentano la distribuzione dello sforzo di pesca per i diversi attrezzi in uso nella marineria viareggina o per il diverso target:

a = pesca generalista con la volantina;
b = pesca costiera indirizzata alla triglia bianca;
c = pesca indirizzata al moscardino;
d = pesca profonda indirizzata allo scampo;
e = pesca con il rapido;
f = pesca indirizzata al rossetto.
Recentemente si è diffuso anche in Italia un sistema di localizzazione satellitare delle barche da pesca attraverso l’uso di un’emittente di segnali localizzata a bordo (blue box), sistema che dal 2005 è obbligatorio per le barche a strascico di oltre 20m di lunghezza. Anche per motivi di sicurezza da terra è possibile in tempo reale conoscere la localizzazione precisa delle barche e dall’analisi delle posizioni geografiche lungo il tracciato del percorso è possibile calcolare la velocità, definire i tempi di trasferimento verso le zone di pesca e i tempi dedicati effettivamente alla pesca.

I dati di cattura per singola imbarcazione, attraverso analisi statistiche più o meno raffinate, permettono inoltre di definire in modo oggettivo quali siano gli insiemi di specie (gli assemblaggi) che sono catturati con un certo attrezzo in un certo intervallo batimetrico, ed eventualmente in un certo periodo.

I risultati presentati nella figura seguente dimostrano quanto la composizione della cattura sia legata alle scelte strategiche dei pescatori, relativamente alle tecniche di pesca, alla profondità e al periodo dell'anno. I gruppi omogenei (clusters) vengono definiti con la tecnica dell’agglomerative hierarchical clustering che permette di raggruppare le pescate la cui composizione specifica, qualitativa e quantitativa è simile. La distanza euclidea in ordinata è utilizzata come misura di dissimilarità tra i seguenti raggruppamenti (di cui in tabella vengono sintetizzate aree operative e specie target):

- Aphia net = rete a rossetto
- Mid-water trawl = volante: Single=singola, Pair-towed=a coppia
- Hard bottom trawl = rete a catene
- Traditional bottom trawl = tartana
- Modified bottom trawl = volantina
- Beam trawl = rapido
Altre informazioni che si possono ricavare dal campionamento della pesca commerciale riguardano, ad esempio, la struttura della flotta effettivamente operativa in relazione alla struttura potenziale, in quanto non tutte le imbarcazioni pescano con la medesima intensità o frequenza.

Conoscere la struttura della flotta operativa è di fondamentale importanza per la gestione razionale dell'attività, in particolare per la sua standardizzazione a fini di confronto fra il potere di pesca delle diverse imbarcazioni. Inoltre molte imbarcazioni, soprattutto della pesca artigianale, cambiano sistema di pesca durante l'anno, e questo deve essere considerato perché è necessario determinare con precisione quanto sforzo di pesca è stato esercitato con ogni strategia e qual è stato il conseguente risultato nella composizione delle catture.

In una marineria, le variazioni nell'uso degli attrezzi nel corso dell'anno possono essere evidenziate attraverso grafici come quello successivo: è evidente come nel periodo estivo la volantina (che pesca sul fondale specie demersali) venga sostituita dalla volante (singola o a coppia) indirizzata al pesce pelagico. In conclusione, il maggiore uso di un attrezzo o dell’altro dipende fondamentalmente dai cambiamenti nella disponibilità delle risorse, dalla richiesta di mercato e dalle condizioni meteo-marine prevalenti nelle diverse stagioni.
Dall'analisi della composizione per attrezzo si possono inoltre descrivere i fenomeni evolutivi nel tempo: ad esempio la diminuzione del numero complessivo di pescherecci nel porto di Viareggio nel periodo 1990-99, con una riduzione del 20% in meno di 10 anni (F = rete francese; C = rete con catene; B = rete a rossetto; VC = volante a coppia; VS = volante singola; V = volantina; T = tartana; R = rapido).

Conoscere il tempo effettivo di pesca e le caratteristiche delle diverse strategie di pesca è importante non solo per quantificare il tempo effettivamente operativo, ma anche per conoscere come lo sforzo di pesca venga distribuito in relazione alle diverse profondità. Il tempo effettivo di pesca insieme al tempo complessivo delle bordate sono inoltre importanti informazioni anche dal punto di vista socio-econometrico.
Sempre per la marineria di Viareggio, nelle figure seguenti sono rappresentati il tempo effettivo di pesca (a) e la profondità di operazione (b) per le principali strategie di pesca già citate (min = valore minimo; max = valore massimo; median = mediana; 1st qu = 1° quartile; 3rd qu = 3° quartile).

Attraverso le interviste ai pescatori, al momento dello sbarco, è possibile individuare i cambiamenti nel comportamento della flotta, ad esempio riguardo all'intervallo bathimetrico più frequentato dalle imbarcazioni, per ogni singolo attrezzo, in funzione della disponibilità delle risorse o delle condizioni meteo-marine.

Nei grafici seguenti sono rappresentate le variazioni nella frequentazione di fondali sotto e sopra i 60 m di profondità delle strascicanti di Viareggio durante il corso dell’anno. In questo caso, la pesca più ravvicinata (<60m) durante i mesi autunnali è legata alla maggiore disponibilità della triglia di fango vicino alla costa e, nei successivi mesi invernali, alle condizioni meteo-marine più rigorose. A destra si può osservare come l’incremento dell’abbondanza di triglia (cpue) sia fondamentalmente localizzato nella fascia costiera, e legato al reclutamento alla pesca della nuova generazione, che in autunno raggiunge le taglie commerciali.

Le statistiche di catture e sforzo permettono, inoltre, di verificare l'esistenza di eventuali trends nelle catture sbarcate (in kg) o negli indici di abbondanza quali ad esempio la cattura per
unità di sforzo (cpue = catch per unit effort) espressa in kg/ora di pesca. Nei grafici seguenti sono illustrati i risultati dell’analisi temporale di cature per unità di sforzo (cpue in kg/ora di pesca) del nasello e dello scampo sbarcati al porto di Viareggio nel periodo 1990-2001: è evidente una riduzione di due terzi per il nasello, fondamentalmente riconducibile a una diversa strategia di pesca, e un notevole aumento dello scampo che è invece imputabile ad un effettivo aumento della popolazione disponibile in mare.

Dal punto di vista gestionale, quando esiste eccesso di prelievo e si devono attivare provvedimenti indirizzati a ridurre la pressione (e quindi la mortalità) da pesca, l’obiettivo può essere raggiunto in due diversi modi: o attraverso una riduzione dell’attività di pesca (numero di uscite o tempo di pesca) o attraverso la riduzione complessiva della capacità di pesca della flotta (la capacità è espressa sulla base di misure strutturali della flotta assunte, direttamente correlate al potere di pesca come potenza motrice o tonnellaggio totale). Per capire se la riduzione dell’una o dell'altra sia più efficiente a raggiungere l'obiettivo, si possono realizzare specifiche analisi utilizzando i dati della pesca commerciale.

Confrontando a Viareggio l’abilità di cattura di pescherecci che usano la rete a strascico con alcune caratteristiche delle imbarcazioni (es. GT e HP), potenzialmente legate alla capacità di pesca, in una certa area di pesca e con lo stesso assemblaggio di specie come bersaglio, si è potuto osservare che le catture/ora non si accrescono linearmente con l’aumento della potenza del motore o del tonnellaggio. Superata una certa dimensione, il potere di pesca (cioè l’abilità di cattura di una imbarcazione in relazione ad altre che pescano sulla stessa densità di pesci, nello stesso momento e luogo) non aumenta in modo evidente. Questo risultato è abbastanza logico pensando alla pesca a strascico dove, anche se le barche possono essere più grandi, è impensabile che le dimensioni delle reti o la velocità di strascico aumentino proporzionalmente senza limite.

I risultati, mostrati nella figura successiva, dimostrano che le catture della rete a strascico "volantina" tendono verso un plateau di circa 25 cassette al giorno e suggeriscono che il modo più efficiente di ridurre la mortalità da pesca è intervenire con limitazioni sull’attività dei motopesca e non mediante cambiamenti delle loro dimensioni strutturali.
L'analisi della composizione specifica del catturato ha permesso di osservare i cambiamenti nel tempo, che possono riflettere sia reali modifiche nell'abbondanza di alcune specie, sia i cambiamenti nella strategia e nei target della pesca. Per conoscere le cause reali di questi cambiamenti occorre sia avere informazioni sulla distribuzione spaziale dello sforzo, sia stime indipendenti dell'abbondanza delle diverse specie in mare.

Nel caso del nasello, mostrato nelle figure seguenti, si osserva come questa specie, che rappresentava all'inizio degli anni ’90 una frazione importante della cattura totale realizzata dalla volantina della marineria di Viareggio, alla fine del decennio ha notevolmente ridotto la sua importanza. Considerando che l'abbondanza in mare è rimasta pressoché costante, come evidenziato indipendentemente dai dati provenienti dalle campagne scientifiche, questo cambiamento è necessariamente da attribuirsi alla scelta strategica di altre specie bersaglio per la pesca della volantina.

Questo comportamento può essere ricollegabile all'imposizione, avvenuta in quegli anni, della taglia minima legale di 20 cm per il nasello decisa dall'Unione Europea e che ha obbligato i pescherecci ad abbandonare alcune tradizionali aree di pesca dove si concentra gli individui giovanili sotto la taglia legale. A conferma di quanto detto, relativamente ad una nuova strategia di pesca che riduce la cattura dei piccoli, si riportano in figura le proporzioni del nasello nella cattura complessiva registrati negli anni 1992 e 1998.
La diversa strategia di pesca è rilevabile anche dalla riduzione della frequentazione (espressa come % dei giorni operativi) dei fondali di pesca a profondità fra 150-250 m, osservato nella flotta di Viareggio fra il 1990 e il 1998 come da figura seguente.
Una verifica indipendente dell’efficacia della nuova taglia minima del nasello e della conseguente mutata strategia di pesca è l’aumento osservato nel numero in mare della frazione vulnerabile alla rete a strascico dei naselli d’età superiore ad un anno nella zona nord dell’arcipelago toscano (figura seguente derivata dai risultati delle campagne scientifiche).

Il cambiamento delle aree di pesca ha prodotto, a breve termine, un notevole calo delle rese orarie e degli sbarchi di nasello. Anche se occorrerà aspettare qualche anno per capire se questa misura avrà un effetto positivo sull’entità complessiva dello stock e sulle rese orarie di individui di maggior taglia, le prime indicazioni derivate dai dati delle campagne scientifiche suggeriscono un recupero anche della frazione dello stock di età superiore all’anno.

La raccolta sistematica di informazioni sulla pesca commerciale permette di definire, per ogni principale specie, quale attrezzo, o quali attrezzi siano usati per la sua cattura e inoltre su quali taglie insista ciascuno di essi. Questo è indispensabile per capire le potenziali interazioni fra attività di pesca diverse che competono per le stesse risorse e che devono quindi essere gestite tenendo in considerazione tali fenomeni. Spesso la pesca artigianale sfrutta specie che sono anche il target dalla flotta a strascico, ma le due tipologie possono operare in diverse aree e lo sforzo di pesca insistere sulle diverse fasi della vita della specie, come illustrato nelle seguenti distribuzioni di taglia relative alla cattura di nasello con la rete a imbocco (gillnet) in alto e con lo strascico in basso: è evidente che la gillnet cattura quasi esclusivamente individui maggiori di 20 cm, mentre gli individui dello strascico superiori a questa taglia sono assolutamente marginali.
Partendo dai dati delle catture commerciali, strutturati per taglia o per età, provenienti da tutte le attività di pesca nelle quali una certa specie è coinvolta, è possibile stimare l'entità della popolazione che dovrebbe essere presente in mare per poter fornire le rese attuali con lo sforzo di pesca esercitato.

Quest'approccio modellistico permette, inoltre, di stimare il tasso di mortalità F al quale sono attualmente soggette le diverse classi di età o di taglia della specie. Nella figura seguente è riportata la stima del numero di individui presenti in mare e il vettore di mortalità da pesca F per taglia: il modello è riferito al nasello ed è derivato dall'analisi dei dati commerciali di cattura per tutti gli attrezzi in tutta la Toscana.
L’entità del prelievo delle diverse tipologie di pesca può anche essere ripartito sulla base delle attività eventualmente coinvolte nella cattura della specie. Nelle figure seguenti è riportata l’entità degli sbarchi di nasello per porto in Toscana e la distribuzione delle catture per attrezzo (Gillnet = monofil; Bottom trawl = strascico tradizionale; French trawl = strascico ad alta apertura verticale).
Infine, anche la distribuzione della mortalità da pesca (F) per ogni taglia può essere attribuita al prelievo realizzato con ciascuna delle principali strategie di pesca (in figura sempre per il nasello in Toscana).

Talvolta è possibile confrontare e verificare la coerenza tra le stime di abbondanza delle risorse ittiche in mare (es. kg/kmq) ottenute dall’analisi dei dati delle campagne scientifiche e gli indici di cattura per unità di sforzo della pesca commerciale (es. kg/giorno).
Nei grafici seguenti si riporta ad esempio il confronto tra l’indice di rendimento della pesca commerciale per tutte le specie messe insieme (espresso come casse sbarcate al giorno per barca) e l’indice di abbondanza in mare derivato dai trawl survey GRUND (espresso come kg per km quadrato).

E’ evidente la coerenza fra i risultati ottenuti da queste due fonti indipendenti (l’una misura i pesci in mare, l’altra quelli prelevati) e come negli ultimi decenni sia le catture medie giornaliere, sia le abbondanze rilevate con i trawl survey, mostrino un trend crescente.

8.5 Campionamenti diretti in mare – trawl survey

Una fonte d’informazione di fondamentale importanza per la conoscenza delle risorse demersali, e del loro stato di sfruttamento, è rappresentata dalle campagne scientifiche realizzate
con reti a strascico (trawl surveys). Queste campagne, realizzate seguendo un determinato disegno statistico, sono indirizzate principalmente a conoscere la composizione delle specie presenti in ogni area o intervallo batimetrico e ad avere una fotografia istantanea dello status di queste specie relativamente alla loro abbondanza, distribuzione spaziale e struttura popolazionistica.

Tali ricerche permettono anche la raccolta di molte altre importanti informazioni di carattere biologico su base georeferenziata, ad esempio su aspetti riproduttivi o trofici delle singole specie. In Toscana per tali studi sono solitamente noleggiati pescherecci commerciali che utilizzano come strumento di campionamento la rete tradizionalmente usata nella zona. Le campagne di ricerca italiane (progetto GRUND) finanziate dal Ministero delle Politiche Agricole sono iniziate dal 1985 e proseguono tuttora secondo uno schema concordato, comune in tutta Italia. Dal 1994 è iniziato un ulteriore progetto internazionale di trawl surveys (progetto MEDITS) nel quale una decina di unità operative italiane operano insieme a molti altri paesi europei mediterranei; queste ricerche, finanziate dall'Unione Europea, stanno coinvolgendo tutti i paesi settentrionali del Mediterraneo.

In entrambi i casi, il disegno statistico scelto per distribuire le cale nello spazio è stato il modello casuale-stratificato. Il numero di stazioni da posizionare all'interno di ciascuno dei 5 intervalli batimetrici o strati (0-50 m, 50-100, 100-200, 200-500, 500-800) è proporzionale alla superficie dello strato in modo da garantire una efficiente ed omogenea copertura dell'area. La durata delle cale, le caratteristiche della rete, i calamenti, i divergenti e tutti i protocolli di pesca sono standardizzati in modo da rendere confrontabili le informazioni ricavate nei singoli campionamenti eseguiti nei diversi anni ed aree. Un esempio della posizione di ogni stazione di campionamento eseguita durante un trawl survey nell'area Toscana è rappresentata di seguito.

Nelle figure seguenti è illustrato uno dei tipici pescherecci usati per le campagne di trawl-surveys e lo schema della rete a strascico usata. A differenza del programma GRUND in cui si usa la rete commerciale, eventualmente integrata da un cover, la rete utilizzata nel MEDITS è un
attrezzo disegnato appositamente dall’Ifremer per queste campagne, caratterizzato da una maggior apertura verticale e una maglia al sacco molto più piccola (20 mm stirata).

Una volta salpata la rete, il catturato di ogni cala (sotto, un esempio a 532 m di profondità) è separato e successivamente viene rilevato il peso e il numero degli esemplari catturati di ogni singola specie. Per alcune specie, le cosiddette target, sono inoltre registrate la lunghezza degli individui, il peso individuale e sono anche raccolte varie informazioni biologiche sul sesso, maturità sessuale, dieta, ecc.
8.6 Esempi d'utilizzo dei dati delle campagne scientifiche

Uno degli usi più frequenti dell'informazione proveniente dai trawl-surveys è relativo alla conoscenza della distribuzione spaziale e batimetrica delle abbondanze per ciascuna specie. Con quest'informazione è possibile costruire carte tematiche nelle quali sono evidenziate le aree dove ciascuna specie si concentra. Nella figura successiva si evidenzia l’elaborazione tramite software GIS della distribuzione di tre specie di pagelli nella porzione nord dell’Arcipelago Toscano.

P. erythrinus
P. acarne
P. bogaraveo

Disponendo anche dei dati sulla composizione per taglia della cattura in ogni cala, è possibile verificare se esistono differenze nella distribuzione spaziale per classe di taglia e conseguentemente per classe d'età. Queste distribuzioni d'abbondanza, separate per età, possono essere rappresentate attraverso carte come quelle seguenti che costituiscono o la base per l’identificazione dei processi di migrazione, o la definizione delle aree di nursery o la delimitazione delle zone di concentrazione degli adulti per riprodursi. L’esempio successivo è relativo al pagello fragolino.
Come si osserva nella figura precedente, per specie quali la triglia o il parago è consuetudine trovare gli individui di minore taglia concentrati nelle aree vicine alla costa, mentre man mano che si accrescono tendono a spostarsi e disperdersi verso il largo.

Questo non è il caso di altre specie come il nasello in cui i giovani, appena acquisiscono un comportamento demersale, ovvero reclutano al fondo dopo la fase larvale planctonica, si concentrano in aree di nurseries localizzate al largo. Nel caso del nasello questo si verifica principalmente entro zone particolari nella fascia batimetrica di 150-250 m. Queste zone sono infatti caratterizzate da condizioni oceanografiche favorevoli per la loro permanenza e caratteristiche ambientali ottimali per la loro crescita e sopravvivenza grazie alla presenza di cibo abbondante, scarsa competizione, ecc. I giovani di nasello rimangono in queste zone fino a raggiungere circa un anno di età e successivamente migrano a profondità minori che nel corso degli anni, e con la maturità sessuale, progressivamente abbandoneranno.

