

COMMISSARIO DI GOVERNO

EX LEGGE 116/2014

REGIONE TOSCANA

DIREZIONE DIFESA DEL SUOLO E PROTEZIONE CIVILE SETTORE GENIO CIVILE VALDARNO SUPERIORE

CASSE DI ESPANSIONE DI FIGLINE LOTTO PRULLI

ACCORDO DI PROGRAMMA D.M. N. 550 DEL 25/11/2015

PROGETTO DEFINITIVO

DIRIGENTE RESPONSABILE DEL CONTRATTO —

Ing. Leandro RADICCHI

TRESPONSABILE UNICO DEL PROCEDIMENTO

ADEMPIMENTI AMMINISTRATIVI

Dott.ssa Roberta Paola BIGIARINI Dott.ssa Ivana D'ANGELO

Dott.ssa Maddalena Turchi

Ing. Enzo DI CARLO

UFFICIO DI PROGETTAZIONE -

PROGETTISTI

Ing. Francesca BARZAGLI

Ing. Lorenzo BECHI

Ing. Fabio MARTELLI

Ing. Andrea NAVARRIA

Ing. Marie-Claire NTIBARIKURE

Geol. Andrea SALVADORI

Geol. Francesco VANNINI

COLLABORATORI ALLA **PROGETTAZIONE**

Geol. Andrea ADESSI

Geom. Roberto BIGAZZI

Geom. Vincenzo DE MARCO

Geom. Marco LIUTI

Ing. Vincenzo VERZINO

COORDINATORE PER LA SICUREZZA

IN FASE DI PROGETTAZIONE Geom. Antonello MAZZOLIN

CODICE PROGETTO

PROGETTO FI D 1007

OGGETTO ELABORATO -

OPERA OPPN3 VIABILITA' CHIESIMONE - MURO SEZ. D -

FASCICOLO DEI CALCOLI DELLE STRUTTURE

FILE PID E PR 51G R R00 PDF ELAB. PD E PR 51G R R00

emissione	revisione	scala	data
R00			Settembre 2018

ELABORATO

E PR 51G

Firenze - Via San Gallo, 34/A - 50129 - Tel. 055/4622711

MURO SEZIONE D-D

Calcolo della spinta sul muro

Valori caratteristici e valori di calcolo

Effettuando il calcolo tramite gli Eurocodici è necessario fare la distinzione fra i parametri caratteristici ed i valodi di calcolo (o di progetto) sia delle azioni che delle resistenze.

I valori di calcolo si ottengono dai valori caratte istici mediante l'applicazione di opportuni coefficienti di sicurezza parziali γ. In particolare si distinguono combinazioni di carico di tipo AI-MI nelle quali vengono incrementati i carichi e lasciati inalterati i parametri di resistenza del terreno e combinazioni di carico di tipo AI-MI nelle quali vengono ridotti i parametri di resistenza del terreno e incrementati i soli carichi variabili.

Metodo di Culmann

Il met odo di Culmann adotta le st esse ipot esi di base del met odo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann conserte di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analis numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea.

I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione ρ rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (ReC) e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spint a S sulla parete.

Quest o processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima.

La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte retilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

Spinta in presenza di sisma

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana). La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta & l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a

$$\varepsilon' = \varepsilon + \theta$$

$$\beta' = \beta + \theta$$

dove θ = arctg($k_b(l\pm k_v)$) essendo k_b il coefficiente sismico orizzont ale e k_v il coefficiente sismico verticale, definit o in funzione di k_b . In presenza di falda a monte, θ assume le seguent i espressioni:

Terreno a bassa permeabilità

$$\theta = arct g[(\gamma_{sat}/(\gamma_{sat}-\gamma_{w}))*(k_{h}/(1\pm k_{v}))]$$

Terreno a permeabilità elevata

$$\theta = \text{arct } g[(\gamma/(\gamma_{\text{sat}} - \gamma_{\text{w}})) * (k_h/(1 \pm k_v))]$$

Dett a S la sp int a calcolata in condizioni statiche l'increment o di spint a da applicare è espresso da

$$\Delta S = AS' - S$$

dove il coefficient e A vale

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2\beta \cos\theta}$$

Inpresenza di falda a monte, nel coefficiente A si tiene conto dell'influenza dei pesi di volume nel calcolo di θ . Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1.

Tale incremento di spinta è applicato a met à altezza della parete di spinta nel caso di forma rettangolare del diagramma di incremento sismico, allo stesso punto di applicazione della spinta statica nel caso in cui la forma del diagramma di incremento sismico è uguale a que lla del diagramma statico. Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali e verticali che si destano per effetto del sisma. Tali forze vengono valutate come

$$F_{iH} = k_b W$$
 $F_{iV} = \pm k_v V$

dove Wè il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi e va applicata nel baricentro dei pesi.
Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta. Basta inserire nell'equazione risolutiva la forza d'inerzia del cuneo di spirta. La superficie di rottura nel caso di sisma risulta meno inclinata della corrispondente superficie in assarga di sisma.

Verifica a ribaltamento

La verifica a ribalt ament o consiste nel determinare il momento risultante di tutte le forze che tendono a fare ribaltare il muro (momento ribaltante M_0) ed il momento risultante di tutte le forze che tendono a stabilizzare il muro (momento stabilizzante M_0) rispetto allo spigolo a valle della fondazione e verificare che il rapporto M_0M_0 , sia maggiore di un determinato coefficiente di sicurezza η_0 .

Eseguendo il calcolo mediante gli eurocodici si puo impostare $\eta_0 >= 1.0$.

Deve quindi essere verificat a la seguente diseguaglianza

$$\frac{M_s}{M_r} >= \eta_r$$

Il momento ribaltant e M_r è dato dalla component e orizzontale della spint a S_r , dalle forze di inerzia del muro e del terreno gravant e sulla fondazione di monte (caso di presenza di sisma) per i rispitato inche in monte o stabilizzante interviene il peso del muro (applicato nel baricentro) e di l'eso del terreno gravante sulla fondazione di monte. Per quanto riguarda invece la componente everticale della spint a essa sarà stabilizzante se l'angolo d'attrito terra-muro δ è positivo, ribaltante se δ è ne gativo. δ è positivo quando è il terrapieno che scorre rispetto al muro, ne gativo quando è il muro che tende a scorrer rispetto al terrapieno (questo può essere il caso di una spalla da ponte gravata da carichi notevoli). Se sono presenti dei tiranti essi contribuscono al momento stabilizzante.

Quest a verifica ha significato solo per fondazione superficiale e non per fondazione su pali.

Verifica a scorrimento

Per la verifica a scorrimento del muro lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il muro deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento sisult a soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere il muro F_s risulta maggiore di un determinato coefficiente di sicurezza η_s . Eseguendo il calcolo mediante gli Eurocodici si può impostare $\eta_s >= 1.0$

$$F_r \rightarrow = \eta_s$$

Le forze che intervengono nella F_s sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione

La forza resistente è data da la resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δ; l'angolo d'attrito terreno-fondazione, con c_a l'adesione terreno-fondazione con B. la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tg \delta_f + c_a B_r$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovut a al terreno posto a valle del muro. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 per cento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_n diversi autori suggeriscono di assumere un valore di δ_l pari all'angolo d'attrito del terreno di fondazione.

Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a η_0 . Cioè, detto Q_n , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_q>=1.0 Si adotta per il calcolo del carico limite in fondazione il metodo di MEYERHOF.

1/144 2/144

L'espressione del carico ultimo è data dalla relazione:

$$Q_u = c N_c d_c i_c + q N_u d_u i_u + 0.5 \gamma B N_v d_v i_v$$

In quest a espressione

c coesione del terreno in fondazione;

φ angolo di attrit o del t erreno in fondazione;

γ peso di volume del terreno in fondazione:

B larghezza della fondazione;

D profondità del piano di posa;

q pressione geostatica alla quota del piano di posa.

I vari fattori che compaiono nella formula sono dati da:

 $A = e^{\pi tg \phi}$

 $N_q = A t g^2 (45^\circ + \phi/2)$

 $N_c = (N_q - 1) \text{ atg } \phi$

 $N_{\gamma} = (N_q - 1) t g (1.4\phi)$

Indichiamo con K_p il coefficiente di spinta passiva espresso da:

 $K_p = tg^2(45^\circ + \phi/2)$

I fattori d e i che compaiono nella formula sono rispettivamente i fattori di profondità ed i fattori di inclinazione del carico espressi dalle seguenti relazioni:

Fattori di profondit à

$$d_q = 1 + 0.2 - \sqrt{K_p}$$

 $d_{\alpha} = d_{\gamma} = 1$

$$per \phi = 0$$

$$d_q = d_y = 1 + 0.1 - - \sqrt{K_p}$$
 D per $\phi > 0$

Fattori di inclinazione

Indicando con θ l'angolo che la risultante dei carichi forma con la verticale (espresso in gradi) e con φ l'angolo d'attrito del terreno di posa abbiamo:

$$i_{\gamma} = (1 - \frac{\theta^{\circ}}{0})^{2}$$
 per $\phi > 0$

 $i_7 = 0$ per $\phi = 0$

Verifica alla stabilità globale

La verifica alla stabilità globale del complesso muro+terreno deve fornire un coefficiente di sicurezza non inferiore a $\eta_{\rm g}$

Eseguendo il calcolo mediant e gli Eurocodici si può impostare η_ε>=1.0

Viene usat a la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolaree determinata in modo tale da non avere intersezione con il profilo del muro o con i pali di fondazione. Si determina il minimo coefficiente di sciurezza su una maglia di centri di dimensioni 10x10 posta in prossimi à della sommità del mun maglia di lumero di strisce è pari a 50.

Si adotta per la verifica di stabilità globale il metodo di Bishop

Il coefficiente di sicur ezza nel metodo di Bishop si esprime secondo la seguente formula:

$$\Sigma_{i} \quad (\begin{array}{c} c_{i}b_{i}+(W_{i}\text{-}u_{i}b_{i})tg\phi \\ \\ \\ m \\ \\ \end{array})$$

$$\eta = \underbrace{ \begin{array}{c} c_{i}b_{i}+(W_{i}\text{-}u_{i}b_{i})tg\phi \\ \\ \\ \end{array} }_{\Sigma,W_{G}\text{inco}}$$

dove il termine m è espresso da

$$m = (1 + \frac{tg\phi tg\alpha_i}{m}) \cos \theta$$

In questa espressione n è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i a_{cimu} rispetto all'orizzontale, W è il peso della striscia i a_{cim} , α e ϕ sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed m è la pressione neutra lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di η . Quindi essa viene risolta per successive approximazioni assumendo un valore iniziale per η da inserire nell'espressione di m ed it erare finquando il valore calcolato coincide con il valore assumento.