Le aree di nursery rappresentano per molte specie le aree a più elevata concentrazione di individui, per cui il prelievo della pesca realizzato in tali aree può talvolta essere molto elevato, anche eccessivo per la sostenibilità della popolazione. Le attività di pesca mediterranee sono infatti realizzate in genere con attrezzi poco selettivi anche perché molte specie sono di piccole dimensioni e gli esemplari giovanili di alcune specie hanno un grande interesse commerciale. Per questo motivo, le nurseries hanno bisogno di protezione in modo da salvaguardare le forme giovanili delle diverse specie da una pressione di pesca eccessiva. Conoscere i limiti geografici e la stabilità nel tempo e nello spazio di queste aree di nursery è quindi un obiettivo di primaria importanza.

La conoscenza della distribuzione e l’identificazione di aree di concentrazione non è solo utile per proteggere gli individui che si trovano nelle fasi vitali considerate critiche (es. giovani, femmine, riproduttori, ecc.). Questo può essere importante, indipendentemente della loro età o fase vitale, anche per gli individui di specie la cui sopravvivenza è compromessa e per i quali si renda necessaria una particolare protezione (es. gli elasmobranchi che hanno un limitato potenziale riproduttivo). Solo conoscendo questi aspetti della distribuzione spaziale è possibile adottare misure gestionali di protezione o imporre misure specifiche ed articolate che implichino limitazioni della pesca nelle condizioni di periodo o area più appropriati. Di seguito è riportata la distribuzione degli individui di nasello di età inferiore ad un anno (a sinistra) e fra 1 e 2 anni di età (a destra) rilevate durante il periodo autunnale.
Sono attualmente disponibili per le acque toscane, dalla costa fino a 700 metri di profondità, i risultati di circa 2000 campionamenti eseguiti da ARPAT e CIBM negli anni passati. E’ quindi possibile definire con un elevato margine di accuratezza la distribuzione spaziale di circa 300 specie, utilizzando vari tipi di rappresentazione. Nelle figure delle pagine precedenti sono state utilizzate tecniche GIS di interpolazione, che però possono essere utilizzate solo quando l’informazione disponibile supera una certa soglia. Nelle figure seguenti sono riportati alcuni esempi realizzati per le gallinelle, i polpi, i sugarel li e alcuni crostacei. La rappresentazione può anche essere interpolata su una griglia di 3*3 miglia nautiche, che rappresenta l’unità minima di campionamento, come illustrato successivamente per nasello e triglia.
Durante le campagne scientifiche si possono anche eseguire esperimenti sul comportamento delle reti relativamente alle loro performances: apertura verticale, orizzontale, capacità di selezione del pescato in ciascuna delle loro porzioni, catturabilità relativa a ciascuna specie, ecc.

L'analisi della "selettività" della rete, cioè la capacità delle maglie della rete, o di qualsiasi altro strumento di cattura, di selezionare gli individui che sono catturati in funzione della taglia, è uno dei problemi più importanti da affrontare per comprendere e modellizzare la dinamica della pesca. In genere l'analisi è realizzata confrontando la composizione per taglia delle catture ottenute con reti a maglie di diverse dimensioni, o posizionando intorno al sacco (porzione terminale della rete dove si accumula il catturato) un coprisacco con maglie molto fitte, sensibilmente minori di quelle del sacco. Analizzando la proporzione d'individui per ogni taglia che riesce ad attraversare la maglia del sacco (ma che restano comunque intrappolati all'interno del coprisacco) si può costruire quella che è conosciuta come l'ogiva di selezione, cioè una curva di forma sigmoide che descrive per ogni specie la probabilità di restare catturati da una particolare rete per ogni sua taglia.

Arbitrariamente è definita come taglia di prima cattura o L50% la lunghezza del pesce per cui metà degli individui possono scappare attraverso le maglie del sacco.
La conoscenza della selettività degli attrezzi è molto importante perché la capacità di selezione è una delle variabili controllabili, in un certo modo, dall'uomo e queste possono incidere sulle caratteristiche quali-quantitative della cattura. In linea di principio, sarebbe auspicabile che tutti (o per lo meno una importante frazione) degli individui di una certa specie avessero l'opportunità, almeno una volta nella vita, di riprodursi prima di essere catturati. Inoltre, sulla base di considerazioni relative agli effetti contrastanti dei tassi di crescita e mortalità sull'entità della biomassa complessiva di una popolazione, esiste per ciascuna specie una taglia di prima cattura che può essere considerata ottimale, cioè che fornisce le migliori rese ottenibili per la pesca lungo l’intera vita di un individuo.

Il raggiungimento di questo tipo di obiettivi potrebbe essere ottenuto attraverso modifiche delle dimensioni delle maglie. Pescare tutti gli individui adottando questa combinazione ottimale garantirebbe le migliori rese, ma non necessariamente un adeguato autorinnovo della popolazione. La definizione e l’adozione di adeguate taglie di prima cattura e di tassi di sfruttamento che permettono ad una certa frazione dello stock di sopravvivere fino all’età adulta e riprodursi sono le premesse indispensabili per garantire sia la rinnovabilità della popolazione sia l’ottenimento delle migliori rese possibili.

Nel Mediterraneo predominano le attività di pesca multispecifica, che sono indirizzate alla cattura di un insieme di specie bersaglio della pesca. Risulta quindi difficile, se non impossibile definire attraverso la scelta della maglia della rete una taglia di prima cattura adeguata per tutte le specie. In queste attività di pesca si usano maglie al sacco molto più strette rispetto alla pesca oceànica perché la pesca è mirata anche alla cattura di numerose specie di piccola taglia, come calamaretti, gamberi, polpi e pesci che raggiungono, anche da adulti, solo dimensioni ridotte. Una complicazione ulteriore è rappresentata dal fatto che la stessa specie può essere catturata con diversi attrezzi e quindi risulta difficile definire una taglia di prima cattura che valga per tutti gli attrezzi.

Non potendo quindi utilizzare uno (o più) strumenti selettivi, per innalzare la taglia di prima cattura molte volte è più facile evitare la pesca nelle zone dove la taglia media è minore di quella desiderata, sempre che si conoscano i fondali dove si concentrano queste classi di taglia e non le altre.

Lo stesso obiettivo può essere raggiunto evitando di usare determinati strumenti di pesca o, alternativamente, conoscendo i momenti e le aree di reclutamento delle diverse specie, evitando di pescare in quelle aree o in quei periodi nei quali i giovani di tali specie si concentrano. Queste misure, da considerarsi necessarie, possono essere rese obbligatorie attraverso strumenti normativi come l'instaurazione di aree protette, fermi temporanei di pesca, ecc.
Per ogni specie, la definizione dell'età (o taglia) di cattura ottimale che garantisce la massima biomassa (denominata età critica o t^*) è ottenuta considerando gli effetti contrastanti della mortalità naturale (in alto a sinistra) e della crescita in peso (in basso a sinistra). Ad ogni età, la biomassa corrisponde al numero di sopravvissuti N che moltiplicato per il corrispondente peso medio P raggiunto a quell'età indica la biomassa complessiva (grafico a destra).

9 Parametri biologici

9.1 Modello matematico della crescita individuale

Per l'utilizzo dei modelli di valutazione detti analitici o strutturali, descritti brevemente in precedenza, è importante conoscere i valori di molti parametri e variabili che fanno parte di questi modelli e che descrivono vari aspetti della dinamica di una popolazione, ad esempio i tassi d'accrescimento, di mortalità, la fecondità delle diverse specie, i periodi di riproduzione e di reclutamento, i rapporti di predazione e di competizione fra specie, ecc. Molta di quest'informazione può essere raccolta attraverso le campagne di pesca scientifica.

I tassi d'accrescimento e di mortalità si possono ricavare dall'analisi della struttura di taglie, ovvero attraverso l'osservazione dei cambiamenti nel tempo del numero di individui e delle loro taglie. Essendo la riproduzione delle specie, nelle zone temperate, in genere un fenomeno discreto, concentrato in un periodo dell'anno relativamente breve, nelle distribuzioni di frequenza delle taglie si possono individuare delle mode (picchi di frequenza) che corrispondono agli individui nati nei momenti di più massiccia riproduzione. Mediante l’interpolazione nel tempo di queste mode (esempio in figura seguente) è possibile definire i tassi d'accrescimento di una determinata specie.
Un altro modo di stimare l’accrescimento individuale avviene mediante la lettura dell’età su strutture dure, come otoliti, vertebre, ossa opercolari, scaglie, spine, ecc. come illustrato nelle fotografie seguenti. I tassi di crescita possono infatti essere determinati contando gli anelli annuali (o giornalieri) che si formano in queste particolari strutture dure dei pesci. Il confronto fra l’età assegnata ad ogni individuo e la rispettiva taglia in lunghezza o peso permette di creare dei modelli di crescita per ciascuna specie.
Nelle figure seguenti si riportano come esempi l'andamento della crescita nel tempo per un pagello e una razza: in questo caso si assume il modello di crescita esponenziale di Von Bertalanffy, uno dei più frequentemente usati nella scienza della pesca.
Anche la definizione della relazione esistente fra la lunghezza e il peso individuale è molto importante perché questo rapporto permette di tradurre matematicamente le distribuzioni di frequenza di lunghezza in quelle espresse in peso e viceversa. Questa relazione è presente in numerosi modelli popolazionistici comunemente usati per valutare le popolazioni ittiche. Di seguito è mostrato il tipico andamento di alcune relazioni tra lunghezza e peso per specie diverse.
9.2 Riproduzione e fecondità

La conoscenza circa il periodo di riproduzione e la taglia di prima maturità sessuale per ciascuna specie è molto importante perché consente di stabilire misure gestionali di tutela quali, ad esempio, la taglia minima pescabile o le stagioni di divieto di pesca, finalizzate a proteggere il fenomeno riproduttivo e garantire l’autorinnovo delle popolazioni.

Per definire con precisione la dinamica di questi fenomeni sarebbe necessario realizzare campionamenti molto frequenti: se non è possibile realizzare campagne in mare almeno mensilmente, è necessario integrare le informazioni provenienti dei trawl-surveys con altre derivanti da campionamenti, ad esempio sullo sbarcato della pesca commerciale. Nella figura seguente è riportato un esempio relativo al modello riproduttivo applicato alla triglia di fango in Toscana derivata da campionamenti quindicinali.

La fecondità, definita come la capacità degli individui di diverse dimensioni di produrre un determinato numero di uova, è valutata mediante il conteggio degli oociti presenti nelle gonadi delle femmine di diverse taglie ed è espressa come una funzione matematica ottenuta mediante la regressione fra coppie di valori di numero di uova che si assume saranno depositi in breve e la taglia della femmina: nel caso della triglia, come si può vedere dal grafico sottostante, la curva assume un comportamento esponenziale.
La percentuale con la quale gli individui di ciascuna taglia raggiungono la maturità sessuale è stimata confrontando le lunghezze degli individui con lo stadio di maturità sessuale delle gonadi. L'analisi è da realizzarsi preferibilmente subito prima dall'inizio della stagione riproduttiva, quando gli individui raggiungono una maturità delle gonadi molto avanzata e quindi più facilmente rilevabile anche a livello macroscopico.

La probabilità di raggiungimento della maturità sessuale per una determinata taglia è espressa tramite funzioni sigmoidali differenti per ogni specie e sesso; nelle figure seguenti sono raffigurati i risultati ottenuti per due specie di razze, in cui si evidenzia, come spesso accade, che la taglia di prima maturità per le femmine è maggiore di quella dei maschi.
Sulla base di campagne scientifiche di pesca condotte da decenni nel mare toscano è oggi possibile localizzare le zone di concentrazione dei piccoli di numerose specie. Tali aree necessitano di una particolare protezione in quanto l’attività di pesca, soprattutto quella a strascico, può ridurre drasticamente la consistenza degli individui di tali specie prima che possano accrescersi e riprodursi. Nelle seguenti cartine si riportano due esempi relativi alla triglia, che ha nurseries costiere, e del nasello, le cui nurseries si trovano più al largo.

La raccolta di dati relativi ai contenuti stomacali, provenienti dal materiale biologico campionato durante i trawl survey, permette di ottenere preziosa informazione complementare in particolare sulla posizione geografica dei campioni, difficilmente ricavabili dai dati provenienti dalla cattività commerciale. Questo permette di realizzare analisi più fini sugli aspetti spaziali legati alla predazione come ad esempio il livello di sovrapposizione geografica fra predatori e prede, di preferenze nella dieta o sulla competizione fra specie.

Tutte queste relazioni possono essere introdotte in vari modelli di valutazione dello stato di sfruttamento degli stocks che prendono in considerazione aspetti riproduttivi o quelli trofici.
9.3 Struttura demografica delle popolazioni in mare

Per alcune specie, che a partire da una certa taglia sono considerate completamente vulnerabili all'attrezzo di pesca (ad esempio la rete a strascico), è possibile ricostruire la struttura della popolazione in mare attraverso l'analisi della loro composizione demografica e, mettendo insieme questi dati ad altre informazioni, giungere alla valutazione dello stato di sfruttamento delle stesse.

Infatti, man mano che aumenta la pressione di pesca, oltre a verificarsi una diminuzione generalizzata del numero d'individui sopravvissuti, e quindi delle catture per unità di sforzo, aumenta anche la probabilità per gli individui di essere catturati più precocemente. Il tasso di declino relativo del numero di individui per ogni età o taglia si fa sempre maggiore e la taglia media della popolazione diminuisce.

Questi fenomeni possono essere misurati e può essere stimato, in ultima analisi, il tasso istantaneo di mortalità totale, convenzionalmente indicato con Z. Queste stime, però, non sempre sono ottenibili dai dati provenienti da trawl-surveys, perché i dati devono rispettare certe premesse: la costanza dei tassi di mortalità lungo tutta la fase sfruttata della vita dello stock ed uno stato di equilibrio della pesca e del reclutamento negli anni, che non sempre si verificano. Nelle figure seguenti un esempio applicativo riferito allo scampo.

9.4 Trends di biomassa

Un'informazione di fondamentale importanza, ricavabile dai dati dei trawl-surveys, è quella relativa alla stima della biomassa presente in mare. Se conosciamo l'apertura della bocca della rete e la distanza percorsa durante lo strascico possiamo stimare l'area effettivamente strascicata durante una pescata. Un indice di biomassa (es. kg per km quadrato) può essere quindi stimato attraverso semplici estrapolazioni dei dati di cattura per unità di superficie, raccolti durante ogni operazione di pesca in ogni intervallo batimetrico. La stima ottenuta si riferisce ovviamente alla frazione della biomassa di ogni specie che risulta vulnerabile all'attrezzo in uso: infatti, in genere non è possibile fornire valori assoluti se non si può stabilire con precisione quale proporzione del pesce che si trova di fronte alla rete venga effettivamente catturato.

Se conosciamo sia le rese sia la struttura di taglie della cattura è anche possibile stimare indici di biomassa per classe di età, ad esempio, quello delle reclute di un preciso anno o quello dello stock riproduttore. Questo tipo d'informazione può essere molto importante per tentare di seguire l'entità del reclutamento negli anni o addirittura per capire il rapporto che esiste fra le nuove reclute e la biomassa dei riproduttori che le hanno prodotte: una stima si ottiene, ad esempio, confrontando i dati del numero delle reclute con quello dei riproduttori presenti nel periodo di riproduzione precedente.
L'analisi delle serie temporali di stime di indici di biomassa dei giovani e degli adulti permette di individuare l'esistenza di trends che possono essere il prodotto di cambiamenti nel tempo nella pressione di pesca, o di elevati livelli di sforzo mantenuti per lunghi periodi, che possono determinare riduzioni notevoli dell'entità dello stock. I dati degli indici di biomassa per classe d'età ricavati dalle campagne di pesca scientifica possono anche essere utili per tarare i risultati delle analisi basate sulle catture e sulla struttura di taglia dello sbarcato commerciale, indirizzati alla valutazione delle stime di mortalità da pesca e di abbondanza.

Nella figura seguente è rappresentato l'indice di biomassa, espresso in kg per km quadrato del nasello in Toscana, derivato dalle campagne di pesca sperimentale MEDITS, che sembra indicare una fluttuazione ciclica di oltre 10 kg/km2 con ciclo circa quinquennale.

La presenza di fluttuazioni con periodo di 5-7 anni sembra essere riscontrabile in diverse specie non solo attraverso le campagne di pesca scientifica, ma anche dagli sbarchi della pesca commerciale. Nella figura seguente viene analizzato lo sbarco di una razza (*Raja asterias*) nella marineria di Viareggio che mostra una ciclicità di questo tipo.
Se verrà confermato che questo tipo di fluttuazioni è ricollegabile a una ciclicità intrinseca dell’ecosistema e delle singole specie, ovvero costituisce un elemento di naturalità, è evidente che l’analisi dei trends e le stime di abbondanza non possono prescindere dal prendere in considerazione un intervallo temporale sufficientemente esteso.

Sono attualmente disponibili i trend storici degli indici di abbondanza (es. kg/km2) in mare di circa 300 specie: si riportano di seguito quale esempio quelli del pagello (*Pagellus erythrinus*) e del gambero rosa (*Parapenaeus longirostris*) confrontando le stime ottenute dai survey GRUND, grafici gialli, e MEDIT, grafici azzurri.
10 Conservazione della biodiversità marina

La registrazione diretta del pescato a bordo permette di segnalare e quantificare la totalità (ricchezza) delle specie che sono vulnerabili all'attrezzo di pesca, a differenza di quello che succede quando viene analizzato materiale sbarcato dalla pesca commerciale, il quale rappresenta esclusivamente la porzione della cattura che è portata a terra perché d'interesse economico. Questo fatto rende le campagne scientifiche uno strumento unico per gli studi sulla biodiversità.

Disponendo di serie temporali relativamente lunghe, è possibile osservare se si verificano cambiamenti, ad esempio una diminuzione della biodiversità nel tempo, che possono essere segnali di sovrasfruttamento dell'ecosistema; oppure possono essere valutate le variazioni spaziali, ad
esempio in relazione alla profondità, utilizzando specifici modelli: nei grafici seguenti sono utilizzati quelli di Simpson e di Shannon.

Soprattutto dall’analisi dei trend temporali rappresentati nella figura seguente si evidenzia come negli ultimi 20 anni il popolamento delle specie ittiche presenti nei mari toscani, fino a oltre 600 m di profondità, non abbiano subito pressioni tali da danneggiare la struttura e la diversità biologica delle popolazioni ittiche.
11 Produzione ittica toscana

La produzione complessiva del comparto ittico toscano, ad esclusione dell’acquacoltura, è valutata attraverso rielaborazioni dei dati 2006 forniti da IREPA-ISTAT e inseriti nel sistema Statistico Nazionale SISTAN.

Dal punto di vista del quantitativo globale catturato per sistema di pesca, la pesca a circolazione risulta la tipologia più importante, rappresentando con oltre 6000 tonnellate di prodotto il 55% dello sbarcato totale. Lo strascico segue con 3800 tonnellate di prodotto pari a circa il 35% del totale, mentre per la piccola pesca artigianale si rilevano circa 1000 tonnellate (9%) e la pesca polivalente con strumenti passivi 175 tonnellate (1.6%).