3/144 4/144

Normativa

N.T.C. 2008 - Approccio 2

Y _{Clav} Coefficiente pazzia k γ _{Otav} Coefficiente pazzia k γ _{Clav} Coefficiente pazzia k γ _{Lung} Coefficiente pazzia k γ _c Coefficiente pazzia k γ _a Coefficiente pazzia k γ _γ Coefficiente pazzia k	es favorevols sulle azioni permanenti e favorevole sulle azioni permanenti es favorevole sulle azioni variabili favorevole sulle azioni variabili di riduzione dell'angolo di attrito dena di riduzione della coosione non denata di riduzione della coosione non denata di riduzione del acosione non denata di riduzione del arioso ultimo e di riduzione del la resis tenza a compre si					
Coefficienti di parteci paz	zione combinazioni statich e					
	azioni o per l'effetto delle azio	oni:				
Carichi	Effetto		AI	A2	EQU	HYD
Permanenti Permanenti	Favorevole Sfavorevole	$\gamma_{ m Gfav}$	1,00 1,30	1,00	0,90	0,90
Variabili	Favorevole	γ _{Gsfav}	0.00	1,00 0,00	1,10 0,00	1,30 0,00
Variab ili	Sfavorevole	$\gamma_{ m Qsfav}$	1,50	1,30	1,50	1,50
Coefficienti parziali per i i	parametri geotecnici del terren	n.				
Parametri	yddined i georeenier der terrar	<u></u>	M1	M2	M2	M1
Tangente dell'angolo di att	trito	Y _{tan} ø	1,00	1,25	1,25	1,00
Coesione efficace		γ _c .	1.00	1.25	1,25	1,00
Resistenza non drenata		γ _{cu}	1,00	1,40	1,40	1,00
Resistenza a compressione	uniassiale	γ _{qu}	1.00	1.60	1.60	1,00
Peso dell'unità di volume		γ,	1,00	1,00	1,00	1,00
Coefficienti parziali per le Carichi	azioni o per l'effetto delle azio Effetto	<u></u>	AI 100	A2	EQU 100	HYD
Permanenti	Favorevole Sfavorevole	$\gamma_{ m Gfav}$	1,00	1,00	1,00	0,90
Permanenti Variabili	Stavorevole Favorevole	γ_{Gsfav}	1,00	1,00	1,00 0,00	1,30
		$\gamma_{ m Qfav}$	0,00	0,00		0,00
Variab ili	Sfavorevole	γ_{Qsfav}	1,00	1,00	1,00	1,50
	parametri geotecnici del terren	<u>o:</u>				
Parametri			M1	M2	M2	M1
Tangente dell'angolo di att	rito	γtan φ	1,00	1,25	1,25	1,00
		γ _{e'}	1,00	1,25	1,25	1,00
Coesione efficace					1.40	
Resistenza non drenata		γси	1,00	1,40	, .	1,00
Resistenza non drenata Resistenza a compressione	uniassiale	$\gamma_{ m qu}$	1,00	1,60	1,60	1,00
Resistenza non drenata	uniassiale	•	,	, .	, .	,
Resistenza non drenata Resistenza a compressione Peso dell'unità di volume FONDAZIONE SUPERI Coefficienti parzi ali ya pu		Уч Уч	1,00 1,00	1,60 1,00	1,60 1,00	1,00
Resistenza non drenata Resistenza a compressione Peso dell'unità di volume FONDAZIONE SUPERI	FICIALE	Уч Уч	1,00 1,00	1,60	1,60 1,00	1,00
Resistenza non drenata Resistenza a compressione Peso dell'unità di volume FONDAZIONES UPERI Coefficienti parzi ali γ _R pe Verifica Capacità port ante della for	<u>FICIALE</u> er le verifi che agli stati li mito	Уч Уч	1,00 1,00 R1 1,00	1,60 1,00 Coefficienti parzia	1,60 1,00	1,00
Resistenza non drenata Resistenza a compressione Peso dell'unità di volume FONDAZIONES UPERI Coeffidenti parzi ali 7/2 pt Verifica Capacità pont ante della for Scorriment o	<u>FICIALE</u> er l e verifi che agli stati li mito ndazione	Уч Уч	1,00 1,00 1,00 R1 1,00 1,00	1,60 1,00 Coefficienti parzia R2 1,00 1,00	1,60 1,00 li R3 1,40 1,10	1,00
Resistenza non drenata Resistenza a compressione Peso dell'unità di volume FONDAZIONES UPERI Coefficienti parzi ali γ _R pa Verifica Capacità port ante della for	<u>FICIALE</u> er l e verifi che agli stati li mito ndazione	Уч Уч	1,00 1,00 R1 1,00	1,60 1,00 Coefficienti parzia R2 1,00	1,60 1,00 li R3 1,40	1,00

Geometria muro e fondazione

Descrizione	Muro a mensola in c.a.
A ltezza del paramento	7,70 [m]
Spessore in sommità	0,80 [m]
Spessore all'attacco con la fondazione	0,80 [m]
Inclinazione paramento esterno	0,00 [°]
Inclinazione paramento interno	[°] 00,0
Lunghezza del muro	10.00 [m]
Spessore rivestiment o	0,10 [m]
Peso sp. rivestimento	2000,00 [kg/mc]
Fondazione	
Lunghezza mensola fondazione di valle	1,00 [m]
Lunghezza mensola fondazione di monte	3,20 [m]
Lunghezza totale fondazione	5,00 [m]
Inclinazione piano di posa della fondazione	0,00 [°]
Spessore fondazione	1,00 [m]
Spessore magrone	0,20 [m]

5/144 6/144

2500,0 [kg/mc]

C25/30

Materiali utilizzati per la struttura

Calcestruzzo Peso specifico

Classe di Resistenza Resistenza caratteristica a compressione R_{ck}

305,9 [kg/cmq] 320665,55 [kg/cmq] Modulo elastico E Acciaio B450C Tipo 4588,0 [kg/cmq] Tensione di snervamento Ga

Geometria profilo terreno a monte del muro

Simbol ogia adottata e sistema di riferimento (Sistema di riferimento con origine intesta al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto X as cissa del punto espressa in [m] Y ordinata del punto espressa in [m] A inclinazione del tratto espressa in [°]

0,10 -3,20 -88,21 30,00 -3,20 0,00

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale A ltezza del rinterro rispetto all'attacco fondaz.val le-paramento 1,00

Falda

Quota della falda a monte del muro rispetto al piano di posa della fondazione 2,00 Quota della falda a valle del muro rispetto al piano di posa della fondazione 2,00

Descrizione terreni

Simbologia adottata

Indice del terreno

terreno
Peso di volune del terreno espresso in [kg/mc]
Peso di volune saturo del terreno espresso in [kg/mc]
Angolo d'attivo interno espresso in [*]
Angolo d'attivo terra-muro espresso in [*]
Angolo d'attivo terra-muro espresso in [*]
Adesione terra neuro espresso in [kg/mq]

Descrizione Rilevato 1800 1900 25.00 16.67 0.000 0.000 Strato 1 - Ghiaia 35.00 23.33 0.000 2000 2000 0,000 Strato 2 - Sabbia 1900 2000 32.00 21.33 0,000 0,000

Stratigrafia

Simbologia adottata

Indice dello strato Spessore dello strato espresso in [m]

Inclinazioneespressa in [°]
Costante di Winkler orizzontale espressa in Kg/cm²/cm

Coefficiente di spinta Terreno dello strato

Н Nr. Kw Ks Terreno a

1	4,40	0,00	0,00	0,00	Strat o 1 - Ghiaia
2	7,00	0,00	8,29	0,00	Strat o 2 - Sabbia

7/144 8/144

Condizioni di carico

Simbologia e convenzioni di segno adottate
Carichi vericali positivi verso il basso.
Carichi orizzontali positivi verso sinistra.
Momento positivi senso aritoriati o.
X Ascissa del punto di apidicazione del carico concentrato espressa in [m]
F, Componente virica ale del carico concentrato espressa in [kg]
F, Componente verti ale del carico concentrato espressa in [kg]
M Momento espresso in [kgm]
X, Ascissa del punto inizia le del carico riparti o espressa in [m]
X, Ascissa del punto inizia le del carico riparti lo espressa in [m]
Q, Intensidadel carico per x-X, espressa in [kg/m]
Intensidadel carico per x-X, espressa in [kg/m]
D/C Tipo carico: D-distribuito C-concentrato

Cond D	izione nº 1 (Carico Profilo	viaggiante) X _i =0,15	X _f =8,65	Q ⊨2000,00	Q _f =2000,00
Cond	izione n° 2 (Azion	e dell'acqua)			
D	Paramento	X = -6.70	X = 0.00	Q≔-7500,00	$Q_{f=0,00}$
D	Fondazione	X = -1.80	X=-0.80	O=8500.00	O₁=8500.00

Descrizione combinazioni di carico

logia adottata	

Id adottata

Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)
Coefficiente di partecipazione della condizione
Coefficiente di combinazione della condizione F/S

Combinazione nº 12 - Caso A2-M2(GEO-	STAB) - Sisma Ver	rt. negativo Y	Ψ	γ* Ψ
Sp inta terreno	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFA V	1,00	1.00	1,00
Peso proprio muro	SFAV	γ 1,00	1.00	1,00
Combinazione nº 11 - Caso A2-M2(GEO-	S/F Sisma Ver		Ψ	γ* Ψ
			1.00	1,00
Peso proprio terrap ieno Spinta terreno	FAV SFAV	1,00 1,00	1.00 1.00	1,00 1,00
Peso proprio muro	FAV	1,00	1.00	1,00
D	S/F	γ .	Ψ	γ* Ψ
Combinazione nº 10 - Caso EQU (SLU) -		0_		
Spintaterreno	SFAV	1,00	1.00	1,00
Peso proprio terrap ieno	FAV	1,00	1.00	1,00
Peso proprio muro	FAV	γ 1,00	1.00	1,00
Combinazione nº 9 - Caso EQU (SLU) - S	isma Vert. negat ivo S/F		Ψ	γ∗ Ψ
•				
Spinta terreno	SFAV	1,00	1.00	1,00
Peso proprio muro Peso proprio terrap ieno	SFA V SFA V	1,00	1.00	1,00
Peco proprio muro	S/F SFAV	γ 1,00	Ψ 1.00	γ*Ψ 1,00
Combinazione nº 8 - Caso A1-M1 (STR) -			1 00	
		***	1.00	2,00
Peso proprio terrap ieno Sp inta terreno	SFA V SFA V	1,00	1.00	1,00
Peso proprio terran ieno	SFA V SFA V	1,00 1.00	1.00 1.00	1,00 1,00
	S/F	γ.	Ψ	γ*Ψ
Combinazione nº 7 - Caso A1-M1 (STR) -		VO.		
Spinta terreno	SFA V	1,00	1.00	1,00
Peso proprio terrap ieno	SFA V SFA V	1,00	1.00	1,00
Peso proprio muro	SFAV	1,00	1.00	1,00
	S/F	γ	Ψ	γ∗ Ψ
Combinazione nº 6 - Caso A2-M2 (GEO-S	STAB)			
Sp inta terreno	SFAV	1,10	1.00	1,10
Peso proprio terrapieno	FAV	0,90	1.00	0,90
Peso proprio muro	FAV	0,90	1.00	0,90
Communications in 3 Caso EQU (SEU)	S/F	γ	Ψ	γ∗ Ψ
Combinazione nº 5 - Caso EQU (SLU)				
Sp inta terreno	SFAV	1,30	1.00	1,30
Peso proprio terrapieno	SFAV	1,30	1.00	1,30
Peso proprio muro	FAV	γ 1,00	1.00	1,00
Combinazione nº 4 - Caso A1-M1 (STR)	S/F	~	Ψ	γ∗Ψ
Spinta terreno	SFAV	1,30	1.00	1,30
Peso proprio muro Peso proprio terrap ieno	SFAV FAV	1,30 1,00	1.00 1.00	1,30 1,00
	S/F	γ	Ψ	γ*Ψ
Combinazione nº 3 - Caso A1-M1 (STR)				
Sp inta terreno	SFA V	1,30	1.00	1,30
Peso proprio terrapieno	SFA V SFA V	1,30 1,30	1.00 1.00	1,30 1,30
Peso proprio muro	SFAV	1,30	1.00	1,30
Cuso III (SIR)	S/F	γ	Ψ	γ∗ Ψ
Combinazione nº 2 - Caso A1-M1 (STR)				
Spinta terreno	SFA V	1,30	1.00	1,30
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Peso proprio muro	FAV	γ 1.00	1.00	1.00
Combinazione II 1 - Caso A1-W1 (STR)	S/F	~	Ψ	γ∗ Ψ
Combinazione nº 1 - Caso A1-M1 (STR)				

9/144 10/144

Peso proprio muro	SFA V	1,00	1.00	1,00
Peso proprio terrap ieno	SFA V	1,00	1.00	1,00
Spintaterreno	SFA V	1,00	1.00	1,00
Continuing 0.12 Continuing 0.13 (Continuing 0.13 (Continu				
Combinazione nº 13 - Caso A1-M1(STR)	S/F	~	Ψ	γ∗ Ψ
Peso proprio muro	SFAV	γ 1,30	1.00	1,30
Peso proprio terrap ieno	FAV	1,00	1.00	1,00
Spinta terreno	SFA V	1,30	1.00	1,30
Carico viaggiante	SFA V	1.50	1.00	1.50
Combinazione nº 14 - Caso A1-M1(STR)	0.00		Ψ	
December 15 miles	S/F FAV	γ 1,00	-	γ* Ψ 1.00
Peso proprio muro	SFAV	1,30	1.00 1.00	1,00
Peso proprio terrap ieno Spinta terreno	SFAV	1,30	1.00	1,30
Carico viaggiante	SFA V	1.50	1.00	1.50
Combinazione nº 15 - Caso A1-M1(STR)				
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrap ieno	FAV SFAV	1,00 1,30	1.00 1.00	1,00 1,30
Spinta terreno Carico viaggiante	SFA V	1,50	1.00	1,50
Carlos Viaggrante	G. 1. 1	1100	1.00	1.50
Combinazione nº 16 - Caso A1-M1(STR)				
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFA V	1,30	1.00	1,30
Peso proprio terrap ieno	SFA V	1,30	1.00	1,30
Spinta terreno	SFA V SFA V	1,30 1.50	1.00 1.00	1,30 1.50
Carico viaggiante	SFA V	1.50	1.00	1.50
Combinazione nº 17 - Caso EQU (SLU)				
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	9 0,90	1.00	0,90
Peso proprio terrapieno	FAV	0,90	1.00	0,90
Spinta terreno	SFA V	1,10	1.00	1,10
Carico viaggiante	SFA V	1.50	1.00	1.50
Combinazione nº 18 - Caso A2-M2(GEO-S	TΔ R)			
Combinazione ii 10 Caso A2 M2 (GEO 5	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrap ieno	SFA V	1.00	1.00	1.00
Spinta terreno	SFA V	1,00	1.00	1,00
Carico viaggiante	SFA V	1.30	1.00	1.30
Continuing 10 Continuing	C: W			
Combinazione nº 19 - Caso A1-M1(STR) -	Sisma Vert. posit		Ψ	γ* Ψ
Peso proprio muro	SFA V	γ 1,00	1.00	1,00
Peso proprio terrap ieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFA V	1,00	1.00	1,00
Carico viaggiante	SFA V	1.00	1.00	1.00
Combinazione nº 20 - Caso A1-M1(STR) -				
n :	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFA V	1,00	1.00	1,00
Peso proprio terrapieno Spinta terreno	SFA V SFA V	1,00 1,00	1.00	1,00 1,00
Carico viaggiante	SFAV	1.00	1.00	1.00
Combinazione nº 21 - Caso EQU (SLU) - Si		0		
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV FAV	1,00	1.00	1,00
Peso proprio terrap ieno	SFAV	1,00 1,00	1.00 1.00	1,00 1,00
Spinta terreno Carico viaggiante	SFA V	1.00	1.00	1.00
Carco viaggiante	SI-A V	1.00	1.00	1.00
Combinazione nº 22 - Caso EQU (SLU) - Si	sma Vert. negativ	o		
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrap ieno	FAV	1,00	1.00	1,00
Spinta terreno	SFA V	1,00	1.00	1,00
Carico viaggiante	SFA V	1.00	1.00	1.00
Combinazione nº 23 - Caso A2-M2(GEO-S	TAB) - Sisma Ver	rt. positivo		
	S/F	γ	Ψ	γ∗Ψ
		•	-	

Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrap ieno	SFA V	1,00	1.00	1,00
Sp inta terreno	SFAV	1,00	1.00	1,00
Carico viaggiante	SFAV	1.00	1.00	1.00
Combinazione nº 24 - Caso A2-M2(GEO-ST		ert. negativo		
Dana a manaria assura	S/F SFAV	γ 1,00	Ψ 1.00	γ*Ψ 1,00
Peso proprio muro Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Carico viaggiante	SFAV	1.00	1.00	1.00
Combinazione nº 25 - Caso A1-M1(STR)				
-	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrap ieno	SFAV SFAV	1,30 1,30	1.00 1.00	1,30 1,30
Sp inta terreno Azione dell'acqua	SFAV	1.30	1.00	1.30
Combinations no 26 Coss A1 M1(STP)				
Combinazione nº 26 - Caso A1-M1(STR)	S/F	γ	Ψ	γ∗Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,30	1.00	1,30
Azione dell'acqua	SFAV	1.30	1.00	1.30
Combinazione nº 27 - Caso A1-M1(STR)				
Dana a manaria mana	S/F SFAV	γ 1.30	Ψ 1.00	γ* Ψ 1.30
Peso proprio muro Peso proprio terrapieno	SFAV	1,30	1.00	1,30
Spintaterreno	SFAV	1,30	1.00	1,30
Azione dell'acqua	SFAV	1.30	1.00	1.30
Combinazione nº 28 - Caso A1-M1(STR)				
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,30	1.00	1,30
Peso proprio terrapieno Spinta terreno	FAV SFAV	1,00 1,30	1.00 1.00	1,00 1,30
Azione dell'acqua	SFAV	1.30	1.00	1.30
*				
Combinazione nº 29 - Caso EQU (SLU)	S/F		Ψ	γ*Ψ
Peso proprio muro	FAV	y 0,90	1.00	0,90
Peso proprio terrap ieno	FAV	0,90	1.00	0,90
Sp inta terreno	SFA V	1,10	1.00	1,10
Azione dell'acqua	SFAV	1.10	1.00	1.10
Combinazione nº 30 - Caso A2-M2(GEO-ST	AB)			
_	S/F	γ.	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno Spinta terreno	SFAV SFAV	1,00 1,00	1.00 1.00	1,00 1,00
Azione dell'acqua	SFAV	1.00	1.00	1.00
•				
Combinazione nº 31 - Caso A1-M1(STR)	S/F	γ	Ψ	γ∗Ψ
Peso proprio muro	SFAV	1.30	1.00	1.30
Peso proprio terrap ieno	SFAV	1,30	1.00	1,30
Sp inta terreno	SFAV	1,30	1.00	1,30
Carico viaggiante	SFAV SFAV	1.50 1.30	1.00	1.50
Azione dell'acqua	SFA V	1.30	1.00	1.30
Combinazione nº 32 - Caso A1-M1(STR)	S/F		Ψ	γ*Ψ
Peso proprio muro	SFA V	γ 1.30	1.00	γ. Ψ 1.30
Peso proprio terrap ieno	FAV	1,00	1.00	1,00
Sp inta terreno	SFA V	1,30	1.00	1,30
Carico viaggiante	SFAV	1.50	1.00	1.50
Azione dell'acqua	SFA V	1.30	1.00	1.30
Combinazione nº 33 - Caso A1-M1(STR)	C /FC	6-	Jan	, - + 17 *
Peso proprio muro	S/F FAV	γ 1,00	Ψ 1.00	γ*Ψ 1,00
Peso proprio terrap ieno	SFAV	1,30	1.00	1,30
Sp inta terreno	SFA V	1,30	1.00	1,30
Carico viaggiante	SFA V	1.50	1.00	1.50

11/144 12/144

Azione dell'acqua	SFA V	1.30	1.00	1.30
Combinazione nº 34 - Caso A1-M1(STR)				
	S/F	γ	Ψ	γ∗Ψ
Peso proprio muro	FAV	1.00	1.00	1,00
Peso proprio terrap ieno	FAV	1.00	1.00	1.00
Spintaterreno	SFAV	1,30	1.00	1,30
Carico viaggiante	SFA V	1.50	1.00	1.50
Azione dell'acqua	SFA V	1.30	1.00	1.30
Combinazione n° 35 - Caso EQU (SLU)				
	S/F	γ	Ψ	γ∗Ψ
Peso proprio muro	FAV	γ 0,90	1.00	0,90
Peso proprio terrap ieno	FAV	0,90	1.00	0,90
Spinta terreno	SFA V	1,10	1.00	1,10
Carico viaggiante	SFA V	1.50	1.00	1.50
Azione dell'acqua	SFA V	1.10	1.00	1.10
Combinazione nº 36 - Caso A2-M2(GEO	-STAB)			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFA V	1.00	1.00	1.00
Peso proprio terrap ieno	SFA V	1.00	1.00	1.00
Sp inta terreno	SFA V	1.00	1.00	1.00
Carico viaggiante	SFAV	1.30	1.00	1.30
Azione dell'acqua	SFA V	1.00	1.00	1.00
Combinazione n° 37 - Quasi Permanente (SLE)			
	S/F	γ	Ψ	γ∗Ψ
Peso proprio muro		1,00	1.00	1,00
Peso proprio terrapieno		1,00	1.00	1,00
Spinta terreno		1,00	1.00	1,00
Azione dell'acqua	SFA V	1.00	1.00	1.00
Combinazione n° 38 - Frequent e (SLE)				
4	S/F	γ	Ψ	γ*Ψ
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrap ieno		1.00	1.00	1.00
Spintaterreno		1.00	1.00	1.00
Azione dell'acqua	SFA V	1.00	1.00	1.00
Carico viaggiante	SFA V	1.00	0.75	0.75
Combinazione n° 39 - Rara (SLE)	S/F		Ψ	γ*Ψ
Peso proprio muro	5/F 	γ 1,00	1.00	1,00
Peso proprio terrap ieno	==	1.00	1.00	1,00
		1.00	1.00	1,00
Sp inta terreno Azione dell'acqua	SFA V	1,00	1.00	1,00
Carico viaggiante	SFAV	1.00	1.00	1.00
Carico viaggrante	Si∙A V	1.00	1.00	1.00