L’importanza relativa dei sistemi di pesca viene invertita se invece dei quantitativi di pescato in peso si analizza l’importanza dei ricavi. Da questo punto di vista, lo strascico rappresenta da solo il 58% del totale (28,9 milioni di euro), seguito dalla piccola pesca con 10,9 milioni di ricavo (circa 22.1% del totale), mentre la circoluzione rappresenta solo il 15,5% con 7,7 milioni di ricavo. I polivalenti passivi contribuiscono marginalmente con il 4% del totale (circa 2 milioni di euro di ricavo). L’ovvia spiegazione di questo fenomeno risiede nel basso valore per unità di peso delle specie che sono il target principale della circoluzione, la cui cattura è composta fondamentalmente da sardine e acciughe.

<table>
<thead>
<tr>
<th>SISTEMI</th>
<th>CATTURE (Ton.)</th>
<th>% sul totale</th>
<th>Ricavi (Euro x 1000)</th>
<th>% sul totale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strascico</td>
<td>3832</td>
<td>34,5</td>
<td>28,91</td>
<td>58,4</td>
</tr>
<tr>
<td>Circoluzione</td>
<td>6096</td>
<td>54,9</td>
<td>7,69</td>
<td>15,5</td>
</tr>
<tr>
<td>Piccola pesca</td>
<td>994</td>
<td>9,0</td>
<td>10,91</td>
<td>22,0</td>
</tr>
<tr>
<td>Polivalenti passivi</td>
<td>175</td>
<td>1,6</td>
<td>1,97</td>
<td>4,0</td>
</tr>
<tr>
<td>Totale</td>
<td>11099</td>
<td>100</td>
<td>49,48</td>
<td>100</td>
</tr>
</tbody>
</table>

Dal punto di vista della composizione per specie della cattura, si può vedere nella tabella seguente che nell’anno 2006 la flotta toscana ha sbarcato oltre 11.000 tonnellate di prodotto ittico, fra cui i pesci rappresentano la voce principale (circa 9000 tonnellate), seguito dai molluschi (1600 tonnellate) e infine i crostacei con 540 tonnellate.
Le specie di pesce più importanti, sulla base dei quantitativi sbarcati, sono ancora le sardine e le acciughe, che da sole rappresentano più del 53% del totale di prodotto ittico sbarcato. Tra le specie non pelagiche, il nasello rappresenta solo l’ 11% mentre la triglia di fango raggiunge l’ 8.4%, i sugarelli il 3.4%, i potassoli il 3.2% e la triglia di scoglio il 2.6%. Il rapporto tra le due specie di triglia appare però in contrasto con altri indicatori, per cui sembra più appropriato e sicuro considerarle insieme.

Dal punto di vista dei ricavi, che rappresentano complessivamente circa 50 milioni di euro, la specie più importante è l’acciuga, di relativo basso prezzo per unità di peso, ma catturata in grande quantità (2000 tonnellate, ovvero l’11% del ricavo complessivo). Le altre specie più rilevanti sono nasello (554 tonnellate, 5% del ricavo), triglia di fango (411 tonnellate, 3.7% del ricavo), sogliola (79 tonnellate di cattura, 2.9% del ricavo) e pesce spada, la cui cattura è di sole 85 tonnellate, ma che, per il suo alto valore commerciale, rappresenta il 2% dei ricavi complessivi del comparto.

<table>
<thead>
<tr>
<th>SPECIE</th>
<th>CATTURE (ton.)</th>
<th>Ricavi (Euro x 1000)</th>
<th>% catture</th>
<th>% €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acciughe</td>
<td>2045</td>
<td>5465.66</td>
<td>18.4%</td>
<td>11.0%</td>
</tr>
<tr>
<td>Sardine</td>
<td>3897</td>
<td>1981.07</td>
<td>35.1%</td>
<td>4.0%</td>
</tr>
<tr>
<td>Lanzardi</td>
<td>22</td>
<td>20.18</td>
<td>0.2%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Sgombri</td>
<td>84</td>
<td>209.97</td>
<td>0.8%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Atlunghe</td>
<td>0</td>
<td>0.04</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Palamiti</td>
<td>16</td>
<td>45.54</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Pesce spada</td>
<td>85</td>
<td>1008.79</td>
<td>0.8%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Tonni rossi</td>
<td>2</td>
<td>9.53</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Altri tonni</td>
<td>0</td>
<td>0.41</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Boghe</td>
<td>112</td>
<td>74.56</td>
<td>1.0%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Gallinelle</td>
<td>24</td>
<td>215.33</td>
<td>0.2%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Cappellani</td>
<td>25</td>
<td>21.31</td>
<td>0.2%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Cefali</td>
<td>92</td>
<td>182.25</td>
<td>0.8%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Menole</td>
<td>18</td>
<td>21.24</td>
<td>0.2%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Merlani</td>
<td>4</td>
<td>9.47</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Naselli</td>
<td>554</td>
<td>4327.27</td>
<td>5.0%</td>
<td>8.7%</td>
</tr>
<tr>
<td>Pagelli fragolino</td>
<td>52</td>
<td>192.37</td>
<td>0.5%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Potassoli</td>
<td>157</td>
<td>236.17</td>
<td>1.4%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Raiformi</td>
<td>67</td>
<td>241.20</td>
<td>0.6%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Rane pescatrici</td>
<td>82</td>
<td>690.27</td>
<td>0.7%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Ricciolo</td>
<td>7</td>
<td>71.88</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Rombi</td>
<td>89</td>
<td>369.89</td>
<td>0.8%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Sogliole</td>
<td>79</td>
<td>1423.80</td>
<td>0.7%</td>
<td>2.9%</td>
</tr>
<tr>
<td>Squalli</td>
<td>16</td>
<td>35.11</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Sugarelli</td>
<td>165</td>
<td>134.36</td>
<td>1.5%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Triglie di fango</td>
<td>411</td>
<td>2470.24</td>
<td>3.7%</td>
<td>5.6%</td>
</tr>
<tr>
<td>Triglie di scoglio</td>
<td>126</td>
<td>1642.93</td>
<td>1.1%</td>
<td>3.3%</td>
</tr>
<tr>
<td>Altri pesci</td>
<td>695</td>
<td>7830.34</td>
<td>6.3%</td>
<td>16.0%</td>
</tr>
<tr>
<td>Totale pesci</td>
<td>8926</td>
<td>29031.18</td>
<td>80.4%</td>
<td>58.7%</td>
</tr>
</tbody>
</table>

Tra i molluschi, la risorsa relativamente più importante è rappresentata dai polpi con cattura complessiva di circa 600 tonnellate, costituite in particolare soprattutto dal moscardino bianco (546 tonnellate). Le catture di seppie sono quasi equivalenti, con 520 tonnellate. I calamari e i totani superano di poco le 100 tonnellate ciascuno.
Considerando il loro valore economico, la seppia diventa la specie di mollusco più importante con ricavi di 4 milioni di euro, rappresentando circa l’8.5% del totale dell’attività di pesca.

<table>
<thead>
<tr>
<th>SPECIE</th>
<th>CATTURE (ton.)</th>
<th>Ricavi (Euro x 1000)</th>
<th>% catture</th>
<th>% €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calamari</td>
<td>128</td>
<td>1882.91</td>
<td>1.2%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Lumachini o murici</td>
<td>0</td>
<td>0.00</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Moscardini bianchi</td>
<td>546</td>
<td>3145.08</td>
<td>4.9%</td>
<td>6.4%</td>
</tr>
<tr>
<td>Moscardini muschiati</td>
<td>36</td>
<td>125.43</td>
<td>0.3%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Polpi altri</td>
<td>260</td>
<td>2050.89</td>
<td>2.3%</td>
<td>4.1%</td>
</tr>
<tr>
<td>Seppie</td>
<td>520</td>
<td>4206.25</td>
<td>4.7%</td>
<td>8.5%</td>
</tr>
<tr>
<td>Totani</td>
<td>127</td>
<td>629.68</td>
<td>1.1%</td>
<td>1.3%</td>
</tr>
<tr>
<td>Veneridi</td>
<td>0</td>
<td>0.00</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Vongole</td>
<td>0</td>
<td>0.00</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Altri molluschi</td>
<td>14</td>
<td>181.01</td>
<td>0.1%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Totale molluschi</td>
<td>1631</td>
<td>12221.25</td>
<td>14.7%</td>
<td>24.7%</td>
</tr>
</tbody>
</table>

La cattura dei crostacei è relativamente modesta, ma è costituita da diverse specie di elevato valore commerciale. Le pannocchie e i gamberi bianchi sono le specie più abbondanti tra i crostacei con 194 e 186 tonnellate rispettivamente, seguite dallo scampo (107 tonnellate). I gamberi rossi e viola, di alto valore commerciale, sono però catturati solo in aree limitate e gli sbarchi non raggiungono complessivamente le 4 tonnellate annue.

Dal punto di vista economico, il ricavo annuo dello scampo è il più importante fra i crostacei, con 2.9 milioni di euro che rappresenta circa il 5.9% dei ricavi totali; anche la pannocchia contribuisce al ricavo totale con 1.2 milioni (2.4%).

<table>
<thead>
<tr>
<th>SPECIE</th>
<th>CATTURE (ton.)</th>
<th>Ricavi (Euro x 1000)</th>
<th>% catture</th>
<th>% €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aragoste e astici</td>
<td>5</td>
<td>215.87</td>
<td>0.0%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Gamberi bianchi</td>
<td>186</td>
<td>2498.55</td>
<td>1.7%</td>
<td>5.0%</td>
</tr>
<tr>
<td>Gamberi rossi</td>
<td>3</td>
<td>104.49</td>
<td>0.0%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Gamberi viola</td>
<td>0</td>
<td>16.15</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Mazzancolle</td>
<td>27</td>
<td>949.40</td>
<td>0.2%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Pannocchie</td>
<td>194</td>
<td>1206.53</td>
<td>1.7%</td>
<td>2.4%</td>
</tr>
<tr>
<td>Scampi</td>
<td>107</td>
<td>2899.00</td>
<td>1.0%</td>
<td>5.9%</td>
</tr>
<tr>
<td>Altri crostacei</td>
<td>18</td>
<td>334.75</td>
<td>0.2%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Totale crostacei</td>
<td>540</td>
<td>8224.74</td>
<td>4.9%</td>
<td>16.6%</td>
</tr>
</tbody>
</table>

In conclusione, come si osserva nella tabella seguente, i pesci rappresentano circa l’80% dello sbarcato totale della flotta e il 60% dei ricavi, i molluschi circa il 15% e il 25% dei ricavi, mentre i crostacei solo il 5% in peso, ma il 17% dei ricavi. Molluschi e crostacei sono quasi esclusivamente catturati dallo strascico, con poche eccezioni come calamari, come la cattura di aragoste e astici ad opera della pesca artigianale o la pesca stagionale di seppie e con attrezzi fissi.
Una validazione delle stime di cattura (C) è possibile tramite il confronto con gli standing stocks (B) derivati dai trawl survey, sia GRUND, sia MEDITS e la relazione fondamentale C/B=F, in cui la mortalità da pesca (F) può essere stimata dalle catch curve o tramite altri modelli.

L’analisi può essere condotta sia sulla situazione puntuale dei singoli anni o, nel caso di elevata variabilità, mediando per periodi più lunghi, ad esempio 2000-2007.

12 Approccio precauzionale e reference points

Il Codice Internazionale di Condotta per la Pesca Responsabile della FAO prescrive un approccio precauzionale per l’attività di pesca: la FAO riconosce che molti dei problemi che interessano le attività di pesca sono dovuti a un eccesso di prelievo, specialmente in situazioni di alti livelli di incertezza. Queste incertezze possono essere legate sia all’ampiezza delle fluttuazioni naturali dei fenomeni analizzati, sia a imprecisioni nella misurazione dei parametri o nella diagnosi dello stato di sfruttamento, ma fondamentalmente sono il riflesso della scarsa conoscenza del "sistema pesca" dovute alla sua complessità spaziale, alle interazioni biologiche esistenti, ai cambiamenti tecnologici e agli obiettivi che si succedono nel tempo, alla risposta della flotta alle misure di regolazione, ecc.

Una delle più importanti richieste per una gestione precauzionale dell’attività di pesca è la definizione di chiari obiettivi e l’uso di appropriati punti di riferimento, i “reference points”. Tali punti di riferimento possono essere definiti come valori convenzionali dello stato di un’attività di pesca o di una popolazione considerati desiderabili da raggiungere (target reference points) o, in alternativa, livelli che non dovrebbero essere raggiunti od oltrepassati (threshold o limit reference points).

Per l’identificazione dei punti di riferimento biologico (BRP= biological reference points) più idonei per la gestione di un’attività di pesca, si deve considerare se questi sono compatibili con le actuali conoscenze sulle risorse, con le caratteristiche biologiche delle specie e con le strategie di pesca impiegate. I punti di riferimento scelti devono essere precauzionali e considerare, direttamente o indirettamente, anche gli aspetti riproduttivi delle popolazioni. L’obiettivo è la scelta di indici del livello di sfruttamento misurabili che rappresentino un buon compromesso fra un’approssimazione agli migliori rese e ricavi ottenibili e una buona probabilità di garantire l’autorinnovo e di evitare così il collasso dello stock.

L’obiettivo della valutazione degli stocks non è esclusivamente quello di stimare le abbondanze in mare o di fornire indicazioni gestionali per massimizzare le rese: la modalità di sfruttamento considerata ottimale (in quanto a livello di pressione di pesca e a pattern di sfruttamento) dovrebbe anche garantire la sostenibilità nel tempo. Occorre quindi avvalersi sempre di più delle conoscenze relative agli aspetti riproduttivi per definire i quantitativi massimi da prelevare o i limiti dello sforzo da pesca che garantiscono buone rese pur mantenendo una biomassa riproduttrice sufficiente.

Con le stime di abbondanza o biomassa in mare possono essere realizzati anche altri tipi di analisi che risultano molto utili e che sono la base per la definizione di livelli di pressione di pesca adeguati. Le campagne di ricerca in mare, specialmente i trawl surveys, nel caso la specie oltre la taglia di prima cattura sia vulnerabile in modo indipendente dalla taglia, ci permettono di misurare l’abbondanza in mare sia degli individui adulti (i riproduttori), sia di quelli delle nuove generazioni (le reclute). Confrontando, in diversi anni le entità dello stock "parentale" con il successivo prodotto della riproduzione (cioè le reclute), si possono costruire curve di confronto tra lo stock riproduttore e le reclute che risultano di enorme utilità per la previsione del successo riproduttivo a diversi livelli di biomass dei riproduttori.
Anche se intuitivamente si può pensare che, ad un maggior numero di riproduttori corrisponderà un numero sempre maggiore di individui della nuova generazione, questo non si verifica se non entro certi limiti. Infatti, la capacità dell'ambiente di sostenere una popolazione non è illimitata: ovviamente l'ambiente non può garantire illimitate risorse di alimento e spazio. Inoltre, le nuove generazioni possono anche entrare in competizione con lo stock parentale o, in alcuni casi, possono anche essere predate dai genitori. A bassi livelli di biomassa dei riproduttori, con un leggero incremento dei riproduttori si ottiene un aumento notevole delle reclute, grazie all'elevata fecondità di gran parte delle specie ittiche, ma anche ad una buona probabilità di sopravvivenza. All'aumentare dello stock dei riproduttori si arriverà ad un punto in cui questa tendenza all'aumento si ridurrà, si arresterà o, addirittura, a livelli molto alti di abbondanza dei riproduttori, potrà arrivare ad una fase discendente. Diversi modelli sono stati proposti per descrivere questa relazione tra lo stock adulto e le reclute: quale dei modelli proposti sia più idoneo dipende essenzialmente dalle caratteristiche biologiche ed ecologiche delle singole specie.

Dal modello stock-recruitment possono essere stimati diversi valori che vengono poi usati come riferimento per la gestione: ad esempio, nella figura successiva si evidenzia che, a livelli bassi di biomassa dei riproduttori, ogni ulteriore diminuzione implica un drastico calo delle reclute. E’ in tal modo che sono definiti dei limiti minimi (limit reference points) per la biomassa dei riproduttori o per i tassi di mortalità. Alcuni punti di riferimento vengono espressi come tassi di mortalità e considerano le conseguenze dell’applicazione di un determinato tipo di mortalità sull’abbondanza (e sulla rinnovabilità) della popolazione. Lo Zcrash della figura indica un livello pericoloso al quale non si dovrebbe arrivare, mentre se l'attività di pesca determina un tasso di mortalità fluttuante intorno allo Zmed si garantisce sia la sostenibilità del reclutamento sia un’adeguata resa di pesca.

Di seguito è rappresentata la relazione fra lo stock adulto ed il reclutamento per la triglia di fango (Mullus barbatus) relativa al complesso del Mar Ligure, Alto e Medio Tirreno derivata dalle campagne di trawl surveys effettuati fra gli anni 1985 e 2003. Il fatto di riprodursi in modo massiccio già al primo anno di vita e l'esistenza di aree dove si concentrano gli individui nelle fasi giovanili, facilita la quantificazione dello stock parentale e delle reclute.
Nella figura seguente è indicata una selezione dei punti di riferimento biologici (limit reference points) più frequentemente utilizzati che si basano sui tassi di mortalità da pesca F. L’esempio è relativo alla valutazione dello stato di sfruttamento dello scampo (*Nephrops norvegicus*) nelle acque toscane: la freccia nera bidirezionale mostra lo stato attuale del livello di sfruttamento della risorsa e fornisce l’indicazione gestionale di uno sfruttamento adeguato a garantire l’autorinnovo della popolazione.

![Diagram](image)

In attività di pesca multispecifiche come quelle mediterranee risulta necessario che i punti di riferimento scelti considerino i probabili effetti di interazioni specifiche. Queste interazioni fra specie possono anche avere un effetto sulle risposte delle singole popolazioni allo sfruttamento, in particolare nei fenomeni di ricostruzione della stessa risorsa.

Anche l’importanza delle interazioni di tipo tecnologico è di gran rilevanza nelle attività di pesca multispecifiche del Mediterraneo: spesso più di un sistema di pesca produce, in modo desiderato o no, una mortalità che può incidere in maniera differente su una o più classi di età della stessa specie. Tutte queste interazioni fra attività di pesca che operano con diversi attrezzi, in diverse aree o in diversi momenti, ma che coinvolgono direttamente o indirettamente specie comuni, devono essere considerate per valutare lo stato di sfruttamento e per definire le misure gestionali utili a garantire la persistenza degli stocks.

In un approccio precauzionale è necessario anche considerare le specie che non sono il target principale della pesca, ed in particolare quelle più sensibili allo sfruttamento: in senso conservativo risulta quindi necessario fissare punti di riferimento che facciano particolare attenzione, ad esempio, a specie che mostrano scarsa abilità per il recupero da situazioni di riduzione dell’abbondanza, ad esempio i selaci che hanno bassi tassi riproduttivi.