Impostazioni di analisi

Metodo verifica sezioni	Stato limite
Impostazioni verifiche SIU	
Coefficienti parziali per resistenze di calcolo dei materia li	
Coefficiente di sicurezza calcestruzzo a compressione	1.50
Coefficiente di sicurezza calcestruzzo a trazione	1.50
Coefficiente di sicurezza acciaio	1.15
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza per la sezione	1.00
Impostazioni verifiche SLE	
Condizioni ambientali	Ordinarie
Armatura ad a derenza migliorata	
Verifica fessurazione	
Sensibilità delle armature	Poco sensibile
Valor i limite delle aperture delle fessure	$w_1 = 0.20$
-	$w_2 = 0.30$
	$w_3 = 0.40$
Metodo di calcolo aperture delle fessure	Circ. Min. 252 (15/10/1996)

Verifica delle tensioni Combinazione di carico

 $\begin{array}{lll} Rara \; \sigma_c < 0.60 \; f_{dc} & - \; \; \sigma_f < 0.80 \; f_{yk} \\ Quasi \; permanent \; e \; \sigma_c < 0.45 \; f_{dc} \end{array}$

<u>Calcolo della portanza</u> metodo di Meyerhof

Coefficiente correttivo su N γ per effetti cinematici (combinazioni sismiche SLU): 1,00 Coefficiente correttivo su N γ per effetti cinematici (combinazioni sismiche SLE): 1,00

Impostazioni avanzate

Terreno a monte a elevat a permeabilità

Diagramma correttivo per eccentricità negativa con aliquota di parzializzazione pari a 0.00

13/144

Stessa forma diagramma statico

Quadro riassuntivo coeff. di sicurezza calcolati

Simbol ogia a do ttata			
C	Identificativo della combinazio		
Tipo	Tipo combinazione		
Sisma	Combinazione sismica		

Coeff. di sicurezza allo scorrimento Coeff. di sicurezza al ribaltamento Coeff. di sicurezza a carico limite Coeff. di sicurezza a stabilità globale

3141		v				
C	Tipo	Sisma	CS _{sco}	CSrib	CSqlim	CS _{sta}
1	A1-M1 - [1]	==:	1,60		5,53	
2	A1-M1 - [1]	==	2,16		5,06	
3	A1-M1 - [1]	==	1,88		5,32	
4	A1-M1 - [1]	==	1,88		5,07	
5	EQU - [1]	==:		3,14		
6	STAB - [1]	==				1,90
7	A1-M1 - [2]	Orizzontale + Verticale negativo	1,45		4,65	
8	A1-M1 - [2]	Orizzontale + Verticale positivo	1,50		4,53	
9	EQU - [2]	Orizzontale + Verticale negativo		2,79		
10	EQU - [2]	Orizzontale + Verticale positivo		3,02		
11	STAB - [2]	Orizzontale + Verticale positivo				1,63
12	STAB - [2]	Orizzontale + Verticale negativo				1,58
13	A1-M1 - [3]	==	1,66		4,10	
14	A1-M1 - [3]	==:	1,66		3,99	
15	A1-M1 - [3]	==	1,45		4,24	
16	A1-M1 - [3]		1,86		4,02	
17	EQU - [3]	==		3,06		
18	STAB - [3]	==				1,60
19	A1-M1 - [4]	Orizzontale + Verticale positivo	1,35		3,64	
20	A1-M1 - [4]	Orizzontale + Verticale negativo	1,31		3,73	
21	EQU - [4]	Orizzontale + Verticale positivo		2,88		
22	EQU - [4]	Orizzontale + Verticale negativo		2,68		
23	STAB - [4]	Orizzontale + Verticale positivo				1,45
24	STAB - [4]	Orizzontale + Verticale negativo				1,41
25	A1-M1 - [5]	==	99,99		2,22	
26	A1-M1 - [5]		99,99		2,22	
27	A1-M1 - [5]		99,99		2,19	
28	A1-M1 - [5]		99,99		2,22	
29	EQU - [5]			5,70		
30	STAB - [5]					1,98
31	A1-M1 - [6]		99,99		2,45	
32	A1-M1 - [6]		99,99		2,55	
33	A1-M1 - [6]		99,99		2,55	
34	A1-M1 - [6]		99,99		2,65	
35	EQU - [6]			5,03		
36	STAB - [6]					1,67
37	SLEQ - [1]		99,99		2,85	
38	SLEF - [1]		99,99		3,08	
39	SLER - [1]		99,99		3,14	

Analisi della spinta e verifiche

Sis tema di riferimento adotta to per le coordinate :
Origine in testa al muro (spigolo di monte)
Ascisse X (sepresse in [m]) positive verso monte
Ordinate Y (spiesse in [m]) positive verso l'alto
Le forzeorizonati sison considerate positive se agenti da monte verso valle
Le forzeorizonati sison considerate positive se agenti da monte verso valle

Calcolo riferito ad 1 metro di muro

Tipo di analisi

Calcolo della spinta	metodo di Culmann
Calcolo del carico limite	metodo di M ey erho
Calcolo della stabilità globale	metodo di Bishop
Calcolo della spinta in condizioni di	Spinta attiva

Sisma

Combinazioni SLU

A cœlerazione al suolo a _g	1.43 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (S)	1.49
Coefficiente di amplificazione topografica (St)	1.00
Coefficiente riduzione (β_m)	0.24
Rapp orto intensità sismica verticale/orizzontale	0.50
Coefficiente di intensità sismica orizzontale (percento)	$k_h = (a_g/g^*\beta_m * St * S) = 5.21$
Coefficiente di intensità sismica verticale (percento)	$k_{\nu} = 0.50 * k_{\nu} = 2.60$

Combinazioni SLE

A cœlerazione al suolo a _e	0.61 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (S)	1.50
Coefficiente di amplificazione topografica (St)	1.00
Coefficiente riduzione (\(\beta_m \)	0.18
Rapp orto intensità sismica verticale/orizzontale	0.50
Coefficiente di intensità sismica orizzontale (percento)	$k_h = (a_g/g^*\beta_m *St *S) = 1.68$
Coefficiente di intensità sismica verticale (percento)	$k_v = 0.50 * k_h = 0.84$

Forma diagramma incremento sismico

Partecipazione spint a passiva (percent o)	0,0	
Lunghezza del muro	10,00	[m]

Peso muro 27900,00 [kg] X=0,09 Y=-5,80 Baricent ro del muro

Superficie di spinta

Punto inferiore sup erficie di spinta	X = 3,20	Y = -8,70
Punto superiore superficie di spinta	X = 3,20	Y = -3,20
A ltezza della superficie di spinta	5,50	[m]
Inclinazione superficie di spinta(rispetto alla verticale)	0,00	[°]

COMBINAZIONE nº 1

Peso muro favorevole e Peso terrapieno favorevole				
Valore della spinta statica	9775,92	[kg]		
Componente orizzontale della spint a statica	9099,07	[kg]		
Componente verticale della spint a statica	3574,29	[kg]		
Punto d'applicazione del la spinta	X = 3,20	[m]	Y = -6.79	[m]
Inclinaz. della spintarispetto alla normale alla superficie	21,45	[°]		
Inclinazione linea di rottura in condizioni statiche	57,17	[°]		
Spinta falda	2600,00	[kg]		
Punto d'applicazione del la spinta della falda	X = 3,20	[m]	Y = -8,03	[m]
Sottospinta falda	13000,00	[kg]		
Peso terrapieno gravante sulla fondazione a monte	28064,00	[kg]		
Baricent ro terrapieno gravant e sulla fondazione a monte	X = 1.58	[m]	Y = -5,39	[m]
Risultanti				
Risult ant e dei carichi applicati in dir. orizzontale	11699,07	[kg]		
Risult ant e dei carichi applicati in dir. verticale	47878,29	[kg]		
Sforzo normale sul piano di posa del la fondazione	47878,29	[kg]		

15/144 16/144 $N'_{\gamma} = 7.70$

Sforzo tangenziale sul piano di posa della fondazione	11699,07	[kg]
Eccentricità rispetto al baricentro della fondazione	0,09	[m]
Lunghezza fondazione rae gente	5,00	[m]
Risultante in fondazione	49286,90	[kg]
Inclinazione della risultante (rispetto alla normale)	13,73	[°]
Momento rispetto al haricentro della fondazione	4396,65	[kgm]
Carico ultimo della fondazione	264560,31	[kg]
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	5,00 1,0631 0,8520	[m] [kg/cmq] [kg/cmq]

Fattori per il calcolo della capacità portante			
Coeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori indinazione	$i_c = 0,72$	$i_q = 0.72$	$i_{y} = 0.33$
Fattori profon dità	$d_c = 1, 14$	$d_q = 1,07$	$d_{r} = 1,07$
I coefficient i N' tengono conto dei fattori di form	na, profondità, inclinazione carico.	in clinazione piano di posa, inclinazio	one pendio.