I modelli di popolazione delle specie ittiche non si devono però limitare a questo. Infatti, qualsiasi misura di gestione proposta e applicata, che implichi riduzione dello sforzo, limiti negli sbarcati, creazione di aree protette, ecc., produrrà cambiamenti, non solo nelle caratteristiche delle risorse, ma anche nel comportamento della flotta. Sarà quindi necessario considerare l’abilità della flotta di adattarsi, ad esempio, attraverso cambiamenti del target fra gli stocks presenti e di ridistribuzione della pressione di pesca. Ad esempio, in relazione ad uno stock la cui abbondanza si è ridotta in una certa area, l’impossibilità di continuare a catturarlo con livelli di resa accettabili potrebbe avere come conseguenza un aumento della pressione di pesca su altre risorse o sullo stesso stock in altre aree. Oppure l’imposizione di riduzioni nelle quote di pesca, o un aumento della taglia minima legale, potrebbero provocare nella pratica solamente un inde opporto incremento degli scarti di pesca, insieme a perdite economiche, e non la desiderata riduzione della mortalità. Lo stesso può
succedere quando viene instaurata un’area protetta e lo sforzo di pesca, non potendo essere esercitato al suo interno, si concentra nei dintorni, vanificando l’efficienza della misura gestionale.

Di seguito vengono citati alcuni strumenti gestionali alternativi che sono potenzialmente applicabili a una realtà di pesca multispecifica, quale è quella mediterranea in generale e quella toscana in particolare.

La gestione basata sulle “specie più deboli” implica la definizione e l’uso del livello di prelievo che permette un tasso di fuga ottimale per le specie più "sensibili" coinvolte nell’attività di pesca. Questa politica è considerata conservativa, tuttavia può avere una conseguenza indesiderata che si evidenzia quando uno di questi stocks è poco produttivo. In questi casi gran parte delle rese potenziali di altri stocks più produttivi possono essere perse.

Una politica alternativa di gestione sarebbe quella di mantenere una “frazione costante non catturata” per l’insieme dello stock multispecifico permettendo agli individui di tale frazione di sfuggire alla cattura.

Una terza opzione consiste nel definire un “tasso di prelievo costante”, una politica che, nel caso d’attività di pesca multispecifiche, generalmente è molto funzionale. In molte attività di pesca multispecifiche, un costante tasso di prelievo implica infatti uno sforzo costante, mentre i tassi di prelievo possono essere, e quasi sempre lo sono, diversi per ogni singola specie. Questa è probabilmente la strategia più facilmente realizzabile per la gestione delle attività di pesca mediterranea e in particolare per la nostra area, anche perché più facile da verificare. Possibili cambiamenti in efficienza della pesca, dovuti a cause diverse, dovrebbero comunque essere individuati e monitorati nel tempo.

Quando viene definito, per ciascuna delle strategie di pesca, il livello di sforzo più adeguato (la scelta è fatta sulla base di aspetti biologici, economici e sociali), gli amministratori possono decidere di incoraggiare la pratica di specifiche strategie di pesca puntando ad una massimizzazione delle rese economiche in un contesto “sostenibile”.

In conclusione, nel selezionare un punto di riferimento adeguato, è necessario che questo sia sufficientemente “sicuro”, che garantisca la sostenibilità dell’attività di pesca a qualiasi livello di sforzo inferiore al tasso di sfruttamento prefissato, e inoltre che prenda in considerazione i possibili errori di osservazione da cui dipendono le stime dello stato attuale dello stock e le assunzioni introdotte nei modelli.

Le assunzioni introdotte nei modelli, ad esempio riguardo ai tassi di mortalità naturale o ai parametri di crescita, possono modificare enormemente sia la stima dei punti di riferimento, sia quella dello stato di sfruttamento dello stock, sia delle misure necessarie per approssimare o per non superare la soglia considerata ottimale e per non ridurre oltre un certo limite lo stock riproduttore.

Per gli stocks multispecifici è probabile che cambiamenti nella pressione di pesca producano modifiche nei parametri demografici e questo potrebbe condizionare la validità delle stime dei BRP, specialmente di quelli basati su assunzioni d'equilibrio. I BRP sono calcolati a partire da stime d'abbondanza e/o dai parametri demografici della specie e questi possono variare nel tempo come risposta ai cambiamenti nella composizione specifica nell'ecosistema, nelle relazioni predatore preda, nella struttura demografica delle popolazioni e nella capacità selettiva degli strumenti. Considerando che questi parametri demografici cambiano nel tempo, anche i BRP dovrebbero essere valori mobili entro un certo margine: in particolare, il tasso di mortalità naturale delle specie prede dipende dall'abbondanza dei predatori, mentre i tassi di crescita di quest'ultimi dipenderanno dalla disponibilità dalle loro prede.
13 Stato di sfruttamento delle principali risorse demersali

Considerando che la valutazione dello stato di sfruttamento degli stocks è molto complessa e il numero di specie catturato è elevato, si è soliti focalizzare l'attenzione su un numero limitato di specie indicatrici. Particolare attenzione viene quindi dedicata alle principali specie catturate con lo strascico (risorse demersali) perché le catture derivate da questo tipo di pesca rappresentano la più importante frazione delle catture e dei ricavi totali della pesca nella nostra regione. La scelta è condizionata anche dalla disponibilità di finanziamenti ad hoc da parte del Ministero delle Politiche Agricole e Forestali e dall'Unione Europea per realizzare questi tipi d'indagine.

Per la scelta delle specie bersaglio negli studi realizzati in Italia, è considerato l'interesse economico di ciascuna specie, sia riguardo all'ammontare delle rese, sia al loro valore commerciale: la scelta è necessariamente un compromesso fra questi aspetti, ma anche dalla maggior o minor importanza di queste specie a livello locale.

Di seguito sono riportate le principali conclusioni sullo stato di sfruttamento di alcune di queste specie selezionate nella nostra area: in particolare per una specie ad ampia distribuzione quale il nasello, una specie costiera, la triglia e una di profondità, lo scampo. Seguono alcune sintetiche considerazioni anche su altre specie.

13.1 Stato di sfruttamento del nasello

Nel caso del nasello (*Merluccius merluccius*) i risultati ottenuti suggeriscono, per la risorsa, una situazione di sovrasfruttamento. La specie è catturata con diversi attrezzi a profondità che vanno da 30 a 500 m. La rete a strascico cattura fondamentalmente individui giovanili mentre gli esemplari di maggiore taglia (includendo gli adulti) sono pescati con attrezzi fissi. La specie è molto apprezzata e raggiunge un buon prezzo di mercato, anche quando si tratta di esemplari piccoli che sono venduti inseriti nella "frittura di paranza". Nella figura seguente è riportato un esempio della distribuzione spaziale dell'abbondanza del nasello nell’area toscana. Complessivamente il nasello rappresenta una delle specie più abbondanti e la sua biomassa nelle acque toscane può essere quantificata in oltre 1000 tonnellate.
Si rileva che l'attuale taglia di prima cattura per la specie (lunghezza totale di 12 cm) dovrebbe essere innalzata: questo può essere ottenuto aumentando la selettività attraverso l'incremento della maglia del sacco della rete a strascico o evitando di frequentare le aree dove gli esemplari di piccola taglia si concentrano.

L'attuale livello di mortalità da pesca risulta in genere adeguato dal punto di vista delle rese potenziali, ma non per quello che riguarda la frazione di riproduttori che con l'attuale tasso di sfruttamento sopravvive, sebbene si sia osservato che la pressione di pesca sulla specie si è ridotta negli ultimi anni. Tuttavia, come già detto, considerando gli aspetti riproduttivi e le dimensioni attuali della flotta peschereccia, sarebbe auspicabile un'ulteriore riduzione dello sforzo di pesca, specialmente nelle aree dove i giovani di questa specie si concentrano e dove sono molto vulnerabili allo strascico.

Un'attenzione particolare deve essere dedicata all'attuale sviluppo dell'uso di reti da posta e palangresi a nasello (questi ultimi usati molto raramente) per la cattura degli adulti: nel caso di una specie pienamente sfruttata, come nel caso del nasello, c'è infatti bisogno che una minima porzione della popolazione possa arrivare alla fase adulta in modo da garantire un numero sufficiente di riproduttori. Nel caso aumentasse il numero di adulti catturati con questi ultimi sistemi di pesca e si mantenesse lo stato attuale di sfruttamento dei giovani, il numero di riproduttori sarebbe ulteriormente ridotto e aumenterebbe il pericolo di collasso dello stock nell'area toscana.

Nella figura seguente è riportato il risultato di una valutazione dello stato di sfruttamento del nasello attraverso un modello analitico di rendimento per recluta: l'attuale combinazione di taglia di
prima cattura e mortalità da pesca (circolo nero) fornisce soddisfacenti rendimenti in relazione ai massimi potenzialmente raggiungibili. Un aumento dello sforzo e mortalità da pesca non comporterebbe aumenti sensibili delle rese per unità di sforzo, ma ridurrebbe la biomassa dei riproduttori.

Uno studio basato su una variante dei modelli globali, che analizza congiuntamente diverse aree liguri e tirreniche (corrispondenti alla subarea gestionale GSA 9 della FAO-CGPM), sfruttate con diversi tassi, ha permesso di valutare lo stato di sfruttamento delle specie in relazione al livello dello sforzo di pesca (in questo caso un suo indice: la mortalità totale Z) che fornisce la massima produzione biologica sostenibile (ZMBP). Di seguito si mostrano i risultati ottenuti per il nasello: per la sub-zona 3, area toscana localizzata a nord dell’isola d’Elba, il nasello sembra essere sfruttato pressoché in modo ottimale, mentre nella zona toscana più a sud (sub-zona 4) il nasello appare sovrasfruttato.

Nella figura seguente è rappresentata la frazione della biomassa dello stock riproduttore (BR) di nasello che sopravvive a diversi livelli di mortalità da pesca F e taglie di prima cattura (Lc). Frazioni superiori a 0,35-0,40 in relazione allo stock non sfruttato (BRv) dovrebbero garantire l’autorinnovo della popolazione. Il circolo nero nella figura a sinistra rappresenta la situazione attuale. A destra è rappresentata la riduzione della frazione sopravvissuta dello stock riproduttore (SSB/SSBv = FrazBRv) e di produzione di uova (Eggs/Recruit) in funzione di un ipotetico aumento nell'uso di palangresi e di reti da posta indirizzati alla cattura di esemplari di grossa taglia (adulti riproduttori).
Di seguito sono rappresentati i risultati della valutazione realizzata utilizzando un modello globale con le informazioni derivate dalle campagne scientifiche del programma MEDITS: il nasello risulta essere da sottosfruttato a pienamente sfruttato nella porzione a nord dell’Elba mentre il tasso di sfruttamento medio supera il valore limite di riferimento (ZMBP) nell’area toscana a sud dell’Elba.

Risultati simili per la popolazione toscana del nasello derivano anche da un’analisi alternativa, realizzata con un modello dinamico non in equilibrio (modello di produzione biologica di Caddy e Csirke) usando i dati dei trawl surveys nella zona nord. In questo caso il modello mostra che l’attuale mortalità totale è vicina a ZMBP e quindi suggerisce una situazione di pieno sfruttamento.

L’evoluzione recente dello stock di nasello è esprimibile anche nella figura seguente dal confronto tra la cattura commerciale e lo sforzo di pesca specifico realizzato nel porto di Viareggio fra 1990 e 2005.
13.2 Stato di sfruttamento della triglia

La triglia di fango o bianca (*Mullus barbatus*) è una specie fondamentalmente costiera (vedi figura seguente) anche se presente su tutta la piattaforma continentale, fino ai 200 m di profondità. E’ comunque più frequente nella fascia batimetrica tra 0 e 100 m. In Toscana la specie riveste una grande importanza nella pesca a strascico, ma è anche pescata dalla flotta artigianale con tramagli calati vicini alla costa. La piccola pesca costiera è, in effetti, indirizzata soprattutto all’altra specie di triglia (la triglia rossa o di scoglio, *Mullus surmuletus*) che viene considerata più pregiata. Anche sotto il profilo delle rispettive biomasse le due specie sono molto differenti: nell’area toscana la triglia di fango può raggiungere in periodo autunnale anche le 1000 tonnellate, mentre la triglia di scoglio non supera le 50-100 tonnellate.
Questa specie risulta complessivamente pienamente sfruttata o addirittura sovrasfruttata in alcune zone toscane. La taglia di prima cattura appare troppo piccola e questa potrebbe essere incrementata attraverso l'uso di una maglia più grande o mediante l'imposizione di un fermo temporale nel periodo di reclutamento, in tarda estate, quando i giovani sono molto concentrati e vulnerabili vicino alla costa. Ritardare nel tempo l'inizio della pesca della triglia permetterebbe una maggior sopravvivenza degli esemplari giovanili fino a taglie più grandi e, a tali maggiori dimensioni, risulterebbe più conveniente (almeno dal punto di vista biologico) la loro cattura.

L'applicazione del modello globale per la triglia nell'area a nord dell'Isola d'Elba (sub-area 3) indica che la specie è molto sovrasfruttata in relazione al ZMBP nell'area a nord di Livorno, mentre è pienamente sfruttata tra Livorno e l'Isola d'Elba. La stessa analisi non fornisce risultati sufficientemente attendibili per l'area a sud dell'Elba.
Simili risultati derivano da altre analisi alternative quali il modello dinamico non in equilibrio, calcolato usando dati dei trawl surveys a nord dell’Isola d’Elba, o dai dati commerciali di cattura e sforzo (figure seguenti).
Comunque, l’applicazione del modello di produzione in eccesso con dati di pesca commerciale per la triglia nell’area di Viareggio indica che lo sforzo di pesca è ancora eccessivo.

In conclusione si può affermare che esistono, per la triglia di fango, numerose indicazioni di livelli di sfruttamento sensibilmente diversi fra le diverse aree di pesca, ad esempio tra l’area a nord e a sud di Livorno. In particolare, nella zona settentrionale in prossimità del porto di Viareggio, l’elevata pressione di pesca esercitata sulle giovani reclute della specie in questione, riduce la loro probabilità di sopravvivenza fino all'età adulta e quindi limita la consistenza dello stock dei riproduttori e riduce le potenzialità di rinnovo della risorsa. Al contrario, nell’area di San Vincenzo il minore sforzo di pesca determina uno sfruttamento prossimo a quello ottimale.

13.3 Stato di sfruttamento dello scampo

Lo scampo (*Nephrops norvegicus*) è una delle specie più pregiate catturate in Toscana dalla flotta a strascico. Si tratta di una specie che vive su fondi fango-sabbiosi dove scava profonde gallerie. Nel Tirreno è più frequente a profondità comprese fra 200 e 500 m con una biomass complessiva di circa 200 tonnellate.
Nel caso dello scampo, per la porzione toscana a nord dell’isola d’Elba, si può affermare che la specie è sfruttata in modo adeguato in relazione alla sua potenzialità. Tale situazione si evidenzia anche per la percentuale stimata di sopravvivenza degli adulti e della loro numerosità, che garantisce ampiamente l’autorinnovo della popolazione. La non eccessiva pressione di pesca si può spiegare con la lontananza dei fondali a scampi dai principali porti pescherecci e dalle non altissime rese quantitative ed economiche della pesca a tali profondità: le catture per unità di sforzo (es. kg al giorno) dello scampo non sono infatti particolarmente elevate e inoltre le specie accompagnatrici di tale pesca hanno uno scarso valore commerciale. In Toscana, a sud dell’Isola d’Elba, invece, la specie è molto più sfruttata, specialmente sui banchi di pesca prospicienti Porto Santo Stefano, localizzati relativamente vicini alla costa e quindi più accessibili.

Le rese ottenute con diverse combinazioni di livello dello sforzo (espresso come tasso di mortalità da pesca F) e taglia di prima cattura (Lc) per lo scampo a nord dell’Elba sono rappresentate nella figura seguente: il circolo bianco rappresenta la situazione del 2004, considerata pressoché ottimale. Negli ultimi anni la pressione di pesca è aumentata e la situazione della risorsa sembra peggiorata, anche in relazione al fatto che le condizioni ambientali particolarmente favorevoli che si erano osservate precedentemente appaiono neutralizzate.
Anche se non si propongono misure di riduzione dello sforzo di pesca indirizzato a questa specie, la pressione relativamente alta esercitata a sud dell'Elba e l'osservato aumento delle imbarcazioni che frequentano i fondi a scampo nella porzione settentrionale, impongono una maggiore attenzione verso i risultati di questa pesca e sullo status della popolazione.

13.4 Stato di sfruttamento di altre specie

Il potassolo (*Micromesistius poutassou*) è comunemente catturato come cattura accessoria o "by-catch" nella pesca dello scampo; risulta moderatamente sfruttato, anche perché questa specie è solo parzialmente vulnerabile all'attrezzo di pesca utilizzato (la rete a strascico che opera sul fondo) dato il suo comportamento molto gregario e semi-pelagico. La popolazione (standing stock) presente nell’area toscana può essere quantificata in almeno 450 tonnellate.

La mostella (*Phycis blennoides*), la cui cattura può essere definita accessoria alla pesca profonda, e che avviene contemporaneamente alla pesca mirata agli scampi e ai gamberi, sembra subire un tasso di sfruttamento non troppo elevato, specialmente nella porzione nord dell’area toscana. Lo stock è di circa 150 tonnellate.

Nelle cartine seguenti è rappresentata la distribuzione geografica di abbondanza del potassolo, a sinistra, e della mostella a destra.
Il gambero bianco o gambero rosa (*Parapenaeus longirostris*) vive in genere a profondità fra 100 e 250 m. La specie riveste un notevole interesse commerciale ma in genere le rese sono modeste, anche perché lo stock presente in acque toscane è limitato a circa 30 tonnellate.

Si evidenzia una situazione di sfruttamento moderato nella porzione nord dell'area toscana mentre il tasso di sfruttamento nella porzione sud appare maggiore. Trattandosi di una specie con breve ciclo vitale e fortissime fluttuazioni naturali nell’abbondanza, data la tipologia di campionamento eseguita, i risultati ottenuti per questo gambero devono però essere considerati con cautela.
Anche i gamberi rossi (*Aristeus antennatus* e *Aristaeomorpha foliacea*) sono una risorsa importante per il loro valore commerciale, ma sono localizzati quasi esclusivamente sui fondali a sud dell’Isola d’Elba, a profondità superiori ai 400 metri. Le catture principali sono realizzate dalla flotta di Porto Santo Stefano, ma la valutazione dello stato di sfruttamento della risorsa non fornisce indicazioni affidabili.

Il polpo (*Octopus vulgaris*) è una specie molto più rappresentata sui fondi duri, frequentati dalla pesca artigianale, che non nelle aree con fondali fango-sabbiosi strascicabili con la tartana tradizionale; esso quindi risulta poco rappresentato nei campionamenti delle campagne scientifiche e qualsiasi tentativo di valutazione dello stato di sfruttamento della specie con tali dati non risulterebbe affidabile.

Il moscardino (*Eledone cirrhosa*) è al contrario abbondantemente presente anche sui fondi molli (circa 250 tonnellate), in genere fra 50 e 200 m, ed è quindi un’importante specie bersaglio della pesca a strascico commerciale. Purtroppo la valutazione dello stato di sfruttamento della specie presenta ugualmente evidenti difficoltà dovute a numerosi fattori come il breve ciclo vitale, l’ampio periodo in cui compaiono le nuove reclute, la variabile catturabilità dello strascico nelle fasi del reclutamento e della riproduzione, a causa della loro dipendenza dai fondi duri in certi periodi della vita, ed infine la selettività della rete, sia relativa al sacco che alle ali, dalle quali possono sfuggire alla cattura tanto i giovani come gli adulti.

Nella figura seguente si riporta un esempio della sua distribuzione di abbondanza.
Oltre alle specie citate si hanno informazioni su altre 300 specie demersali con un livello di approfondimento molto eterogeneo in funzione della loro abbondanza, del loro valore commerciale e delle conoscenze scientifiche disponibili. Di tutte comunque è disponibile una stima della biomassa e della distribuzione, sia geografica, sia batimetrica, nonché per le più rappresentative dei trend degli indici di abbondanza in mare per gli ultimi 20 anni.

Tra questi possono essere citati pesci dal comportamento non strettamente demersale quali i sugarelli (*Trachurus mediterraneus* e *Trachurus trachurus*) con biomassa di oltre 1000 tonnellate complessivamente, e il pesce sciabola (*Lepidopus caudatus*) con circa 400 tonnellate. Le altre specie di pesci più abbondanti sono rappresentate da una piccola gallinella, il caviglione (*Lepidotrigla cavillone*) con 300 tonnellate e da due specie di rana pescatrice (*Lophius budegassa* e *Lophius piscatorius*), con stime di biomassa rispettivamente di 300 e 100 tonnellate.

Tra i selaci le specie più rappresentative sono il gattuccio (*Scyliorhinus canicula*), il boccanera (*Galeus melastomus*) con biomasse di circa 400 tonnellate ognuno e due specie di razze, la razza chiodata (*Raja clavata*) con oltre 200 tonnellate e la razza quattrocchi (*Raja miraletus*) con meno di 100 tonnellate.

Oltre al moscardino, già citato, la specie più abbondante tra i molluschi è il totano (*Illex coindetii*) con circa 200 tonnellate nei mari toscani, seguita da un altro totano (*Todaropsis eblanae*), due calamari (*Loligo forbesi* e *Loligo vulgaris*) e la seppia (*Sepia officinalis*), ognuno con biomassa compresa tra 50 e 80 tonnellate.

Tra i crostacei, oltre allo scampo e ai gamberi, l’unica specie di significativa importanza commerciale è la pannocchia (*Squilla mantis*) con una popolazione intorno alle 50 tonnellate. Molte altre specie, tipicamente associate agli ambienti rocciosi, sono pregiate specie target della pesca artigianale, di cui però non si hanno informazioni continue e distribuite lungo l’intera costa toscana, né delle catture, né delle popolazioni presenti in mare. Le specie più rappresentative sono tra i pesci soprattutto gli sparidi quali la mormora (*Lithognathus mormyrus*), il dentice (*Dentex dentex*), il sarago (*Diplodus sargus*), il pagello (*Pagellus erythrinus*) e l’orata (*Sparus aurata*), oppure scorfani (*Scorpaena scrofa* e *Scorpaena porcus*).

A queste specie vanno aggiunti crostacei quali l’aragosta (*Palinurus elephas*) e l’astice (*Homarus gammarus*), nonché i cefalopodi rappresentati soprattutto dal polpo (*Octopus vulgaris*) e dalla seppia (*Sepia officinalis*).

Da rimarcare comunque l’estrema carenza di dati relativi a quasi tutte le specie oggetto della piccola pesca artigianale: sarebbe auspicabile quindi un monitoraggio che permettesse di valutare, anche solo su base campionaria, le tipologie e i quantitativi sbarcati.

13.5 Considerazioni conclusive

Tentando di sintetizzare la situazione sullo stato di sfruttamento delle specie demersali nelle acque della Toscana, si può dire che le specie ad ampio spettro batimetrico, come il nasello e il moscardino, presentano un andamento delle biomasse piuttosto stabile, suggerendo che il prelievo, anche se molto elevato fino ad ora, risulta ancora compatibile con l’autorinnovo della popolazione.

In particolare per il nasello, i modelli utilizzati indicano che, con la taglia di prima cattura attuale, la risorsa è pienamente sfruttata o leggermente sovrasfruttata e che la biomassa dei riproduttori risulta troppo ridotta, potendo determinarsi una situazione di rischio per il mantenimento dello stock. Un suggerimento per queste situazioni sarebbe quello di diminuire, o almeno non aumentare, il prelievo, in particolare di riproduttori, e di determinare una situazione di maggiore sicurezza riproduttiva mediante l’aumento della taglia di prima cattura. Quest’ultimo obiettivo potrebbe essere raggiunto con un aumento della maglia della rete oppure rendendo operativo il divieto di pesca nelle zone di nursery, già da tempo individuate.
Nel caso delle due specie di crostacei commerciali più importanti tra quelle pescate sui fondi batiali della zona, lo scampo e il gambero rosa, i tassi di sfruttamento ai quali queste sono sottoposte sono molto diversi da area ad area; in alcuni casi sono prossimi a quello ottimale e con sufficienti garanzie per il rinnovo delle risorse, mentre in altre aree necessitano di essere ridotti. Questa valutazione è coerente con le conoscenze acquisite in merito alle zone frequentate dalla flotta peschereccia professionale; è evidente in questo caso, che la distanza dai porti alle zone di prelievo e le stesse operazioni di pesca determinano una selezione riguardo alla stazza e alla potenza delle imbarcazioni.

Delle due specie più costiere, la triglia di fango e il polpo, solamente la prima rappresenta una risorsa importante per lo strascico della Toscana. Per la triglia, l’attuale combinazione di sforzo di pesca e taglia di prima cattura è prossima alla condizione ottimale in alcune aree, mentre altre aree necessitano d'interventi gestionali indirizzati a ridurre l'attuale pressione di pesca. La taglia di prima cattura è stata di fatto aumentata, nelle aree dove il fermo di pesca stagionale è stato applicato, e ciò ha prodotto un ritardo nell'inizio del prelievo.

Le serie storiche, fino ad ora disponibili, di abbondanza, struttura demografica della popolazione e composizione specifica delle catture sono ancora relativamente brevi per poter fornire strumenti utili a definire tendenze e per poter fare delle previsioni a medio-lungo termine sul futuro delle risorse. E’ comunque importante sottolineare, anche se non ci sono dati quantitativi precisi, che specie molto frequenti 30-40 anni fa, e che in alcuni casi giustificavano da sole un’attività di pesca, ora non lo sono più o addirittura sono praticamente scomparse: si tratta soprattutto di specie che si trovano ai più alti livelli delle reti trofiche, in particolare pesci cartilaginei quali lo spinarolo (Squalus spp) e la squatina (Squatina spp). Queste specie hanno, in genere, una strategia riproduttiva caratterizzata da un solo periodo di deposizione durante l'anno nel quale producono un numero molto limitato di neonati o uova; l'equilibrio per queste specie risulta così molto precario e l'azione negativa della pesca o condizioni ambientali avverse incidono fortemente portando al collasso della popolazione, fatto comunque generalizzabile a quasi tutto il Mediterraneo.

Per la maggior parte delle specie demersali, circa 300 specie, tra pesci, crostacei e cefalopodi, si dispone di serie temporali di oltre 20 anni che quantificano in tutte le acque toscane la loro abbondanza in mare. Nonostante l’incertezza di misura associabile a tali stime, si può affermare che non sono evidenti fenomeni di diminuzione significativa per nessuna di esse, mentre, in alcuni casi quali il gambero rosa e la razza chiodata, si possono rilevare ampie fluttuazioni dell’abbondanza con ciclo di 5-7 anni probabilmente di origine naturale.

Sono state individuate, e il loro studio è attualmente oggetto di approfondimento, le aree di nursery del nasello, della triglia di fango e di altre specie: sono state proposte misure per la loro protezione (aree di divieto di pesca temporale o permanente) ma, ad esclusione della fascia costiera (entro le 3 miglia nautiche o la batimetrica dei 50 m) e di una limitata estensione vicino all’isola del Giglio, queste misure non sono finora state adottate dalla normativa in materia.

Numerosi strumenti gestionali citati per la protezione dell’ambiente e delle fasi giovanili di alcune specie possono contribuire a migliorare le rese commerciali permettendo la sopravvivenza di un maggior numero d'individui. Inoltre, riducendo la mortalità di specie particolarmente rare o rarefatte per una eccessiva pressione di pesca, si può garantire la loro sopravvivenza e quindi aiutare a mantenere un alto livello di biodiversità nell'ecosistema marino. La biodiversità, infatti, risulta essenziale per la protezione nel tempo di possibili fonti di stress sia d'origine naturale, es. situazioni climatiche abnormali, sia legate all’impatto antropico.

Sebbene risultì difficile, e talvolta impossibile, gestire individualmente gli stock ittici, perché molti di questi sono sfruttati simultaneamente con lo stesso attrezzo nella stessa area, le strutture di
ricerca che operano sul territorio della Regione stanno sviluppando modelli multispecifici per poter definire strategie di prelievo idonee a garantire complessivamente le migliori rese possibili per la pesca in una situazione di garanzia per l’autorinnovo delle popolazioni, quantomeno per quelle più importanti.

14 Altri tipi di pesca

14.1 Pesca sportiva in mare

La pesca sportiva è esercitata dai pescatori non professionisti a scopo ludico, ricreativo ed anche sportivo-agonistico. Sono vietati in qualsiasi forma la vendita ed il commercio dei prodotti di tale tipo di pesca.

La pesca subacquea sportiva può essere effettuata con fusile subacqueo solamente in apnea, nelle ore diurne; non è consentita la raccolta di coralli, crostacei e molluschi ad eccezione dei cefalopodi (polpi, seppie, calamari).

La pesca sportiva di superficie può essere esercitata con lenze a mano, con canne da pesca, lenze per cefalopodi, lenze a traino, nattelli per la pesca in superficie, rezzagli, rete a bilancia, palangari fissi o derivanti in numero massimo di 200 ami per barca, nasse in numero massimo di due per barca, ficocia a mano e rastrello a mano per molluschi da usarsi a piedi.

Ai pescatori sportivi può essere consentito il prelievo di mitili, da effettuarsi senza l’ausilio di attrezzi, sino al limite massimo di 3 Kg a persona, nelle zone definite con ordinanza del Capo del Compartimento Marittimo. Anche i ricci di mare possono essere raccolti dal pescatore dilettante in numero massimo di 50 al giorno e solo manualmente.

Il pescatore sportivo non può catturare giornalmente pesci, molluschi o crostacei in quantità superiore a 5 kg complessivi, salvo il caso di pesce singolo di peso superiore. Le uniche deroghe sul peso sono concesse per le gare agonistiche di pesca sportiva di superficie, dove però le catture vengono mantenute vive ed a fine gara liberate in mare. Non può essere catturato giornalmente più di un esemplare di cernia né di tonno. Infine il pescatore dilettante, come il professionista, non può catturare pesci, molluschi o crostacei al di sotto della misura minima stabilita dalla legge vigente, rappresentata attualmente dal Regolamento CE n° 1967/2006 in vigore dal 21/1/2007.

Una discussione deve essere sviluppata per limitare allo sportivo la cattura di pesci sotto la misura consentita, regolandone l’uso degli ami e stabilendone una misura minima. Ciò impedirebbe la cattura nella zona costiera, soprattutto durante la stagione estiva, di piccoli sparidi e di altre specie praticamente non commestibili. Si tratta di un rilascio in mare con maggiori probabilità di sopravvivenza.

Un fenomeno purtroppo presente è rappresentato dai cosiddetti pescasportivi che in realtà possono essere assimilabili a professionisti illegali, e che, in deroga alle leggi vigenti, usano attrezzature non autorizzate non attenendosi alle limitazioni sugli attrezzi consentiti. Ad esempio durante le ore notturne vengono calate reti da posta, concesse solo ai pescatori professionali, le nasse sono calate in numero ben superiore alle 2 consentite, soprattutto nel periodo della pesca delle seppie lungo i litorali sabbiosi. Inoltre i palangari hanno spesso molti ami in più dei 200 autorizzati, le imbarcazioni che pescano il tonno con le canne a drifting non si limitano ad un esemplare, ma continuano la cattura di grandi pelagici finché la pesca è fruttuosa e con i rastrelli a mano vengono raccolti molluschi anche in zone non classificate con conseguenti rischi per la salute. Molto spesso le catture eccedono i 5 kg consentiti a persona e vengono vendute a dettaglianti o ristoranti comiacenti, il tutto ovviamente in modo illegale.
Attualmente, stimare anche in modo approssimativo il prelievo di pesci, molluschi e crostacei, esercitato da parte dei pescatori sportivi, è pressoché impossibile in quanto non esistono informazioni, statistiche o elaborazioni attendibili. Nessuno conosce il numero totale dei pescatori subacquei, né quello dei dilettanti presenti sulle coste, né quello dei diportisti che pescano dalle imbarcazioni. Si dispone solamente di informazioni frammentarie sul prelievo di pochi pescatori sportivi che in modo volontario hanno monitorato il loro prelievo per limitati periodi di tempo e non sono attualmente sufficienti all’elaborazione di stime globali significative.

A tal fine si considera necessario che venga istituita una licenza di pesca sportiva in mare per i pescatori dilettanti, come del resto avviene già nella maggioranza dei paesi mediterranei e anche in Toscana relativamente alle acque interne.

L’istituzione di una licenza per i pescasportivi risulta fondamentale per poter quantizzare con sufficiente approssimazione il fenomeno, la sua distribuzione spaziale e l’impatto sulle risorse. E’ evidente che, quantomeno in situazioni localizzate o per determinate specie, il prelievo dei pescatori sportivi può non essere trascurabile ed eventuali misure gestionali indirizzate alla tutela delle risorse non possono prescindere da una sua quantificazione.

14.2 Pesca artigianale

Sebbene la pesca artigianale rappresenti una realtà molto importante nella Regione e il maggior numero di imbarcazioni in Toscana siano ascrivibili a questa tipologia, le carenze conoscitive sono notevoli. L’aspetto particolarmente critico, in relazione alla pesca artigianale, è che l’attività risulta molto sviluppata nell’area toscana, ma finora un’insufficiente attenzione è stata dedicata alla sua valutazione quantitativa, con appropriati strumenti statistici.

Gli attrezzi propri della pesca artigianale hanno la caratteristica comune di essere più selettivi della rete a strascico e conseguentemente poco impattanti soprattutto nella fascia marino costiera.

La “piccola pesca” veniva definita anche “costiera”, aggettivo oggi decaduto per il diffondersi dell’uso di attrezzi che vengono utilizzati a svariate miglia dalla costa, quali ad esempio i palangari indirizzati ai grandi pelagici e le reti da posta profonde, le cosiddette “nasellare”. L’attività di pesca è esercitata da imbarcazioni di limitate dimensioni, solitamente con lunghezza FT inferiore a 12 metri e comunque di stazza inferiore a 10 TSL, che non utilizzano il motore trainante nell’azione di cattura. Le attrezzature sono generalmente strumenti da posta, ma possono essere utilizzate anche sciabiche, palangari e reti derivanti.

Come detto, la pesca artigianale rappresenta in Toscana la componente più sviluppata sia come numero di imbarcazioni che di addetti, ma evidenzia alcune peculiarità che contribuiscono a rendere questo settore molto frammentario e strutturalmente debole: presenza diffusa sul territorio, forte individualismo degli addetti, pluralità e specificità dei sistemi di pesca, le cui caratteristiche sono spesso connesse ad aspetti morfologici ed ecologici delle aree in cui viene svolta l’attività, ecc.

In base ai dati MIPAF-IREPA le catture della flotta di pesca artigianale della Toscana sono state nel 2005 pari ad oltre le 1.100 tonnellate: quantitativamente è solo il 13,1% della pesca marittima regionale, ma in termini di ricavi il fatturato prodotto rappresenta il 27,2% del valore di produzione del comparto toscano, a testimonianza dell’alto valore dei prodotti della pesca artigianale.

L’interesse sul comparto della piccola pesca è in forte crescita anche in campo scientifico e a livello nazionale: si è convenuto che occorre valutare l’impatto di questa attività, sino a poco tempo fa ritenuta solo marginale, sia sulle risorse biologiche, sia sull’ecosistema costiero, e sulla base di tali informazioni giungere ad individuare le necessarie misure gestionali.

Anche in Toscana è indispensabile attivare una raccolta sistematica dei dati di cattura della flotta della piccola pesca, proseguire i progetti di ricerca scientifica per individuare attrezzature
sempre meno impattanti e più selettive, approfondire la conoscenza delle variazioni nel tempo (monitoring) per unità di sforzo degli attrezzi da pesca.

Una tale base conoscitiva, analoga per molti aspetti a quelli che sono stati studiati per gli attrezzi a traino, dovrà necessariamente essere sviluppata anche all’interno dei prossimi Piani Regionali della Pesca.

L’ARPAT conduce da 30 anni un monitoraggio nella zona di Quercianella, a sud di Livorno, con reti da posta, soprattutto il tremaglio e la rete monofilo ad imbrocco. Pur operando nella stessa area, come evidenziato dalle figure seguenti, la composizione delle catture è sensibilmente differente. Con il tremaglio le specie più abbondanti sono la seppia (Sepia officinalis), il polpo (Octopus vulgaris), lo scorfano nero (Scorpaena porcus) e la triglia rossa (Mullus surmuletus) che insieme costituiscono oltre il 50% del pescato. Diversamente, con la rete monofilato le specie caratteristiche sono la salpa (Sarpa salpa), varie specie di cefali (Liza ramada, Mugil cephalus, Chelon labrosus, Liza aurata) e di sparidi (Lithognathus mormyrus, Sparus aurata, Diplodus sargus, Diplodus vulgaris).
La tipologia del pescato non è solo condizionata dall’attrezzo utilizzato, bensì anche da altri fattori tra cui i più importanti sono la tipologia del fondale e, per alcune specie, la stagionalità. Nei grafici seguenti sono riportate le proporzioni nel catturato delle specie tipiche di un fondale costiero con fondo sabbioso o roccioso (5-15 m di profondità).

Considerando quindi gli effetti di attrezzo e tipologia di fondale è possibile analizzare il trend di abbondanza delle specie utilizzando un indice di cattura per unità di sforzo (CPUE) quale kg per 100 m di rete. Nell’esempio della figura seguente, basato su mediamente 25 giorni di pesca per anno con il tremaglio, si rileva una sostanziale stabilità su sabbia, un a diminuzione sul fondo roccioso e un leggero incremento sul fondo misto; per la limitatezza dei dati, però queste tendenze
non sono statisticamente significative, per cui l’abbondanza della zona può considerarsi in pratica costante nel periodo esaminato.