 $N'_c = 29.17$

 $N'_q = 17.85$

COEFFICIEN TI DISICUREZZA	
Coefficiente di sicurezza a scorrimento	1.60
Coefficiente di sicurezza a carico ultimo	5.53

Sollecitazioni paramento

Combinazione nº 1
L'ordinat Y(espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibre contro terra (a monte), espresso in kgm Sōrzo normale positivo di compressione, espresso in kg Taglio positivo es diretto di montre verso valle, espresso in kg

Nr.	Y	N	М	Т
1	0,00	0,00	0,00	0,00
2	0,39	788,24	0,50	3,79
3	0,79	1576.47	3,98	15,14
4	1,18	2364,71	13,43	34,13
5	1,58	3152,94	32,00	61,32
6	1,97	3941,18	62,81	96,34
7	2,36	4729,41	108,96	139, 17
8	2,76	5517,65	173,53	189,81
9	3,15	6305,88	259,60	248,24
10	3,55	7094,12	370,25	314,83
11	3,94	7882,35	510,48	404,93
12	4,34	8670,59	700,21	570,96
13	4,73	9458,82	981,87	889, 24
14	5,12	10247,06	1416,18	1331,03
15	5,52	11035,29	2044,19	1872,54
16	5,91	11823,53	2905,26	2513,64
17	6,31	1261 1,76	4038,52	3253,62
18	6,70	13400,00	5482,55	4088,98
19	7,03	14066,67	6980,05	4927,49
20	7,37	14733,33	8788,04	5950,78
21	7,70	15400,00	10966,66	7148,17

Sollecitazioni fondazione di valle

Combinazione nº 1 L'accis a X(septesa ain m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	40,58	810,97
3	0,20	162,05	1617,73
4	0,30	363,99	2420,26
5	0,40	645,97	3218,57
6	0,50	1007,56	4012,67
7	0,60	1448,36	4802,54
8	0,70	1967,93	5588,19
9	0,80	2565,86	6369,62
10	0,90	3241,71	7146,83
11	1,00	3995,08	7919,81

Sollecitazioni fondazione di monte

Combinazione nº 1

COMMIZZONE II 1 L.
Lascisa A(Spessa im i) è considerata positiva verso valle con origine in corrispondenz adell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm
Taglio positivos deriteto twoes Talko, opersso in kg

Nr. M 0,00 0,00 0,00 -273,18 -1700,16 0,32 0.64 -1083.49 -3357,10 -2417,11 -4970,82 0,96 1,28 -4260,21 -6541,32 1,60 -6598,95 -8068,60

17/144 18/144 03.5 - Muro sez. D-D - Fascicolo dei calcoli.rtf

1,92 -9419,50 -9552,66 2,24 2,56 2,88 -12708,04 -10993,50 -16450,73 -20633,74 -12391,11 -13745,51 10 11 3,20 -25273,59 -15472,68

Armature e tensioni nei materiali del muro

Combinazione nº 1

Lordinata V(espressa in [mt]) è considerata positiva verso il basso con origine in testa al muro B boare dell'assezione espressa in [cmt] di alezza della sevicine espressa in [cmt] di alezza della sevicine espressa in [cmt] di area di armattura in corrispondenza del embo di monte in [cmt] area di armattura in corrispondenza del embo di valle in [cmt] si sevicine di alezione di ale

Nr.	Y	В, Н	A_{fs}	A_6	N_u	M_u	CS	V_{Rd}	V_{Rot}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	Õ	1000,00	25203		
2	0,39	100, 80	8,04	8,04	984521	-621	1249,02	25314		
3	0,79	100, 80	8,04	8,04	983083	-2481	623,60	25425		
4	1,18	100, 80	8,04	8,04	980693	-5570	414,72	25536		
5	1,58	100, 80	8,04	8,04	977330	-9918	309,97	25647		
6	1,97	100, 80	8,04	8,04	973007	-15506	246,88	25758		
7	2,36	100, 80	8,04	8,04	967755	-22297	204,62	25868		
8	2,76	100, 80	8,04	8,04	961607	-30243	174,28	25979		
9	3,15	100, 80	8,04	8,04	954603	-39299	151,38	26090		
10	3,55	100, 80	8,04	8,04	946779	-49413	133,46	26201		
11	3,94	100, 80	8,04	8,04	938011	-60748	119,00	26312		
12	4,34	100, 80	12,06	12,06	956877	-77274	110,36	26423		
13	4,73	100, 80	12,06	12,06	914988	-94980	96,73	26534		
14	5,12	100, 80	24,63	24,63	909050	- 125634	88,71	29680		
15	5,52	100, 80	24,63	24,63	796852	- 147609	72,21	29791		
16	5,91	100, 80	24,63	24,63	677392	- 166448	57,29	29902		
17	6,31	100, 80	24,63	24,63	558185	- 17874 1	44,26	30013		
18	6,70	100, 80	24,63	24,63	424929	- 173858	31,71	30124		
19	7,03	100, 80	24,63	24,63	323019	- 160286	22,96	30217		
20	7,37	100, 80	16,59	16,59	175106	- 104446	11,89	27275		
21	7,70	100, 80	16,59	16,59	125823	-89601	8,17	27369		

19/144 20/144

Armature e tensioni nei materiali della fondazione

Combinazione n° 1

Simbologia adutata
B base de lla sezione espressa in [cm]
H alecza della sezione espressa in [cm]
An area di armatuna in corrispondenza del lenbo inferiore in [cmq]
An area di armatuna in corrispondenza del lenbo superfore in [cmq]
An area di armatuna in corrispondenza del lenbo superfore in [cmq]
An area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, area di armatuna corrispondenza del lenbo superfore in [cmq]
M, area di armatuna corrispondenza del lenbo superfore in [cmq]
M, area di armatuna corrispondenza del lenbo superfore in [cmq]
M, area di armatuna corrispondenza del lenbo superfore in [cmq]
M, area di armatuna corrispondenza del lenbo superfore in [cmq]
M, area di armatuna corrispondenza del lenbo superfore in [cmq]
M, area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, a

Fondazion e di valle

 $(L'ascissa\,\,X,espressa\,in\,\,[m],\grave{e}\,positiva\,verso\,\,monte\,con\,origine\,in\,corrispondenza\,dell'estre\,no\,\,libero\,della\,\,fondazione\,di\,valle)$

Nr.	Y	В, Н	A_{fs}	A_6	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	1257	12,57	0	46091	1135,70	30124		
3	0,20	100, 100	12.57	12,57	0	46091	284,42	30124		
4	0,30	100, 100	12.57	12,57	0	46091	126,63	30124		
5	0,40	100, 100	12.57	12,57	0	46091	71,35	30124		
6	0,50	100, 100	12.57	12,57	0	46091	45,75	30124		
7	0.60	100, 100	12.57	12.57	0	46091	31,82	30124		
8	0.70	100, 100	12.57	12.57	0	46091	23,42	30124		
9	0.80	100, 100	12.57	12.57	0	46091	17,96	30124		
10	0.90	100, 100	1659	16.59	Õ	60583	18,69	30124		
11	1,00	100, 100	1659	16,59	0	60583	15,16	30124		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libe ro della fondazione di monte)

Nr.	Y	В, Н	Ars	An	Nu	Mu	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,32	100, 100	12,57	12,57	0	-46091	168,72	30124		
3	0,64	100, 100	12,57	12,57	0	-46091	42,54	30124		
4	0,96	100, 100	12,57	12,57	0	-46091	19,07	30124		
5	1,28	100, 100	1257	12,57	0	-46091	10,82	30124		
6	1,60	100, 100	12,57	12,57	0	-46091	6,98	30124		
7	1,92	100, 100	16,59	12,57	0	-60588	6,43	30124		
8	2,24	100, 100	16,59	12,57	0	-60588	4,77	30124		
9	2,56	100, 100	16,59	16,59	0	-60583	3,68	30124		
10	2,88	100, 100	1659	16,59	0	-60583	2,94	30124		
11	3,20	100, 100	1659	16,59	0	-60583	2,40	30124		

$\frac{COMBINAZIONE \ n^{\circ} \ 2}{Peso \ mu \ ro \ sfavore \ vol \ e \ Peso \ terrapieno \ sfavore \ vol \ e}$

Valore del la spinta statica Componente orizzontale della spinta statica	9775,92 9099,07	[kg] [kg]		
Componente verticale della spinta statica	3574.29	[kg]		
Punto d'applicazione della spinta	X = 3.20	[m]	Y = -6.79	[m]
Inclinaz, della spintarispetto alla normale alla superficie	21.45	[°]	,	[]
Inclinazione linea di rottura in condizioni statiche	57,17	[°]		
0.1. 0.11	2000.00			
Spinta falda	2600,00	[kg]	¥/ 0.02	r1
Punto d'applicazione della spinta della falda	X = 3.20	[m]	Y = -8,03	[m]
Sottospinta falda	13000,00	[kg]		
Peso terrapieno gravante sulla fondazione a monte	36483,20	[kg]		
Baricent ro terrapieno gravant e sulla fondazione a monte	X = 1.58	[m]	Y = -5,39	[m]
Risultanti				
Risult ante dei carichi applicati in dir. orizzontale	11699.07	[kg]		
Risult ant e dei carichi applicati in dir. verticale	64667,49	[kg]		
Sforzo normale sul piano di posa della fondazione	64667,49	[kg]		
Sforzot angenziale sul piano di posa della fondazione	11699,07	[kg]		
Eccentricità rispetto al baricentro della fondazione	0.03	[m]		
Lunghezza fondazione reagente	5,00	[m]		
Eurgnezza romazione reagente	5,00	[111]		

Risult ant e in fondazione		65717,21	[kg]	
Inclinazione della risultante (rispetto alla normale	e)	10,25	[°]	
Moment o risp ett o al baricentro della fondazione		2051,77	[kgm]	
Carico ultimo della fondazione		327179,97	[kg]	
Tensioni sul terreno				
Lunghezza fondazione reagente		5,00	[m]	
Tensione terreno allo spigolo di valle		1,3426	[kg/cmq]	
Tensione terreno allo spigolo di monte		1,2441	[kg/cmq]	
Fattori per il calcolo della capacità portante				
C oeff. capacità portante	$N_c = 35.49$	$N_q = 23$	3.18	$N_{\gamma} = 22.02$
Fattori forma	$s_c = 1,000$	$s_q = 1$	1,00	$s_{\gamma} = 1,00$
Fattori inclinazione	$i_c = 0,79$	$i_q = 0$),79	$i_{y} = 0.46$
Fatt ori profon dità	$d_c = 1, 14$	$d_q = 1$	1,07	$d_{\gamma} = 1,07$
I coefficient i N' tengono conto dei fattori di forma	a, profondità, inclinazione carico	, in clinazione piano o	di posa, inclinazion	e pendio.
	$N'_c = 31.88$	$N'_{q} = 19$	951	$N'_{\gamma} = 10.90$

COEFFICIENTI DI SICUREZZA Coefficiente di sicurezza a scorrimento 2.16 Coefficiente di sicurezza a carico ultimo 5.06

21/144 22/144

Sollecitazioni paramento

Combinazione nº 2
L'ordinat y (espresa in m) e considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Siozo normale positivo di compressione, espresso in kg Taglio positivo es diretto di montreveno valle, espresso in kg

Nr. M 0,00 0,00 0,00 0,00 1024,71 0,50 3,79 0,39 0,79 2049.41 3,98 15,14 1,18 3074,12 13,43 34,13 61,32 4098,82 1,58 32,00 1,97 5123,53 62,81 96,34 2,36 2,76 6148,24 108,96 139,17 7172,94 173,53 189,81 8197,65 3,15 259,60 248,24 3,55 9222,35 370,25 314,83 11 3,94 10247,06 510,48 404,93

700,21

981,87

1416,18

2044,19

2905,26

570,96

889,24

1331,03

1872,54

2513,64

11271,76

12296,47

13321,18

14345.88

15370,59

6.31 16395,29 4038.52 3253,62 18 6.70 17420,00 5482,55 4088,98 19 18286,67 6980,05 4927,49 7,03 20 19153,33 8788,04 5950,78 7,37 7,70 20020,00 10966,66 7148,17

Sollecitazioni fondazione di valle

12 13

15 16

4,34

4,73

5,12

5.52

5,91

Combinazione nº 2. L'asciss a X(spiess ai m) è considerata positiva veso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori , espresso in kgm Taglio pas iño se diretto veso l'alto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	50,85	1016,61
3	0,20	203,26	2031,24
4	0,30	457,03	3043,91
5	0,40	811,97	4054,61
6	0,50	1267,89	5063,34
7	0,60	1824,58	6070,10
8	0,70	2481,84	7074,89
9	0,80	3239,49	8077,71
10	0,90	4097,32	9078,56
11	1.00	5055,13	10077,44

Sollecitazioni fondazione di monte

Combinazione nº 2

Continuizzotte II : Lisesisa X(spensa sin m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espenso in Igm Taglio posi fivos derietto twee o fallo, opersosi ni le

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,32	-112,07	-697,09
3	0,64	-443,99	- 1374,01
4	0,96	-989,29	-2030,77
5	1,28	-1741,53	-2667,35
6	1,60	-2694,24	-3283,76

7	1,92	-3840,98	-3880,01
8	2,24	-5175,29	-4456,08
9	2,56	-6690,72	-5011,98
10	2,88	-8380,81	-5547,72
11	3,20	-10269.45	-6479.28

23/144 24/144

Armature e tensioni nei materiali del muro

Combinazione nº 2

Lordina a Yespressa in [mi] è considerata positiva verso il basso con origine in testa al muro B base della sezione espressa in [cmi]

An alezza della sezione espressa in [cmi]

An area di amattuna in corrispondenza del lenho di montein [cmi]

area di amattuna in corrispondenza del lenho di valle in [cmi]

An area di amattuna in corrispondenza del lenho di valle in [cmi]

An area di amattuna in corrispondenza del lenho di valle in [cmi]

Na sibre no nomale utiline espresso in [kgi]

Na no mento utiline espresso in [kgi]

VRed Aliquota di tagli o ssobito dal els, espresso in [kgi]

VRed Resis tenza al taglio, espresso in [kgi]

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	Õ	1000,00	25203		
2	0,39	100, 80	8,04	8,04	984632	-478	960,89	25347		
3	0,79	100, 80	8,04	8,04	983525	- 1909	479,91	25492		
4	1,18	100, 80	8,04	8,04	981684	-4289	319,34	25636		
5	1,58	100, 80	8,04	8,04	979090	-7643	238,87	25780		
6	1,97	100, 80	8,04	8,04	975749	-11962	190,44	25924		
7	2,36	100, 80	8,04	8,04	971681	-17221	158,04	26068		
8	2,76	100, 80	8,04	8,04	966907	-23392	134,80	26212		
9	3,15	100, 80	8,04	8,04	961450	-30447	117,28	26356		
10	3,55	100, 80	8,04	8,04	955334	-38353	103,59	26500		
11	3,94	100, 80	8,04	8,04	948452	-47250	92,56	26644		
12	4,34	100, 80	12,06	12,06	970130	-60265	86,07	26788		
13	4,73	100, 80	12,06	12,06	957513	-76457	77,87	26933		
14	5,12	100, 80	24,63	24,63	993343	-105603	74,57	30113		
15	5,52	100, 80	24,63	24,63	898516	- 128032	62,63	30257		
16	5,91	100, 80	24,63	24,63	788485	- 14903 5	51,30	30401		
17	6,31	100, 80	24,63	24,63	676356	- 166601	41,25	30545		
18	6,70	100, 80	24,63	24,63	566796	- 178386	32,54	30689		
19	7,03	100, 80	24,63	24,63	464109	- 177151	25,38	30811		
20	7,37	100, 80	16,59	16,59	286592	-131496	14,96	27897		
21	7,70	100, 80	16,59	16,59	207817	-113839	10,38	28019		

Armature e tensioni nei materiali della fondazione

Combinazione nº 2

Combinazione nº 2
Simbologia aduttal
B base dell'asezione espressa in [cm]
B H diezza della sezione espressa in [cm]
An, area di armatun in corrispondenza del lenbo inferiore in [cmq]
N, stozzo nomale ultimo espresso in [kg]
CS comparente espresso in [km]
CS comparente espresso

Fondazion e di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estre no libero della fondazione di valle)

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12,57	12,57	0	46091	906,47	30124		
3	0,20	100, 100	12,57	12,57	0	46091	226,76	30124		
4	0,30	100, 100	12,57	12,57	0	46091	100,85	30124		
5	0,40	100, 100	12,57	12,57	0	46091	56,76	30124		
6	0,50	100, 100	12,57	12,57	0	46091	36,35	30124		
7	0,60	100, 100	12.57	12,57	0	46091	25,26	30124		
8	0,70	100, 100	12,57	12,57	0	46091	18,57	30124		
9	0,80	100, 100	12.57	12,57	0	46091	14,23	30124		
10	0,90	100, 100	16,59	16,59	0	60583	14,79	30124		
11	1,00	100, 100	16,59	16,59	0	60583	11,98	30124		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in comspondenza dell'estre no libe ro della fondazione di monte)

Nr.	Y	В, Н	Ars	An	Nu	M_{u}	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,32	100, 100	12,57	12,57	0	-46091	411,26	30124		
3	0,64	100, 100	12,57	12,57	0	-46091	103,81	30124		
4	0,96	100, 100	12,57	12,57	0	-46091	46,59	30124		
5	1,28	100, 100	12.57	12,57	0	-46091	26,47	30124		
6	1,60	100, 100	12,57	12,57	0	-46091	17,11	30124		
7	1,92	100, 100	16,59	12,57	0	-60588	15,77	30124		
8	2,24	100, 100	16,59	12,57	0	-60588	11,71	30124		
9	2,56	100, 100	16,59	16,59	0	-60583	9,05	30124		
10	2,88	100, 100	16,59	16,59	0	-60583	7,23	30124		
11	3,20	100, 100	16,59	16,59	0	-60583	5,90	30124		

COMBINAZIONE nº 3

Peso muro favorevole e Peso terrapieno sfavorevole

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione I inea di rottura in condizioni statiche	9775,92 9099,07 3574,29 X = 3,20 21,45 57,17	[kg] [kg] [kg] [m] [°] [°]	Y=-6,79	[m]
Spinta falda Punto d'applicazione del la spinta della falda Sottospinta falda	2600,00 X = 3,20 13000,00	[kg] [m] [kg]	Y = -8,03	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte	36483,20 X = 1,58	[kg] [m]	Y=-5,39	[m]
Risultanti				
Risul ant e dei carichi applicati in dir. orizzontale Risult ant e dei carichi applicati in dir. verticale Sforzo normale sul piano di posa della fondazione Sforzo t angenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente	11699,07 56297,49 56297,49 11699,07 -0,05 5,00	[kg] [kg] [kg] [kg] [m]		

25/144 26/144

Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	57500,22 11,74 -3030,23 299616,82	[kg] [°] [kgm] [kg]
Tensioni sul terreno		
Lunghezza fondazione reagente	5,00	[m]
Tensione terreno allo spigolo di valle	1,0532	[kg/cmq]
Tensione terreno allo spigolo di monte	1,1987	[kg/cmq]

Fattori per il calcolo della capacità portante					
Coeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$		
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$		
Fattori indinazione	$i_c = 0,76$	$i_q = 0.76$	$i_{f} = 0.40$		
Fattori profon dità	$d_c = 1, 14$	$d_q = 1,07$	$d_{r} = 1,07$		
I coefficient i N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.					
	$N'_c = 30.71$	$N'_q = 18.79$	$N'_{\gamma} = 9.47$		

COEFFICIENTI DI SICUREZZA	
Coefficiente di sicurezza a scorrimento	1.88
Coefficiente di sicurezza a carico ultimo	5.32

Sollecitazioni paramento

Combinazione nº 3

L'ordina Y (espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo estende le fibre contro terra (a monte), espresso in kgm Sōrzo normale positivo di compressione, espresso in kg Taglio positivo es diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,39	788,24	0,50	3,79
3	0,79	1576,47	3,98	15,14
4	1,18	2364,71	13,43	34,13
5	1,58	3152,94	32,00	61,32
6	1,97	3941,18	62,81	96,34
7	2,36	4729,41	108,96	139, 17
8	2,76	5517,65	173,53	189,81
9	3,15	6305,88	259,60	248, 24
10	3,55	7094,12	370,25	314,83
11	3,94	7882,35	510,48	404,93
12	4,34	8670,59	700,21	570,96
13	4,73	9458,82	981,87	889, 24
14	5,12	10247,06	1416,18	1331,03
15	5,52	11035,29	2044,19	1872,54
16	5,91	11823,53	2905,26	2513,64
17	6,31	1261 1,76	4038,52	3253,62
18	6,70	13400,00	5482,55	4088,98
19	7,03	14066,67	6980,05	4927,49
20	7,37	14733,33	8788,04	5950,78
21	7,70	15400,00	10966,66	7148,17

Sollecitazioni fondazione di valle

Combinazione nº 3
L'ascis a X(septesa ain m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	40,21	804,68
3	0,20	161,03	1612,27
4	0,30	362,76	2422,76
5	0,40	645,68	3236,17
6	0,50	1010,09	4052,48
7	0,60	1456,28	4871,71
8	0,70	1984,53	5693,84
9	0,80	2595,14	6518,88
10	0,90	3288,40	7346,83
11	1,00	4064,60	8177,69

Sollecitazioni fondazione di monte

Combinazione nº 3

Comminazione II 30 è considerata positiva verso valle con origine in corrispondenz adell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivos derietto useo Tallo, opresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,32	-99,60	-627,45
3	0,64	-404,75	-1284,70
4	0,96	-924,98	-1971,73
5	1,28	-1669,83	-2688,54
6	1,60	-2648,83	-3435,15

27/144 28/144 03.5 - Muro sez. D-D - Fascicolo dei calcoli.rtf

-4211,55 -5017,73 -5853,70 -6719,46 1,92 -3871,50 2,24 2,56 2,88 -5347,39 -7086.03 10 -9096,94 11 3,20 -11420,00 -8031,01

Armature e tensioni nei materiali del muro

Combinazione nº 3

Lordinata V(espressa in [mt]) è considerata positiva verso il basso con origine in testa al muro B boare dell'assezione espressa in [cmt] di alezza della sevicine espressa in [kgt] di alezza della sevicine espresso in [kgt] di alezza di alezza di alezza della sessibito dal els, espresso in [kgt] di alezza di alezza