Infine, tipicamente per la pesca artigianale, devono essere considerate le problematiche relative alla gestione della pesca multispecifica e multiattrezzo: nelle acque toscane, infatti la quasi totalità delle attività di pesca hanno come obiettivo non una, ma numerose specie che sono catturate contemporaneamente.

Inoltre, la stessa specie può essere catturata da più di un sistema di pesca, anche in aree e/o periodi distinti, ma l’impatto di molti sistemi di pesca sulle risorse non è assolutamente conosciuto ad un livello sufficiente.

La realizzazione di studi mirati a capire le interazioni specifiche e fra le diverse attività di pesca sono molto importanti e permettono una migliore gestione delle risorse attraverso l’incoraggiamento dell’uso delle tecniche di pesca che sono considerate meno dannose e che al contempo garantiscono buone rese, e viceversa la disuasione per quelle considerate più impattanti.

Esistono modelli matematici per definire la migliore combinazione di uso di diversi attrezzi che sfruttano specie comuni, ma questi richiedono informazioni sulla struttura delle catture commerciali con i diversi attrezzi, che spesso non sono disponibili. Questi approcci possono includere parametri economici e quindi è possibile optimizzare l’uso delle strategie alternative di pesca anche tentando di massimizzare i profitti, purché l’informazione di base sia disponibile.

14.3 Pesca pelagica

La pesca indirizzata ai piccoli pelagici (fondamentalmente acciughe e sardine) viene realizzata fondamentalmente da poche imbarcazioni che operano da Portoferaio, Piombino e da altri porti
sull’Isola d’Elba. Periodicamente è attiva in acque toscane anche una flotta che proviene da altri compartimenti marittimi e che usa come base il porto di Viareggio.

La pesca indirizzata ai grandi pelagici (tonno e pesce spada) non ha rilevanza commerciale nelle acque toscane: solamente nel periodo tardo estivo autunnale, tra settembre e novembre, la pesca al pesce spada viene effettuata a ponente dell’Isola di Montecristo, nell’area a sud delle secche di Vada sino all’Isola d’Elba, in prossimità dell’Isola di Capraia e nella zona a nord della Corsica. Da citare che occasionalmente alcune imbarcazioni artigianali di Livorno usano palangari derivanti mirati alla cattura del pesce spada durante il periodo primaverile-estivo, ma l’area di pesca risulta al di fuori del territorio regionale.

14.4 Pesche speciali: rossetto e cannolicchio

Il rossetto (*Aphia minuta*) è un piccolo ghiotto, che raggiunge la lunghezza massima di 6 cm in circa un anno, dopodiché muore: in Toscana è considerata una specie particolarmente pregiata, per cui molti addetti alla piccola pesca finalizzano la propria attività tra novembre e marzo alla sua cattura in alternativa all’uso dei tradizionali attrezzi da posta. La sua taglia commerciale è compresa tra i 25 e 40 mm e viene venduto come il bianchetto, che è invece la forma giovanile di acciuga o sardina.

La durata della vita è annuale, ma la popolazione del rossetto mostra una catturabilità molto variabile da un anno all’altro in quanto il reclutamento alla sciabica è sicuramente esteso a più mesi ma è altresì privo di un pattern costante; in alcuni anni infatti la parte più consistente delle nascite si realizza in primavera (marzo-maggio), in altri in autunno (agosto-ottobre). Il rossetto, dopo la fase larvale e raggiunta una lunghezza di circa 15 mm, attraversa la fase di vita semipelagica durante la quale forma consistenti banchi su cui agisce il prelievo della sciabica; con l’inizio della maturazione gonadica (35-40 mm) intraprende rapporti più diretti con il fondo e raggiunge la fase demersale.

Nel caso di nascita prevalentemente primaverile, quando a novembre inizia la pesca commerciale, gran parte degli individui hanno già superato la taglia di 35 mm, per cui non sono più catturabili dalla sciabica: ne consegue un pescato commerciale ridotto (intorno a 10 t/anno). La nascita concentrata nel periodo estivo-autunnale permette al contrario di centrare il reclutamento alla fase aggregata della popolazione tra novembre e marzo, e si possono ottenere così catture di 30 t/anno e oltre.

Nei grafici seguenti sono riportate le catture totali in Toscana e i relativi coefficienti di variazione per il periodo 1991-2004: i dati provengono dalle schede di cattura giornaliera di ogni imbarcazione raccolte dall’ARPAT.
Le zone in cui l’attività di pesca è più intensa, e le catture più elevate, sono localizzabili intorno a Livorno, Vada, Follonica e Talamone. Scendendo ad un maggiore livello di dettaglio geografico si possono identificare le specifiche località in cui l’attività di pesca è massimamente
concentrata: in ordine decrescente Livorno e Follonica (3.7 t/anno ciascuna), Calambrone (2.8 t/anno), Cecina e Vada (2.2 e 1.8 t/anno rispettivamente) e Talamone (2 t/anno).

Nella tabella e nel grafico seguenti sono riassunte le statistiche relative alle giornate di attività ed ai rendimenti rilevati per anno e zona di pesca.

<table>
<thead>
<tr>
<th>area di pesca</th>
<th>giorni/barca dal 1991 al 2004</th>
<th>percentuale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livorno</td>
<td>5224</td>
<td>35%</td>
</tr>
<tr>
<td>Meloria</td>
<td>491</td>
<td>3%</td>
</tr>
<tr>
<td>Quescrianella</td>
<td>55</td>
<td>0,4%</td>
</tr>
<tr>
<td>Vada</td>
<td>2250</td>
<td>15%</td>
</tr>
<tr>
<td>Piombino</td>
<td>1556</td>
<td>10%</td>
</tr>
<tr>
<td>Follonica</td>
<td>3938</td>
<td>26%</td>
</tr>
<tr>
<td>Talamone</td>
<td>968</td>
<td>6%</td>
</tr>
<tr>
<td>P.S.Stefano</td>
<td>549</td>
<td>4%</td>
</tr>
<tr>
<td>Totale</td>
<td>15031</td>
<td>100%</td>
</tr>
</tbody>
</table>

Complessivamente in Toscana circa cinquanta imbarcazioni utilizzano la sciabica lungo la costa da Livorno all’Argentario per la pesca del rossetto, effettuando uscite intorno a 1000 giorni complessivi per stagione, con punte fino a 1400 giorni. Il valore economico di tale attività di pesca può raggiungere 500.000 euro l’anno.

La stima del numero d’individui presenti nella popolazione alla nascita è stata derivata dall’ARPAT con il modello di Leslie-De Lurie ed è lecito ipotizzare uno stock di circa 50 tonnellate prima dello sfruttamento commerciale, valore che permane relativamente costante negli anni.
Pur avendo osservato un naturale turnover delle imbarcazioni la composizione del naviglio, la tipologia e le consuetudini di pesca possono considerarsi invariate, come evidenziato dalla correlazione degli indici nella figura seguente.

In conclusione, è ragionevole ipotizzare che la popolazione di rossetto in Toscana non sia in uno stato di sovrasfruttamento e che permanendo sia il periodo di pesca consentito da novembre a marzo, sia l’attuale numero di licenze concesse (circa 50) non ci siano rischi di sovrasfruttamento in futuro.

La pesca del cannolicchio ([*Solen marginatus*]) è iniziata nella metà degli anni ’90 da parte di una decina di pescatori subacquei professionisti di Livorno, che operano però tra il Calambrone e Tirrenia, in provincia di Pisa. L’ARPAT Area Mare ha monitorato l’attività dal 1997 al 2006 producendo una relazione per la Capitaneria di Porto nel 2006. Esiste anche uno studio molto più ampio, realizzato nel 2003, che ha valutato la diffusione e la biomassa della risorsa, nonché la sostenibilità dell’attività di pesca.

La pesca professionale del cannolicchio è attiva dal 1997 su un tratto di costa lungo circa 6 km, che rappresenta l’unica zona in Toscana dove esiste un’attività di pesca professionale rivolta alla specie, in quanto altrove, dove la specie è presente, le abbondanze sono troppo basse.

La pesca avviene solitamente a profondità comprese tra i 2 ed i 4 metri e il pescatore, in immersione con ARA, usa un’asta metallica inserendola nei fori che l’animale mantiene aperti sulla superficie della sabbia; quando l’animale è toccato da questo strumento, reagisce chiudendosi intorno all’asta e può così essere estratto.

Le taglie pescate sono fondamentalmente comprese tra 9 e 12 cm di lunghezza, ma le distribuzione di frequenza della lunghezza evidenziano anche un leggero aumento della taglia con l’aumentare della profondità, passando da 9,8 cm in media a profondità di 2 m, fino a 10,5 cm alla profondità di 3-4 m.

Le stime della biomassa assoluta, espresse in tonnellate, sono state calcolate nel 2002 seguendo varie metodologie statistiche; anche utilizzando gli approcci più precauzionali, lo stock di *Solen marginatus* presente nella zona risultava di almeno 200 tonnellate e probabilmente era anche superiore alle 300 tonnellate.
Nella tabella e nel grafico seguenti sono riportate le stime di cattura di tutti gli operatori che hanno licenza di attività subacquea e i relativi quantitativi dichiarati di catture di cannolicchi (0=catture nulle, ?=quantitativo sconosciuto). In alcuni casi (es. SUB-7 e SUB-14) la licenza è stata usata solamente per la pesca dei ricci o del corallo, per cui le catture di cannolicchio risultano nulle. Si tratta in alcuni casi di sottostime in quanto, soprattutto per i primi anni, alcuni valori non sono più disponibili; ad esempio il valore complessivo del 2002 deve essere aumentato di almeno 10-15 tonnellate.
La stagionalità delle catture è comunque sempre stata molto marcata: il 91% del pescato è realizzato da maggio a ottobre e l’82% in soli 5 mesi, da maggio a settembre; in pratica durante la stagione invernale l’attività è praticamente sospesa.
Le catture per unità di sforzo (CPUE) rappresentano un indice della consistenza di una risorsa ittica tra i più diffusi nella scienza della pesca: per la pesca del cannolicchio è stato utilizzato come indice la cattura giornaliera (kg/giorno) relativa a 15 pescatori monitorati per il periodo 1997-2006.
Il rendimento giornaliero (media annuale) può variare tra 20 e 100 kg/giorno, con media complessiva di tutti i pescatori intorno a 50-60 kg/giorno ed è stato relativamente costante per tutto il periodo, 2006 compreso, come illustra il grafico seguente.

Per le popolazioni di cannolicchi, lungo la costa italiana, sono stati registrati più volte in passato simili collassi popolazionistici: negli anni ’80 in Campania, negli anni ’90 nelle Marche, nel 2001 lungo le coste friulane e nel 2002 in Lazio e nella laguna di Grado. Assodato quindi che le popolazioni di cannolicchi sono soggette a periodici collassi, non si hanno però spiegazioni univoche sulla loro causa anche se sono state osservate parassitosi da protisti e trematodi o infezioni branchiali da parte di cianobatteri, anche legati alle mucillagini.

Per spiegare il crollo della popolazione di cannolicchi in Toscana sembra da escludere una moria diffusa per cause esogene (es. inquinamento), così come è da escludere una situazione di sovrasfruttamento legato all’attività di pesca.

Le ragioni del mancato reclutamento che ha portato al collasso della popolazione non sono al momento chiare, ma, come osservato in altri casi, è possibile che in alcuni anni lo stock possa ricostituirsi ai livelli precedenti il 2006.

Esistono in Toscana anche altre forme di pesca professionale che però sono esercitate da pochi pescatori in aree ristrette o anche solo saltuariamente.

Tra queste si possono citare la pesca dei molluschi, soprattutto telline e chioccioline, la raccolta di ricci, la cattura di castagne e zerri da usarsi come esca viva per palamiti, la pesca del polpo con nasse o cadufi e quella di astici e aragoste con le trappole.

Pur trattandosi di mestieri marginali sembra utile, anche dal punto di vista delle tradizioni, realizzare con i prossimi piani regionali un survey che possa identificare e quantificare tali attività di pesca.
15 Gestione delle risorse ittiche

15.1 Equilibrio fra capacità di pesca e disponibilità delle risorse

La politica comune per la pesca (PCP) dell’Unione Europea richiede di assicurare che lo sfruttamento delle risorse acquatiche viventi sia realizzato in modo tale da garantire condizioni di sostenibilità dal punto di vista economico, sociale e ambientale.

La Comunità incoraggia l’approccio precauzionale attraverso la scelta di misure adatte alla protezione e conservazione delle risorse, che, mentre permettono uno sfruttamento sostenibile ed economicamente redditizio, minimizzano l’impatto indesiderato delle attività di pesca sugli ecosistemi marini. Questo permette uno standard di vita dignitoso per le persone che dipendono dalle attività di pesca, tenendo in considerazione anche gli interessi dei consumatori.

La PCP punta, come obiettivo a medio termine, all’utilizzo di un approccio per la gestione delle attività di pesca considerando l’intero ecosistema e le interazioni fra le diverse attività antropiche e le numerose risorse ittiche presenti. Lo studio dell’impatto di diversi attrezzi di pesca sull’ecosistema deve essere un obiettivo prioritario. Le principali misure definite dalla politica comune per la pesca sono:

1) Conservazione e limitazione dell’impatto della pesca sull’ambiente attraverso la protezione delle risorse, stabilendo limiti di cattura che permettono ai giovani pesci di riprodursi e assicurando l’implementazione di misure idonee per raggiungere questi obiettivi.
2) Gestione delle strutture e delle flotte di pesca in modo tale da adattare l’industria della pesca e l’acquacoltura alle costrizioni imposte dal mercato e alla ridotta disponibilità delle risorse (es. misure per bilanciare sforzo di pesca e disponibilità degli stock ittici).
3) Mantenere un’organizzazione comune del mercato dei prodotti ittici per armonizzare domanda e offerta a beneficio di produttori e consumatori.
4) Instaurare partnerships di pesca per negoziare a livello internazionale, o all’interno di organizzazioni regionali, la gestione della pesca e la definizione di misure comuni per la conservazione, in particolare in attività di pesca profonda o di stocks condivisi.

Nei paesi del nord Europa, da studi scientifici realizzati sui principali stocks, il Consiglio decide sull’ammontare di pesce che ciascun pescatore dell’UE è autorizzato a catturare l’anno successivo: è il cosiddetto sistema di gestione basato sui TAC (Total Allowable Catches).

Nel Mediterraneo, essendo gli stocks estremamente più numerosi e diversificati, non è possibile né definire né imporre quote di pesca e la gestione viene basata sul controllo della capacità di pesca e sulla selezione degli attrezzi in uso. Ovvero occorre conoscere qual è lo stato delle principali risorse e conseguentemente adattare le caratteristiche della flotta alla loro disponibilità.

In Toscana, come in generale per tutto il Mediterraneo, operano diverse tipologie di flotte: quelle a strascico indirizzate principalmente alle popolazioni demersali, quelle cioè che vivono vicino al fondo, flotte a circoluzione indirizzate alle specie pelagiche e infine la piccola pesca artigianale, la più numerosa, che opera essenzialmente nella zona più costiera.

Per ragioni fondamentalmente economiche ciascuna flotta tenta di sfruttare la frazione dello stock che si trova più vicino ai porti base; quindi, per le specie che non si spostano significativamente, questo fatto determina che la situazione di sfruttamento dello stock sia differente nelle diverse sub-aree di pesca della regione. All’interno di ciascuna sub-area la specie
può vivere durante tutte l’intero ciclo vitale e percorrere tutte le fasi vitali dalla schiusa, alla nursery, al reclutamento, riproduzione e ingrasso, ecc.: queste zone sono sotto tale profilo autosufficienti e possono quindi considerarsi a tutti gli effetti come aree di gestione indipendenti. Infatti, queste sub-aree praticamente non sono influenzate dal grado di pressione di pesca alla quale la specie è sottoposta nelle zone limitrofe, anche relativamente vicine.

Se si realizza una valutazione dello stato di sfruttamento complessivo (es. lo stock dell’intera Toscana) e si verifica uno stato complessivo di sovrapesca, impostare una riduzione dello sforzo di pesca generalizzata può essere inappropriato: le flotte che sfruttano localmente banchi di pesca in un modo moderato subirebbero in tal caso una ingiusta e inutile penalizzazione.

Nelle acque marine prospicienti la Toscana, si distinguono chiaramente due aree separate a nord e a sud dall’isola d’Elba, dove flotte diverse si sono specializzate da tempo nella pesca delle diverse risorse locali. Così a Viareggio il principale target è un insieme di specie costiere e la pressione di pesca è maggiore entro i 50m di profondità. A Livorno il target è rappresentato da alcune specie pregiate come il San Pietro, le gallinelle, il nasello e la fascia fra 100 e 200m è la più sfruttata. A Porto Santo Stefano, la flotta punta più alla cattura di risorse profonde come gamboni e scampi e pesca fondamentalmente fra 150 e 500m.

A livello internazionale la DG XIV dell’Unione Europea e il CGPM della FAO rappresentano i riferimenti gestionali per il Mediterraneo: stante l’impossibilità di analizzare le situazioni con un dettaglio elevato queste istituzioni usano come unità di gestione le Geographic Sub-Areas della FAO. In questo contesto le acque toscane fanno parte della G.S.A.n°9 insieme alla Liguria e al Lazio: approssimativamente quindi la Toscana rappresenta oltre il 50% della GSA.

A livello regionale è invece indispensabile lavorare su una scala spaziale sensibilmente minore: molti interventi volti a razionalizzare l’attività di pesca delle marinerie toscane devono quindi essere definiti in base alle tradizioni locali e alla disomogenea disponibilità spaziale delle risorse ittiche oggetto di pesca.

15.2 Attività di ricerca scientifica in Toscana

Gli studi sulla dinamica delle popolazioni oggetto di pesca e in particolare i risultati delle valutazioni sul loro stato di sfruttamento, e le relative proposte gestionali, sono periodicamente presentati in numerosi convegni e workshops scientifici, sia a livello nazionale sia internazionale. Le sedi più importanti ed autorevoli sono il SAC-CGPM della FAO e lo STECF (Scientific, Technical and Economic Commission for Fisheries) dell’UE.

Di particolare importanza sono le attività che l’ARPAT e il CIBM svolgono nell’ambito del Stock Assessment Committe del Conseil Generale de la Pêche du Méditerranée (SAC-CGPM), l’organismo della FAO che governa le attività di pesca del Mediterraneo. In tale sede tutti i paesi di entrambe le sponde del Mediterraneo definiscono le misure necessarie per sfruttare le risorse in modo razionale, avendo come obiettivo quello di massimizzare le rese ma allo stesso tempo permettendo la sopravvivenza di un numero di riproduttori sufficienti per il rinnovo della popolazione.

Le misure gestionali proposte in sede CGPM prendono anche in considerazione gli effetti potenzialmente dannosi, sull’ambiente e sulla conservazione della biodiversità, delle diverse tecniche di pesca impiegate. L’Italia, come tutti gli stati aderenti al CGPM, è conseguentemente obbligato a seguire le indicazioni emanate da questo organismo.