Nr.	Y	В, Н	A_{fs}	A_6	Nu	M_u	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	ō	1000,00	25203		
2	0,39	100, 80	8,04	8,04	984521	-621	1249,02	25314		
3	0,79	100, 80	8,04	8,04	983083	-2481	623,60	25425		
4	1,18	100, 80	8,04	8,04	980693	-5570	414,72	25536		
5	1,58	100, 80	8,04	8,04	977330	-9918	309,97	25647		
6	1,97	100, 80	8,04	8,04	973007	-15506	246,88	25758		
7	2,36	100, 80	8,04	8,04	967755	-22297	204,62	25868		
8	2,76	100, 80	8,04	8,04	961607	-30243	174,28	25979		
9	3,15	100, 80	8,04	8,04	954603	-39299	151,38	26090		
10	3,55	100, 80	8,04	8,04	946779	-49413	133,46	26201		
11	3,94	100, 80	8,04	8,04	938011	-60748	119,00	26312		
12	4,34	100, 80	12,06	12,06	956877	-77274	110,36	26423		
13	4,73	100, 80	12,06	12,06	914988	-94980	96,73	26534		
14	5,12	100, 80	24,63	24,63	909050	-125634	88,71	29680		
15	5,52	100, 80	24,63	24,63	796852	-147609	72,21	29791		
16	5,91	100, 80	24,63	24,63	677392	- 166448	57,29	29902		
17	6,31	100, 80	24,63	24,63	558185	- 17874 1	44,26	30013		
18	6,70	100, 80	24,63	24,63	424929	-173858	31,71	30124		
19	7,03	100, 80	24,63	24,63	323019	-160286	22,96	30217		
20	7,37	100, 80	16,59	16,59	175106	- 104446	11,89	27275		
21	7,70	100, 80	16,59	16,59	125823	-89601	8,17	27369		

29/144 30/144

Armature e tensioni nei materiali della fondazione

Combinazione nº 3

Simbologia adutata
B base de lla sezione espressa in [cm]
H alecza della sezione espressa in [cm]
An area di armatun in corrispondenza del lenbo inferiore in [cm]
An area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in socione dal consenso in [kg]
VRSd Aliquota di tigglio sosofito dal l'armatura, espresso in [kg]
VRd Resistenza al taglio, espresso in [kg]

Fondazion e di valle

 $(L'ascissa\,\,X,espressa\,in\,\,[m],\grave{e}\,positiva\,verso\,\,monte\,con\,origine\,in\,corrispondenza\,dell'estre\,mo\,\,libero\,della\,\,fondazione\,di\,valle)$

Nr.	Y	В, Н	A_{fs}	A_6	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	1257	12,57	0	46091	1146,27	30124		
3	0,20	100, 100	12.57	12,57	0	46091	286,22	30124		
4	0,30	100, 100	12.57	12,57	0	46091	127,06	30124		
5	0,40	100, 100	12.57	12,57	0	46091	71,38	30124		
6	0.50	100, 100	12.57	12.57	0	46091	45,63	30124		
7	0.60	100, 100	12.57	12.57	0	46091	31,65	30124		
8	0.70	100, 100	1257	12.57	Õ	46091	23,23	30124		
9	0.80	100, 100	12.57	12.57	0	46091	17,76	30124		
10	0,90	100, 100	1659	16,59	Ö	60583	18,42	30124		
11	1.00	100, 100	1659	16.59	0	60583	14,90	30124		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in conispondenza dell'estre mo libe ro della fondazione di monte)

Nr.	Y	B, H	Ars	An	Nu	Mu	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,32	100, 100	12,57	12,57	0	-46091	462,77	30124		
3	0,64	100, 100	12,57	12,57	0	-46091	113,88	30124		
4	0,96	100, 100	12,57	12,57	0	-46091	49,83	30124		
5	1,28	100, 100	1257	12,57	0	-46091	27,60	30124		
6	1,60	100, 100	12,57	12,57	0	-46091	17,40	30124		
7	1,92	100, 100	16,59	12,57	0	-60588	15,65	30124		
8	2,24	100, 100	16,59	12,57	0	-60588	11,33	30124		
9	2,56	100, 100	16,59	16,59	0	-60583	8,55	30124		
10	2,88	100, 100	16,59	16,59	0	-60583	6,66	30124		
11	3,20	100, 100	1659	16,59	0	-60583	5,30	30124		

COMBINAZIONE nº 4

Peso mu ro sfavore vol e e Peso terrapieno favore vole

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz, della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	9775,92 9099,07 3574,29 X = 3,20 21,45 57,17	[kg] [kg] [kg] [m] [°]	Y=-6,79	[m]
Sp inta falda Punto d'applicazione della sp inta della falda Sottosp inta falda	2600,00 X = 3,20 13000,00	[kg] [m] [kg]	Y = -8,03	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte	28064,00 X = 1,58	[kg] [m]	Y=-5,39	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risult ante dei carichi applicati in dir. verticale Sforzo normale sul piano di posa della fondazione Sforzo t angenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente	11699,07 56248,29 56248,29 11699,07 0,17 5,00	[kg] [kg] [kg] [kg] [m]		

Risult ant e in fondazione	57452,05	[kg]
Inclinazione della risultante (rispetto alla normale)	11,75	[°]
Moment o risp ett o al baricentro della fondazione	9478,65	[kgm]
Carico ultimo della fondazione	285415,84	[kg]
Tensioni sul terreno		
Lunghezza fondazione reagente	5,00	[m]
Tensione terreno allo spigolo di valle	1,3525	[kg/cmq]
Tensione terreno allo spigolo di monte	0,8975	[kg/cmq]

Fattori per il calcolo della capacità portant	2		
C oeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori indinazione	$i_c = 0,76$	$i_q = 0.76$	$i_{y} = 0.40$
Fatt ori profon dità	$d_c = 1, 14$	$d_q = 1,07$	$d_{y} = 1,07$

I coefficient i N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio. $N'_c = 30.70$ $N'_q = 18.78$

> 1.88 5.07

COEFFICIENTI DI SICUREZZA Coefficiente di sicurezza a scorrimento Coefficiente di sicurezza a carico ultimo

31/144 32/144

Sollecitazioni paramento

Combinazione nº 4
L'ordinata Y(espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Siozo normale positivo di compressione, espresso in kg
Taglio positivo es diretto di montreveno valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,39	1024,71	0,50	3,79
3	0,79	2049,41	3,98	15,14
4	1,18	3074,12	13,43	34,13
5	1,58	4098,82	32,00	61,32
6	1,97	5123,53	62,81	96,34
7	2,36	6148,24	108,96	139,17
8	2,76	7172,94	173,53	189,81
9	3,15	8197,65	259,60	248,24
10	3,55	9222,35	370,25	314,83
11	3,94	10247,06	510,48	404,93
12	4,34	11271,76	700,21	570,96
13	4,73	12296,47	981,87	889,24
14	5,12	13321,18	1416,18	1331,03
15	5,52	14345,88	2044,19	1872,54
16	5,91	15370,59	2905,26	2513,64
17	6,31	16395,29	4038,52	3253,62
18	6,70	17420,00	5482,55	4088,98
19	7,03	18286,67	6980,05	4927,49
20	7,37	19153,33	8788,04	5950,78
21	7,70	20020,00	10966,66	7148,17

Sollecitazioni fondazione di valle

Combinazione nº 4. L'asciss a Xispness ain m) è considerata positiva vesso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in Igm Taglio pos iñvo se diretto vesso Falto, espresso in Igm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	51,22	1022,90
3	0,20	204,28	2036,71
4	0,30	458,26	3041,41
5	0,40	812,26	4037,02
6	0,50	1265,36	5023,52
7	0,60	1816,66	6000,93
8	0,70	2465,24	6969,24
9	0,80	3210,20	7928,44
10	0,90	4050,63	8878,55
11	1,00	4985,61	9819,56

Sollecitazioni fondazione di monte

Combinazione nº 4
L'ascis a Xispress ain m) è considerata positiva veso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm Taglio pos invose diretto veso Talto, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,32	-285,65	- 1769,80
3	0,64	-1122,73	-3446,42
4	0,96	-2481,42	-5029,86
5	1,28	-4331,91	-6520,13
6	1,60	-6644,37	-7917,21

7	1,92	-9388,99	-9221,12
8	2,24	-12535,94	-10431,85
9	2,56	-16055,43	-11549,39
10	2,88	-19917,62	-12573,76
11	3,20	-24123,04	-13920,95

33/144 34/144

Armature e tensioni nei materiali del muro

Combinazione nº 4

L'ordina a Yespressa in [mi] è considerata positiva verso il basso con origine in testa al muro B base dell'ascezione espressa in [cmi] a deceni della escezione espressa in [cmi] della escezione in consisponderaza del embo di montein [cmi] a mendi armattura in corrisponderaza del embo di valle in [cmi] si serio nominei ultimo espresso in [kgi]
M, sorro nominei ultimo espresso in [kgi]
M, no mento ultimo espresso in [kgi]
VRed Aliquota di taglio assorbio dal els, espresso in [kgi]
VRed Resis enza al taglio, espresso in [kgi]

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	Õ	1000,00	25203		
2	0,39	100, 80	8,04	8,04	984632	-478	960,89	25347		
3	0,79	100, 80	8,04	8,04	983525	- 1909	479,91	25492		
4	1,18	100, 80	8,04	8,04	981684	-4289	319,34	25636		
5	1,58	100, 80	8,04	8,04	979090	-7643	238,87	25780		
6	1,97	100, 80	8,04	8,04	975749	-11962	190,44	25924		
7	2,36	100, 80	8,04	8,04	971681	-17221	158,04	26068		
8	2,76	100, 80	8,04	8,04	966907	-23392	134,80	26212		
9	3,15	100, 80	8,04	8,04	961450	-30447	117,28	26356		
10	3,55	100, 80	8,04	8,04	955334	-38353	103,59	26500		
11	3,94	100, 80	8,04	8,04	948452	-47250	92,56	26644		
12	4,34	100, 80	12,06	12,06	970130	-60265	86,07	26788		
13	4,73	100, 80	12,06	12,06	957513	-76457	77,87	26933		
14	5,12	100, 80	24,63	24,63	993343	-105603	74,57	30113		
15	5,52	100, 80	24,63	24,63	898516	- 128032	62,63	30257		
16	5,91	100, 80	24,63	24,63	788485	- 14903 5	51,30	30401		
17	6,31	100, 80	24,63	24,63	676356	- 166601	41,25	30545		
18	6,70	100, 80	24,63	24,63	566796	- 178386	32,54	30689		
19	7,03	100, 80	24,63	24,63	464109	- 177151	25,38	30811		
20	7,37	100, 80	16,59	16,59	286592	-131496	14,96	27897		
21	7,70	100, 80	16,59	16,59	207817	-113839	10,38	28019		

Armature e tensioni nei materiali della fondazione

Combinazione nº 4

Combinazione n° 4
Simbologia aduttata
B base dell'asezione espressa in [cm]
H diczza della sezione espressa in [cm]
An, area di armatun in corrispondenza del lenbo inferiore in [cmq]
N, stoza nomale ultim espresso in [kg]
CS comparente since service since service since since

Fondazion e di valle

 $(L'ascissa\,\,X, espressa\,in\,[m], \grave{e}\,positiva\,verso\,monte\,con\,origine\,in\,corrisponden\,za\,dell'estre\,no\,libero\,della\,fondazione\,di\,valle)$