La Direzione Generale della Pesca della Commissione Europea, attraverso il suo strumento tecnico, lo STECF, definisce le linee guida per una pesca sostenibile nelle acque di tutti i paesi europei che fanno parte dell’Unione Europea.
I piani per lo sviluppo della pesca a livello nazionale o regionale che sono almeno parzialmente finanziati con fondi europei devono essere vagliati dalla Commissione, così come altre misure di gestione quali l’istituzione di aree di protezione, le deroghe all’uso di sistemi di pesca, le variazioni delle taglie legali minime di cattura, ecc.

L’ARPAT e il CIBM sono frequentemente convocati dalla commissione Europea a fornire il loro contributo di esperienza nella discussione di numerosi aspetti della pesca che sono organizzati dallo STECF: problematiche tipiche sono le flotte e il potere di pesca, la piccola pesca, la pesca multispecifica, il rapporto fra capacità di pesca e disponibilità delle risorse, ecc.

Entrambe le strutture di ricerca sono anche coinvolte da anni nel programma europeo di raccolta dati della pesca commerciale (DCR) in cui i dati di cattura e sforzo, per tipologia di pesca e dimensioni dei natanti, sono raccolti in tutte le marinere toscane.

Per un numero selezionato e rappresentativo di imbarcazioni e porti viene analizzata dettagliatamente la cattura sbarcata e, per le specie considerate di maggiore interesse commerciale, sono rilevate anche le taglie individuali. Quale complemento, si effettuano anche imbarchi di ricercatori a bordo dei pescherecci commerciali di diverse tipologie per analizzare il pescato totale e quantificare lo scarto.

15.3 Aree di protezione in Toscana

Le aree marine protette (AMP), oltre alla fascia costiera interdetta allo strascico, sono identificabili in specifici settori intorno alle isole di Gorgona, Capraia, Pianosa, Giannutri e Montecristo; in corso di definizione è anche la protezione delle Secche della Meloria di fronte a Livorno.

La normativa specifica, le delimitazioni, le attività di pesca consentite, il regime gestionale richiedono una revisione conoscitiva globale, anche in sinergia con il Parco Nazionale dell’Arcipelago Toscano.

Riguardo alle aree protette, occorre verificare le giustificazioni della loro istituzione, gli obiettivi prefissati, e stabilire dei metodi operativi su come valutare quali benefici siano stati ottenuti come risultato della loro istituzione. Per questo tipo di valutazione sarebbe necessario analizzare dati sulle attività di pesca e turistiche precedenti all’istituzione, ma in molti casi questo tipo d’informazione non esiste o è assolutamente parziale.

Qualsiasi restrizione delle attività antropiche in tali aree ha conseguenze sull’economia dei pescatori, di quelle legate al turismo, all’industria, ecc. e questi devono essere prese in considerazione quando si vuole impostare l’istituzione o la verifica di qualsiasi ordinamento che riguarda la frequentazione o l’uso di un certo ambiente, anche marino.

E’ necessario monitorare l’evoluzione delle condizioni ambientali nelle aree già oggetto di qualche tipo di protezione ad esempio analizzando i livelli di copertura vegetale eanimale, la biodiversità dei vari gruppi tassonomici, la biomassa delle specie presenti, l’incremento di individui per specie non più frequenti, la struttura demografica delle popolazioni, ecc.

Il monitoraggio dovrebbe riguardare anche la pesca commerciale, sia industriale, sia artigianale, analizzando le strategie alternative dei pescatori e identificando dove si sia indirizzato lo sforzo precedentemente realizzato all’interno di tali aree. In aree protette dove le regolamentazioni non sono rispettate, occorrerebbe individuare sistemi che servano come deterrenti per le attività illegali quali sbarramenti, strutture antistrascico sul fondo, vigilanza da parte di volontari, ecc. Per la fascia costiera entro le tre miglia, zona vietata allo strascico, il posizionamento di strutture dissuasive antistrascico in cemento e acciaio sembra fornire buoni risultati e potrebbe essere esteso ad altre aree dove la pesca illegale è frequente.
Nel caso di aree posizionate al largo, ad esempio le aree di nursery per il nasello, dove milioni di individui di piccola taglia sono concentrati e vulnerabili alla pesca, l’installazione di questo tipo di strutture non sembra praticabile, non solo per l’elevata profondità, ma anche perché queste aree sono abbastanza estese. Nel valutare i vantaggi di definire altre aree di nursery con divieto di pesca, è necessario considerare anche l’eventuale scarsa possibilità di vigilanza: occorre quindi valutare strategie alternative, o complementari, come un maggior controllo delle taglie al momento dello sbarco, della vendita nei mercati o al minuto, oppure un aumento della maglia regolamentare della rete. Queste misure o una loro combinazione potrebbero avere un’efficienza simile o superiore, per raggiungere lo scopo desiderato di protezione, che non la semplice istituzione di una o più AMP.

15.4 Riduzione dello scarto di pesca

Lo scarto nella pesca commerciale, ovvero gli individui catturati ma non commercializzati, rappresenta anche in Toscana un problema abbastanza importante. Lo scarto è dovuto a diverse ragioni: in primo luogo, l’uso di una maglia della rete (soprattutto nello strascico) poco selettiva per cui sono catturati anche numerosi esemplari di piccole dimensioni. Questi individui spesso sono appartenenti a specie (es. triglia, nasello, pagello) che potrebbero crescere molto di più, individui giovanili che non avranno alcuna possibilità di riprodursi e che saranno rigettati in mare ormai non più vitali.

Il problema della maglia molto fitta nelle attività di pesca nel Mediterraneo è molto vecchio ed è legato alla presenza nell’area di pesca di numerose altre specie accessorie che sono di piccola dimensione anche da adulte e che usando una rete con maglie più larghe sfuggirebbero alla cattura. Queste specie hanno spesso un buon valore commerciale, come purtroppo lo hanno anche i giovani di specie che possono raggiungere grosse dimensioni.

La cattura di individui molto giovani non è conveniente nemmeno dal punto di vista delle rese: i modelli di simulazione suggeriscono che, in quasi tutti i casi esaminati, posporre l’età o la taglia di prima cattura permetterebbe da un lato di aumentare a medio termine le rese e di garantire ad un maggior numero di individui la riproduzione almeno una volta nella vita.

E’ già stato deciso in sede di Unione Europea che la maglia al sacco della rete a strascico dovrà essere elevata dagli attuali 40 mm (maglia stirata) a 50 mm e si prospetta anche l’adozione di un sistema di cucitura della rete a maglia quadra che permette alle maglie di mantenersi più aperte anche durante il loro funzionamento e quindi aumentare ulteriormente la selettività.

In Mediterraneo, comunque, non si può incrementare la maglia del sacco oltre a un certo limite in quanto gran parte delle specie sono di ridotte dimensioni anche allo stato adulto, quindi il problema dello scarto persisterà anche se un in parte ridotto. L’unico modo efficiente di ridurre lo scarto è quindi quello di non frequentare le aree o non pescare nei periodi in cui si concentrano gli esemplari giovanili che dovrebbero essere risparmiati dalla pesca. La definizione delle aree di nursery delle principali specie commerciali è di fondamentale importanza per questo scopo.

Conoscere la reale dimensione del fenomeno dello scarto in funzione delle aree e tipologie di attrezzo è importante anche per disporre di valutazioni realistiche dell’impatto della pesca, che tengano in considerazione, non solo la struttura di taglia degli individui sbarcati e commercializzati, ma anche il totale delle catture includendo gli esemplari giovanili ributtati.

15.5 Fermi temporanei

L’attività di pesca può essere regolata con diversi strumenti normativi in base al contesto applicativo e agli obiettivi gestionali che si vogliono perseguire. Per ridurre lo sforzo o la pressione di pesca esistono ad esempio modi alternativi rispetto ad una riduzione della flotta. Le modalità più
comunemente utilizzate riguardano il controllo della capacità della flotta (misurato come il valore globale nella flotta di specifiche caratteristiche strutturali come la potenza, la stazza, la lunghezza delle imbarcazioni che sono in relazione con il potere di pesca) o la regolazione temporale dell’attività di pesca.

Il principio base di una regolamentazione temporale è che l’attività di pesca esercitata nei diversi periodi dell’anno non necessariamente avrà lo stesso impatto sull’abbondanza della risorse: spesso l’obiettivo è quello di ridurre l’impatto della pesca sugli individui di una certa specie in una certa fase della vita in cui sono spazialmente più concentrati e di conseguenza particolarmente vulnerabili. Un fermo temporale della pesca meno selettiva può in questi casi essere la misura più adeguata perché riduce la mortalità in modo più importante di quello che si sarebbe ottenuto diluendo una pari riduzione dello sforzo di pesca lungo tutto l’arco dell’anno.

La scelta del periodo ideale, per impostare il fermo temporaneo, è quindi dipendente della biologia e del comportamento delle singole specie che necessitano di protezione. Può capitare che lo stesso periodo sia idoneo per proteggere simultaneamente diverse specie (ad esempio triglia, parago e fasi giovanili di numerose altre specie che si concentrano sottocosta in autunno), ma considerando che in Toscana la pesca ha di norma un carattere multispecifico, sarà difficile trovare un periodo ottimale per tutte le specie coinvolte.

Tuttavia, il fermo implica sempre una riduzione dello sforzo di pesca su tutte le specie vulnerabili e, considerando gli aspetti economici legati a garantire la disponibilità di prodotto, ai problemi legati alla legge di domanda e offerta, queste misure dovrebbero essere articolate in modo da garantire la maggiore efficienza non solo biologica, ma anche economica. In tal senso il fermo potrebbe anche essere articolato per fasce batimetriche, definendo fermi temporali che possono includere solo l’area costiera o quella batale, creando così minori distorsioni al mercato.

Esistono infine problemi legali legati alla possibilità di ricevere un contributo economico durante la fase di fermo che devono essere risolti.

15.6 Sistemi per ridurre lo sforzo: pescaturismo, ittiturismo

L’attività di pescaturismo è nata quale supporto allo sviluppo e al rilancio della piccola pesca artigianale, una fonte alternativa di reddito che deve consentire nel complesso una diminuzione dello sforzo di pesca indirizzato alle specie costiere. Costituisce una valida possibilità di reddito integrativo che in certi casi può essere anche più remunerativo della pesca stessa. Il pescaturismo limita l’attività di prelievo a poche operazioni dimostrative, frequentemente finalizzate ad una cattura sufficiente per un pasto, spesso consumato a bordo, e pertanto comporta una diminuzione dello sforzo di pesca, un risparmio di carburante e una riduzione dell’inquinamento.

Questa attività è sicuramente da favorire ed incentivare anche se occorre rilevare che l’attuale legge nazionale, che regolamenta la pesca marittima, non consente un controllo efficace sulle autorizzazioni al pescaturismo, che possono favorire talvolta fenomeni di lavoro nero ed evasione contributiva e fiscale.

L’ittiturismo rappresenta un’attività di ricezione ed ospitalità esercitata dai pescatori professionisti utilizzando le proprie abitazioni, o propri spazi adeguatamente ristrutturati, nonché l'offerta di servizi di soggiorno, ristorazione e degustazione dei prodotti tipici delle marinerie. Non sono stati emanati al momento i programmi attuativi anche se si prevede che dovrebbero rispecchiare, almeno in parte, quelli dell’agriturismo.
15.7 Gestione integrata della fascia costiera

L’obiettivo di dimensionare le caratteristiche e la capacità della flotta da pesca alle reali disponibilità ed esigenze delle popolazioni ittiche è ambizioso e difficile da ottenere; ciò non solo perché implica una conoscenza approfondita della dinamica delle popolazioni interessate e dell’attività di pesca, ma anche perché deve considerare le mutevoli condizioni ambientali e climatiche che possono influenzare direttamente l’abbondanza delle risorse.

Prescindendo dai cambiamenti climatici su scala globale, i cambiamenti ambientali possono avere localmente varie cause originate dall’attività antropica: risulta quindi molto importante l’armonizzazione di tutte le attività che in qualche modo influenzano tali caratteristiche ambientali attraverso una vera gestione integrata, soprattutto nella fascia costiera dove queste sono più rilevanti.

Tutte le attività nella zona, siano esse industriali, turistiche, legate alla portualità, agli insediamenti umani, ecc., devono essere conosciute e quantificate. Risulta importante conoscere le modifiche sulla morfologia costiera e dei fondali marini eventualmente prodotte da tali attività, quali siano le influenze sulla salute dell’ecosistema marino, e infine è necessario continuare a fare studi approfonditi sugli aspetti economici e sociali.

16 Acquacoltura

L’acquacoltura è presentata come un’alternativa efficiente per fornire proteine nobili ad un prezzo contenuto, sebbene negli ultimi anni questo settore abbia evidenziato sofferenze dovute sia agli elevati incrementi dei costi di gestione, sia alla concorrenza nel mercato di prodotti simili di importazione, che sono offerti a costi decisamente inferiori a quelli che la produzione nazionale e regionale può proporre.

Di fronte a questa problematica, due sono le vie possibili di soluzione, dato che i costi di produzione non possono essere abattuti oltre ad un certo limite: la certificazione di origine/qualità e la produzione di specie la cui offerta è limitata o inesistente nel mercato attuale.

Mentre il primo tipo di azioni riguarda prevalentemente problemi di tipo organizzativo, burocratico e amministrativo, la produzione di nuove specie di allevamento implica un complesso e lungo processo di ricerca scientifica. La Regione, anche attraverso ARSIA, sta dando impulso a questo tipo di iniziative in modo di garantire al settore continuità nel lavoro e adeguati profitti.

Tra le attività di acquacoltura, quella in mare aperto tramite gabbie offshore, superficiali o sommerse, sembra la linea più promettente: come già realizzato dall’ARPAT, occorre comunque valutare l’impatto di tali attività sull’ambiente circostante e la qualità dei prodotti.

Secondo gli ultimi rilevamenti organici effettuati da ARSIA (risalenti al 2002) sul territorio regionale erano operativi 52 impianti con una produzione complessiva superiore alle 3500 tonnellate annue, costituite prevalentemente (68%) da specie marine. Nella tabella seguente sono riportate la distribuzione e la produzione degli impianti per tipologia e per provincia.
La produzione annuale di specie ornamentali è di circa 500.000 unità. Dei 52 impianti, 34 allevano specie d’acqua dolce, 13 producono specie d’acqua salata, 3 sono impianti di maricultura, uno alleva specie ornamentali e uno molluschi.

Per quanto riguarda la presenza degli impianti d’acquacoltura nelle province toscane risulta che la provincia con il maggior numero di impianti sia quella di Lucca con 22 impianti tutti di trotecoltura, seguita da Grosseto con 12 impianti, dei quali 10 impianti intensivi d’acqua salata o salmastra, 1 impianto di maricultura e 1 di molluschicoltura. La provincia di Livorno registra in totale 5 impianti dei quali 3 impianti intensivi d’acqua salata e 2 impianti di maricultura. Nella provincia di Arezzo ricadono 4 impianti di trotecoltura, mentre nella provincia di Massa Carrara ne risultano 3. Nella provincia di Firenze si trovano 2 impianti per l’allevamento e commercializzazione di specie d’acqua dolce e ancora 2 nella provincia di Pistoia, entrambi trotecolture. La provincia di Pisa ha solo un allevamento per specie d’acqua dolce, mentre nella provincia di Siena ricade l’unico impianto per la riproduzione e l’allevamento di specie ornamentali.

E’ importante notare che alcune aziende sono finalizzate alla produzione di uova embrionate, avannotti o giovani, la cui produzione non può essere accorpata a quella descritta nella tabella, non

<table>
<thead>
<tr>
<th>Numero di impianti attivi nel 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specie Marine</td>
</tr>
<tr>
<td>Arezzo</td>
</tr>
<tr>
<td>Firenze</td>
</tr>
<tr>
<td>Grosseto</td>
</tr>
<tr>
<td>Livorno</td>
</tr>
<tr>
<td>Lucca</td>
</tr>
<tr>
<td>Massa Carrara</td>
</tr>
<tr>
<td>Pisa</td>
</tr>
<tr>
<td>Pistoia</td>
</tr>
<tr>
<td>Prato</td>
</tr>
<tr>
<td>Siena</td>
</tr>
<tr>
<td>Totale</td>
</tr>
</tbody>
</table>

La produzione annuale di specie ornamentali è di circa 500.000 unità.

<table>
<thead>
<tr>
<th>Produzione tonnellate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specie Marine</td>
</tr>
<tr>
<td>Arezzo</td>
</tr>
<tr>
<td>Firenze</td>
</tr>
<tr>
<td>Grosseto</td>
</tr>
<tr>
<td>Livorno</td>
</tr>
<tr>
<td>Lucca</td>
</tr>
<tr>
<td>Massa Carrara</td>
</tr>
<tr>
<td>Pisa</td>
</tr>
<tr>
<td>Pistoia</td>
</tr>
<tr>
<td>Prato</td>
</tr>
<tr>
<td>Siena</td>
</tr>
<tr>
<td>Totale ton/anno</td>
</tr>
</tbody>
</table>

Dei 52 impianti, 34 allevano specie d’acqua dolce, 13 producono specie d’acqua salata, 3 sono impianti di maricultura, uno alleva specie ornamentali e uno molluschi.
essendo generalmente misurabile in peso. Questo tipo di attività ittiogenica riguarda sia la produzione di esemplari per ripopolamento, in genere nelle acque interne, sia per ingrasso in allevamenti di altre aziende.

I principali indicatori produttivi ed economici degli impianti di acquacoltura per ogni provincia toscana sono riassunti nella tabella seguente: il numero complessivo di 50 impianti (N.Imp) occupa una superficie totale di oltre 21 ettari (Sup è in m2) con una produzione (Prod) di oltre 300 tonnellate annue, corrispondenti ad un valore commerciale di 20 milioni di euro, corrispondente a quasi la metà del valore prodotto dalle attività di pesca.

Le analisi di correlazione nelle figure seguenti, realizzate sulle due tipologie di allevamento più diffuse in Toscana, evidenziano come negli allevamenti in vasca delle specie marine esista una altissima correlazione tra la superficie degli impianti e la produzione, indice di un’elevata uniformità tipologica degli allevamenti. Nel caso della troticoltura ciò non avviene, sia per la minore dimensione degli impianti, sia perché il prodotto è spesso, e in percentuali variabili, non destinato al consumo alimentare, bensì ad interventi di ripopolamento con avannotti a vari stadi di sviluppo.
La produzione annuale di specie ornamentali è di circa 80.000 unità.

Complessivamente il numero di impianti dal 1987 al 2002 è aumentato di oltre il 50%. L’incremento maggiore è relativo alle attività di allevamento delle specie marine, che, tra impianti a terra e maricoltura, sono aumentati di quasi l’80%. Le province che hanno avuto il maggiore incremento come numero di impianti sono Livorno per le specie marine e Lucca per la troticoltura.

Incrementi decisamente maggiori sono stati registrati nella produzione: per le specie marine è aumentata di circa 8 volte, mentre è quasi raddoppiata per le specie d’acqua dolce. Un notevole aumento è stato registrato anche per le specie ornamentali (6 volte), mentre l’unica flessione nella produzione è stata registrata nella molluschicoltura, che però nel 1987 era prevalentemente costituita da mitili, mentre nel 2002 risultano esclusivamente le ostriche.

Un altro aspetto da prendere in considerazione è la pesca nelle lagune costiere, che riguarda la Laguna di Orbetello e, in misura decisamente inferiore, il Lago di Burano. Queste attività, per la loro organizzazione con i lavorieri, erano state considerate nel 1987 come accquicultura estensiva e
fornivano una produzione complessiva di oltre 400 tonnellate. Non sono disponibili i rilevamenti del 2002.

In Toscana gli allevamenti di specie d’acqua dolce sono generalmente caratterizzati da una gestione di tipo familiare, con una tradizione affermata sia per i processi produttivi sia per quanto riguarda la commercializzazione. Tra le diverse tipologie è possibile osservare che gli impianti censiti nel 2002 si possono tutti classificare come triticolture, tranne due impianti che agiscono soprattutto come commercializzazione di pesce vivo, utilizzando le vasche come stoccaggio e stabulazione del pesce, senza distribuzione di alimenti. Tutti gli altri impianti si possono classificare come impianti di allevamento intensivo, a varie densità di allevamento che si concentrano soprattutto sull’allevamento di trota iridea e in numero inferiore di trota fario.

Pochi sono infatti gli impianti che concentrano la produzione sulla trota fario, un prodotto in genere di qualità, finalizzato soprattutto alle immissioni nei corsi d’acqua di esemplari a diverse fasi di sviluppo. Gli altri impianti normalmente effettuano una produzione imperniata prevalentemente sulla trota iridea, integrata spesso dalla trota fario e talvolta da altre specie come salmerini, carpe, pesci gatto, ecc.

Delle triticolture censite nel 2002, la maggior parte di quelle che completano l’allevamento fino all’esemplare adulto, realizza la propria produzione finalizzandola, esclusivamente o per la maggior parte, alla vendita per i laghetti di pesca sportiva. Complessivamente infatti solo una parte marginale della produzione è destinata alla vendita per l’alimentazione.

Gli impianti d’acquacoltura di specie marine in vasca risultano essere prevalentemente di tipo intensivo. Le principali specie allevate sono spigole ed orate che, complessivamente, costituiscono il 99% della produzione di specie marine, integrata da alcune sperimentazioni con altre specie come le ombrine, le sogliele, i rombi, i saraghi e le cernie. Al momento del censimento del 2002 comunque nessuna di queste sperimentazioni presenta risultati tali da intaccare la predominanza delle due specie storiche.

L’impianto di maricoltura della provincia di Grosseto risulta dotato di 3 gabbie sommergibili ed era stato realizzato in prossimità della formica di Burano.

L’attività di maricoltura, benché relativamente recente, ha messo in evidenza che, se gli impianti vengono realizzati in zone con buon idrodinamismo e fuori dalla fascia bentonica a posidonia, non creano alterazioni significative all’ecosistema marino e di pari passo costituiscono un’importante risorsa in alternativa alla pesca. Da evidenziare che le aree interessate da impianti di maricoltura, essendo precluse per ovvie ragioni, alla normale attività di pesca professionale, si trasformano in zone di protezione e richiamo delle specie selvatiche. Le tecniche applicate sulle strutture delle gabbie hanno mostrato una buona resistenza anche alle condizioni meteomarine dell’Alto Tirreno e, a detta degli allevatori, le gabbie galleggianti e sommergibili in commercio, forniscono buone garanzie di resistenza. La gestione dell’impianto ha comunque bisogno di continui interventi manutentivi, soprattutto in relazione all’usura delle reti.
Considerando comunque la sensibile evoluzione del settore, avvenuta nei decenni scorsi, e che sono passati ormai cinque anni dall’ultimo censimento, e sarebbe opportuna una verifica della situazione, anche limitandosi alla valutazione degli indicatori più significativi.

17 Altre tematiche

Vari altri aspetti dovranno essere ulteriormente sviluppati nei prossimi piani della pesca anche con il supporto delle indicazioni che emergono dai Tavoli Blu provinciali.

La realizzazione di corsi di formazione, indirizzati agli operatori della pesca, dovrà estendersi dagli argomenti attinenti la sicurezza in mare e l’igiene dei prodotti ittici ad altre tematiche quali i principi di pesca responsabile, le possibili vie di sostegno alla categoria, le attività legate al turismo, ecc.

La qualità dei prodotti può essere incrementata, anche come percezione da parte dei consumatori attraverso un certificato di origine e controlli lungo tutta la filiera, meglio se ridotta, che ne garantiscono il livello igienico-sanitario.

L’elaborazione e l’applicazione dei distretti di pesca richiede ulteriori riflessioni che devono includere anche la definizione dei limiti delle acque regionali ed essere sviluppati in stretta interdipendenza con lo sviluppo delle aree marine protette.
Conclusioni

18.1 Sintesi del comparto pesca e acquacoltura

La flotta da pesca professionale in Toscana comprende circa 600 imbarcazioni, di cui 450 appartengono alla pesca artigianale, 135 allo strascico e solo 15 alla circuizione. Negli ultimi 20 anni la flotta si è notevolmente ridotta passando da circa 1300 imbarcazioni alle attuali 600.

La pesca a strascico usa diverse varianti di rete, tartana, volantina, francese e cattura principalmente naselli, triglie, pannocchie, seppie, gamberi bianchi e scampi a maggiore profondità. Il rapido è poco usato nella regione e l’obiettivo di questa pesca sono i pesci piatti, razze, seppie, polpi, pannocchie. L’importanza nello sbarcato delle diverse specie dipende dall’attrezzo in uso, dalla loro disponibilità nelle diverse aree di pesca e dalla stagionalità.

Per la circuizione, le specie target sono le sardine, le acciughe e il pesce bianco pregiato nelle aree vicino alle secche. La piccola pesca ha diversi targets in base agli attrezzi in uso e le caratteristiche dei fondali dove opera. Reti di posta di diversa tipologia, tramagli, reti a imbocco, sono utilizzate per catturare scorfani, triglie, polpi, muggini. Diversi tipi di palangari sono usati per la cattura di pesce spada, tonni, naselli. Alcune imbarcazioni usano una sciabichella per la cattura in inverno del rossetto. La pesca ai molluschi lamellibranchi non è molto sviluppata nella regione: i rastrelli sono usati per raccogliere teline e alcuni subacquei raccolgono ricci e cangurucchi. Esiste una modesta attività di pesca professionale in acque interne, che vicino alle foci dei fiumi è indirizzata alla cattura di cefali, orate, spigole, mentre nelle lagune, fiumi e invasi alle carpe, carassi, anguille, pesce gatto.

Il valore del catturato complessivo della pesca si aggira intorno alle 11.000 tonnellate annue, con ricavi complessivi di circa 50 milioni di euro. La maggior parte delle catture proviene dalla circuizione, circa 6.000 t, fondamentalmente composte da sardine e acciughe, e che rappresenta il 55% dello sbarcato. La cattura con lo strascico è minore (3.800 t), ma con una maggiore importanza economica (58% del valore complessivo), mentre la pesca artigianale, cattura circa 1.000 ton. (9% del totale), ma contribuisce con il 22% ai ricavi del comparto.

Quantitativamente, le principali specie del catturato sono la sardina (3.900 t) e l’acciuga (2.000 t). Tra le specie demersali dominano moscardini, nasello e seppia con più di 500 tonnellate ciascuna e la triglia di fango con 400 tonnellate; i gamberi bianchi e gli scampi sono di notevole interesse per il loro alto valore commerciale, anche se le catture si limitano a 180 e 100 tonnellate annue rispettivamente.

Molte popolazioni, specialmente di specie demersali, mostrano segni di sofferenza imputabili a un’eccessiva pressione di pesca. Per alcune di loro sono state realizzate accurate valutazioni, usando i dati della pesca commerciale e le campagne scientifiche in mare: le conclusioni principali sono di un’eccessiva mortalità da pesca e una taglia di prima cattura troppo piccola. I modelli suggeriscono che le attuali rese e i guadagni potrebbero essere migliorati se fosse adottata una miglior strategia di pesca, indirizzata ad evitare le catture massicce di forme giovanili, e permettere ad un numero maggiore di individui di raggiungere l’età riproduttiva.

La pesca sportiva ha sicuramente un’incidenza, non trascurabile, sull’attuale stato di alcune risorse, ma la mancanza di dati non permette attualmente né di valutare il suo impatto né di proporre interventi per regolamentare quest’attività, se non l’adozione di qualche forma di licenza.

In Toscana sono stati rilevati circa 50 impianti di acquacoltura con una produzione annua di circa 3.500 tonnellate. Dal punto di vista economico, l’attività produce ricavi di circa 20 milioni di euro, che rappresentano 2/5 di quelli prodotti dalla pesca. La maggior produzione riguarda specie allevate in acque marine costiere come orata, spigola e cefalo mentre la trota è la principale specie della regione in acque dolci.
18.2 Futuri indirizzi conoscitivi

Si elencano di seguito sinteticamente le linee di approfondimento che dovranno essere sviluppate nei prossimi piani della pesca per colmare le attuali carenze conoscitive. I primi 7 punti sono simmetrici agli indirizzi di intervento del paragrafo successivo, i seguenti riguardano aspetti specifici e complementari.

1) Naviglio - Per quanto riguarda le caratteristiche del naviglio da pesca della Toscana un obiettivo importante è quello di giungere ad un ampliamento delle conoscenze non tanto della sua consistenza, quanto delle tipologie di pesca prevalente utilizzate da ciascuna imbarcazione. E’ necessaria una verifica su alcune imbarcazioni presenti nei registri delle quali però non si ha alcuna notizia circa la collocazione e l’eventuale attività svolta.

2) Attrezzi e mestieri - Approfondire la conoscenza degli strumenti utilizzati e della pressione di pesca esercitata da ogni tipologia. Soprattutto per attività di pesca come la circuizione, della quale si hanno al momento informazioni frammentarie, e la pesca artigianale, molto sviluppata ma non sufficientemente conosciuta. Occorre anche considerare le loro distribuzioni e le interazioni tra i differenti sistemi di pesca.

3) Pesca in acque interne – E’ necessario ampliare le conoscenze sulla pesca professionale con particolare attenzione alla valutazione della sostenibilità dalle risorse sfruttate, alla conoscenza degli attrezzi utilizzati, alla loro selettività e quindi alla loro catturabilità. La raccolta dei dati sui prelievi, effettuati dai professionisti in acque interne, può essere un utile punto di partenza per applicare tecniche statistiche che consentano valutazioni sullo stato delle risorse. E’ importante monitorare nel tempo lo sforzo applicato e le variazioni del numero di licenze rilasciate dalle province.

4) Pesca artigianale. L’attività è molto diffusa in tutti gli approdi della Toscana, ma il livello attuale di conoscenza risulta essere modesto e frammentario, per cui è necessario incrementare le informazioni disponibili. Può essere utile definire un sistema di raccolta sistematica dei dati di cattura inerenti le imbarcazioni della piccola pesca, stratificato per attrezzo e per le diverse aree, anche su base campionaria.

5) Catture commerciali – Le statistiche relative alle catture commerciali attualmente disponibili, raccolte dall’IREPA, devono essere integrate, e portate ad un maggior livello di dettaglio, con il rilevamento diretto dello sbarcato da effettuarsi nei principali porti della Toscana, come già viene da numerosi anni a Viareggio e Porto S. Stefano. La raccolta delle informazioni dirette allo sbarco deve comprendere anche tutta l’informazione inerente la distribuzione dello sforzo di pesca e l’area su cui questo insiste.

6) Trawl surveys - Un altro aspetto molto importante riguarda la prosecuzione della raccolta delle informazioni sull’abbondanza delle risorse in mare mediante campagne di ricerca scientifica (trawl surveys) al fine di poter quantificare la composizione e la distribuzione delle singole specie presenti nelle aree indagate e negli intervalli batimetrici campionati. In questo modo è possibile proseguire il monitoraggio dello stato di conservazione di tali specie, sulla loro densità, sull’abbondanza, sulla distribuzione spaziale nonché raccogliere altre importanti informazioni quali ad esempio quelle legate ai parametri biologici delle specie.

7) Modelli gestionali - L’uso congiunto di informazioni provenienti da statistiche di cattura e da campagne scientifiche in mare permettono l’analisi dello stato di sfruttamento, ovvero di
stimare i tassi di mortalità da pesca. L’analisi temporale del rapporto fra cattura e biomassa in mare permette quantificare il tasso di mortalità \(F = C/B \) e monitorare l’andamento dell’attività per ciascuna specie o gruppo con costi limitati. E’ anche necessario sviluppare altri approcci alternativi per definire lo stato di sfruttamento delle specie principali o di assemblaggi di specie che vengono catturate insieme.

8) **By catch** - La conoscenza della frazione di pescato che viene scartata a bordo e ributtata in mare riveste un ruolo essenziale ai fini della valutazione delle risorse. Trascurarla conduce a sottovalutare l’impatto della pesca su talune specie o sugli individui di minor taglia di alcune popolazioni, con evidenti distorsioni sui risultati dei modelli. La conoscenza di tale componente può essere ottenuta con l’imbarco periodico di osservatori sui pescherecci della pesca commerciale e la determinazione dei quantitativi, per zona, attrezzo, specie e taglia, che sono scartati a bordo.

18.3 Futuri indirizzi di intervento

1) **Naviglio** - La Regione Toscana, in accordo e sinergia con le Capitanerie e le altre strutture competenti dovrebbe iniziare la progettazione di un unico database del naviglio toscano, eventualmente accessibile on-line per quanto riguarda i dati non sensibili. L’archivio centralizzato deve raccogliere e uniformare tutte le informazioni tecniche e strutturali delle imbarcazioni, delle imprese di pesca, e della loro operatività. Occorre anche individuare i soggetti che abbiano accesso al database per aggiornamenti e modifiche.

2) **Attrezzi e mestieri**. Occorre implementare una raccolta organica delle informazioni per costituire un database dei mestieri che riporti tutte le tipologie di pesca praticate nei mari della Toscana quantificando le attività di pesca per zona, attrezzo, stagionalità, specie target, ecc., si dovrebbe giungere a un monitoraggio continuo delle attività, anche per mantenere traccia nel tempo di possibili mestieri, tradizioni e attrezzi da pesca che altrimenti risulterebbero persi.

3) **Pesca artigianale**. Per quanto riguarda le attività della pesca artigianale in Toscana è necessario incrementare la raccolta di informazioni sia in termini di imbarcazioni coinvolte, di attrezzi utilizzati, di sforzo di pesca, sia in termini di quantificazione delle catture. La definizione e l’applicazione di statistiche e modelli adeguati risulta di estrema importanza per valutare l’impatto di queste attività sulle risorse biologiche e sull’ecosistema costiero e permette di definire adeguate misure gestionali. Occorre inoltre proseguire con l’attuazione di progetti di ricerca scientifica al fine di individuare attrezzature sempre meno impattanti e più selettive, nonché l’individuazione di aree di particolare valore ecologico o naturalistico da proteggere con le modalità più opportune.

4) **Pesca in acque interne** - Per quanto riguarda i pescatori professionisti in acque interne un obiettivo importante è quello di utilizzare le informazioni sull’intensità di pesca e sulle catture al fine di applicare specifiche statistiche e modelli che consentano di perseguire una
effettiva valutazione dello stato delle risorse. Gli interventi gestionali dovranno tenere conto del numero delle licenze presenti, dello sforzo praticato, e dello stato delle popolazioni sfruttate.

5) **Catture commerciali.** Le informazioni raccolte sulle catture commerciali in mare possono essere utilizzate, soprattutto per quanto riguarda i quantitativi pescati, la loro composizione, lo sforzo ecc, per definire specifiche statistiche che consentono, attraverso l’analisi di trends e l’utilizzo di specifici modelli matematici, una più accurata valutazione dello stato della risorsa e del suo sfruttamento. Sulla base di tali risultati possono essere stabilite limitazioni temporali e/o spaziali, o incentivazioni, a determinate attività.

6) **Trawl surveys** - E’ necessario proseguire le campagne di ricerca scientifica in mare in modo da rendere sempre più consistenti le serie storiche di cui si dispone, non solo in riferimento alle variabili legate all’abbondanza delle specie, ma anche in relazione ai parametri biologici. La robustezza delle serie storiche può consentire l’applicazione di sistemi di analisi sempre più precisi e accurati. L’informazione raccolta permette anche di definire quantitativamente le specie più vulnerabili per tipo di attrezzo e una quantificazione della biodiversità marina: avendo a disposizione serie temporali sufficientemente lunghe è possibile monitorare nel tempo possibili cambiamenti nell’importanza relativa delle specie, o eventuali riduzioni della biodiversità, quale segnale di sovrasfruttamento dell’ecosistema marino.

7) **Modelli gestionali** – Occorre formalizzare una gestione precauzionale della pesca basata sull’utilizzo di reference points conservativi, espressi in livelli di biomassa e tassi di sfruttamento, che tengano conto di tutte le tipologie di pesca multispecifica che sono praticate nelle acque toscane. Sulla base di tali indicatori si devono identificare gli elementi di criticità e le possibili azioni protezionistiche da attuare.

8) **Acque regionali** – Bisogna realizzare un sistema informativo geografico (GIS) che raccolga le delimitazioni di esercizio della pesca secondo le attuali normative. In alcuni casi, quali la fascia costiera o le aree marine protette (AMP), si tratta solo di elaborare le informazioni esistenti, mentre in altri casi bisogna realizzare nuove delimitazioni. E’ il caso dei confini delle acque regionali, di quelle provinciali o della definizione dei punti foranei di transizione dalle acque interne a quelle marine. Infine, anche la composizione dei distretti di pesca richiede ulteriori sviluppi.

9) **Diversificazione** – Per ridurre la pressione di pesca e migliorare i guadagni bisogna incentivare le attività d’impresa alternative quali l’acquacoltura off-shore, il pescaturismo e l’ittiturismo, per i quali esiste sul territorio una notevole richiesta. Sfruttando la certificazione e la riduzione della filiera produttiva, anche con soluzioni di vendita diretta in banchina, si potrebbe elevare il valore aggiunto dei prodotti locali.

10) **Tavoli blu** – Le commissioni provinciali, i cosiddetti tavoli blu, dovrebbero raggiungere una maggiore uniformità a livello regionale, pur rispettando le specificità locali. In taluni casi, o su specifici argomenti, sarebbe auspicabile anche la partecipazione delle province limitrofe.

11) **Collaborazione** – Nell’ambito delle proprie competenze e specificità, è necessario ulteriormente incentivare la collaborazione tra ARPAT, ARSIA e ISMEA. Sarebbe utile inoltre centralizzare la grande mole di informazioni localizzate presso le Capitanerie di Porto, Camere di Commercio, IREPA, ISTAT, CGPM e tutti gli istituti scientifici, Università, CNR, ecc., che operano in Toscana.