Nr.	Y	B, H	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12.57	12,57	0	46091	899,85	30124		
3	0,20	100, 100	12.57	12,57	0	46091	225,63	30124		
4	0,30	100, 100	12,57	12,57	0	46091	100,58	30124		
5	0,40	100, 100	12,57	12,57	0	46091	56,74	30124		
6	0,50	100, 100	12.57	12,57	0	46091	36,43	30124		
7	0,60	100, 100	12.57	12,57	0	46091	25,37	30124		
8	0,70	100, 100	12.57	12,57	0	46091	18,70	30124		
9	0,80	100, 100	12.57	12,57	0	46091	14,36	30124		
10	0,90	100, 100	16,59	16,59	0	60583	14,96	30124		
11	1,00	100, 100	16,59	16,59	0	60583	12,15	30124		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre no libero della fondazione di nonte)

Nr.	Y	В, Н	Ars	An	Nu	M_{u}	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,32	100, 100	12.57	12,57	0	-46091	161,35	30124		
3	0,64	100, 100	12,57	12,57	0	-46091	41,05	30124		
4	0,96	100, 100	12.57	12,57	0	-46091	18,57	30124		
5	1,28	100, 100	12.57	12,57	0	-46091	10,64	30124		
6	1,60	100, 100	12,57	12,57	0	-46091	6,94	30124		
7	1,92	100, 100	16,59	12,57	0	-60588	6,45	30124		
8	2,24	100, 100	16.59	12,57	0	-60588	4,83	30124		
9	2,56	100, 100	16,59	16,59	0	-60583	3,77	30124		
10	2,88	100, 100	16.59	16,59	0	-60583	3,04	30124		
11	3,20	100, 100	16,59	16,59	0	-60583	2,51	30124		

COMBINAZIONE nº 5

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta astatica Punto d'applicazione della spinta Inclinaz. della spinta arispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	10234,53 9763,69 3068,55 X = 3,20 17,45 54,01	[kg] [kg] [kg] [m] [°]	Y = -6,79	[m]
Spinta falda Punto d'applicazione del la spinta della falda Sottospinta falda	2200,00 X = 3,20 11000,00	[kg] [m] [kg]	Y=-8,03	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte	25257,60 X = 1,58	[kg] [m]	Y=-5,39	[m]
Risultanti Risult ante dei carichi applicati in dir. orizzontale Risult ante dei carichi applicati in dir. verticale Moment o ribalt ante rispetto allo spigolo a valle Moment ostabilizzanter spetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione	11963,69 43776,15 47595,01 149569,40 43776,15 11963,69 0,17	[kg] [kg] [kgm] [kgm] [kg] [kg] [m]		

35/144 36/144

Lunghezza fondazione reagente	5,00	[m]
Risult ant e in fondazione	45381,51	[kg]
Inclinazione della risultante (rispetto alla normale)	15,29	[°]
Moment o risp ett o al baricentro della fondazione	7465,99	[kgm]

COEFFICIEN TI DI SICUREZZA

3.14 Coefficiente di sicurezza a ribaltament o

Stabilità globale muro + terreno

Combinazione nº 6

Le accise X sono anacterate positive verso mone

Le accise X sono anacterate positive verso flato
Origine in testa at muro (spigolo contro term)

prodella statis cas persos in [kg]

α pagolo flat la base della striscia e forizzontate espresso in [*] (positivo antionario)

α angolo flatino del termon lungo la base della striscia
c coesione del termon lungo la base della striscia espressa in [kg/cmq]

b lagelezza della striscia espressa in [kg/cmq]

u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36 Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -2,15 Y[m] = 0.00

Raggio del cerchio R[m]= 10,22

Xi[m]=-9,88 Xs[m]= 7,56 A scissa a valle del cerchio A scissa a monte del cerchio Larghezza del la striscia dx[m] = 0.70Coefficiente di sicurezza C= 1.90 Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α (°)	Wsince	b/cosα	ф	c	u
1	1117.68	66.56	1025.45	1.75	28.57	0.000	0.000
2	2959.28	58.21	2515.30	1.32	26.56	0.000	0.000
3	4282.63	51.36	3345.17	1.12	26.56	0.000	0.000
4	5360.99	45.44	3819.83	0.99	26.56	0.000	0.046
5	6264.02	40.10	4034.45	0.91	26.56	0.000	0.111
6	7015.63	35.15	4038.72	0.85	26.56	0.000	0.165
7	7927.96	30.49	4021.99	0.81	26.56	0.000	0.210
8	8543.33	26.04	3750.37	0.78	26.56	0.000	0.247
9	8973.56	21.76	3326.16	0.75	26.56	0.000	0.278
10	9320.82	17.60	2818.18	0.73	26.56	0.000	0.303
11	1264 1.73	13.54	2958.80	0.72	26.56	0.000	0.323
12	16864.29	9.54	2795.29	0.71	26.56	0.000	0.337
13	5175.16	5.59	504.35	0.70	26.56	0.000	0.346
14	5034.27	1.67	146.81	0.70	26.56	0.000	0.351
15	4883.47	-2,24	-191.09	0.70	26.56	0.000	0.350
16	4811.90	-6.17	-516.92	0.70	26.56	0.000	0.345
17	4672.59	-10.12	-821.07	0.71	26.56	0.000	0.335
18	4463.48	-14.12	-1089.17	0.72	26.56	0.000	0.320
19	4181.31	-18.20	-1305.92	0.73	26.56	0.000	0.300
20	3821.36	-22,37	-1454.54	0.75	26.56	0.000	0.274
21	3376.98	-26.68	-1516.11	0.78	26.56	0.000	0.242
22	2838.85	-31.15	-1468.52	0.81	26.56	0.000	0.204
23	2193.72	-35.85	-1284.76	0.86	26.56	0.000	0.157
24	1422.09	-40.85	-930.12	0.92	26.56	0.000	0.102
25	493.65	-46.26	-356.67	1.01	26.56	0.000	0.035

 $\Sigma W = 138640,75 \text{ [kg]}$ Σ Wisin α i= 28165,98 [kg] Σ Wtan ϕ = 69355,83 [kg] Σt anox t an $\phi = 2.60$

COMBINAZIONE nº 7

Valore della spinta statica	7519,94	[kg]		
Componente orizzontale della spinta statica	6999,29	[kg]		
Componente verticale della spint a statica	2749,45	[kg]		
Punto d'applicazione del la spinta	X = 3,20	[m]	Y = -6.79	[m]
Inclinaz. della spintarispetto alla normale alla superficie	21,45	[°]		
Inclinazione linea di rottura in condizioni statiche	57,17	[°]		
Incremento sismico della spinta	1345,34	[kg]		
Punto d'applicazione del l'increment o sismico di spinta	X = 3,20	[m]	Y = -6,79	[m]
Inclinazione linea di rottura in condizioni sismiche	52,54	[°]		

37/144 38/144

Spinta falda Punto d'applicazione del la spinta della falda Sottospinta falda		$2000,00 \\ X = 3,20 \\ 10000,00$	[kg] [m] [kg]	Y=-8,03	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravant e sulla fondazione a monte Inerzia del muro Inerzia verticale del muro Inerzia verticale del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte		28064,00 X = 1,58 1452,56 -726,28 1461,10 -730,55	[kg] [m] [kg] [kg] [kg] [kg]	Y=-5,39	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione		13234,90 49088,51 49088,51 13234,90 0,26 5,00 50841,36 15,09 12806,57 228017,23	[kg] [kg] [kg] [m] [m] [kg] [kgm] [kg]		
Lunghezza fondazione reagente Tensione terreno allo spigolo di valle		5,00 1,2891	[m] [kg/cmq]		
Tensione terreno allo spigolo di monte Fattori per il calcolo della capacità portante		0,6744	[kg/cmq]		
Coeff. capacità portante	$N_c = 35.49$	$N_q = 23$.18		$N_{\gamma} = 22.02$
Fattori forma	$s_c = 1,00$	$\dot{s}_q = 1$,00		$s_{\gamma} = 1,00$
Fattori indinazione	$i_c = 0,69$	$i_q = 0$,69		$i_{y} = 0.28$
Fattori profondità	$d_c = 1, 14$	$d_{q} = 1$,07		$d_{r} = 1,07$
I coefficient i N' tengono conto dei fattori di forma, profo	ndità, inclinazione carico,	in clinazione piano d	li posa, inclina	zione pendio.	
	$N'_c = 28.14$	$N'_{q} = 17$.22		$N'_{\gamma} = 6.59$

COEFFICIEN TI DISICUREZZA Coefficiente di sicurezza a scorrimento

1.45 4.65 Coefficiente di sicurezza a carico ultimo

Sollecitazioni paramento

Combinazione nº 7.
L'ordinat y (espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo estende le fibre contro terra (a monte), espresso in kgm Sōrzo normale positivo di compressione, espresso in kg Taglio positivo es diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,39	788,24	8,52	44,37
3	0,79	1576,47	35,85	95,41
4	1,18	2364,71	84,61	153, 18
5	1,58	3152,94	157,57	218, 16
6	1,97	3941,18	257,49	290,05
7	2,36	4729,41	387, 10	368,81
8	2,76	5517,65	549, 10	454,44
9	3,15	6305,88	746,21	546,95
10	3,55	7094,12	981,14	646,63
11	3,94	7882,35	1258,30	767,03
12	4,34	8670,59	1595,23	954,30
13	4,73	9458,82	2029,31	1275,67
14	5,12	10247,06	2614,00	1705,81
15	5,52	11035,29	3385,47	2223,79
16	5,91	11823,53	4378,39	2829,48
17	6,31	1261 1,76	5627,21	3522,27
18	6,70	13400,00	7165,92	4299,06
19	7,03	14066,67	8722,30	5064,23
20	7,37	14733,33	10558,35	5976,05
21	7,70	15400,00	12721,66	7025,10

Sollecitazioni fondazione di valle

Combinazione nº 7
L'ascis a X(septesa ai m m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	51,75	1032,98
3	0,20	206,19	2053,67
4	0,30	462,08	3062,06
5	0,40	818,19	4058,16
6	0,50	1273,30	5041,96
7	0,60	1826,17	6013,47
8	0,70	2475,58	6972,68
9	0,80	3220,30	7919,60
10	0,90	4059,09	8854,23
11	1.00	4990,73	9776,56

Sollecitazioni fondazione di monte

Combinazione nº 7

COMMIZZONE II / Lacks a X(Spessa im i) è considerata positiva verso valle con origine in corrispondenz adell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivos deriteto tweo Tallo, opresso in kg

Nr. M 0,00 0,00 0,00 -225,01 -1385,33 0,32 0.64 -873.18 -2644,77 -1904,24 -3778,32 0,96 -3277,88 -4785,97 1,28 1,60 -4953,83 -5667,73

39/144 40/144 03.5 - Muro sez. D-D - Fascicolo dei calcoli.rtf

1,92 -6891,80 -6423,59 2,24 2,56 2,88 -9051,50 -7053,57 -11392,65 -13874,96 -7557,64 -7935,83 10 11 3,20 -16481,49 -8508,12

Armature e tensioni nei materiali del muro

Combinazione nº 7

Lordinata V(espressa in [mt]) è considerata positiva verso il basso con origine in testa al muro B boare dell'assezione espressa in [cmt] di alezza della sevicine espressa in [cmt] di alezza della sevicine espressa in [cmt] di area di armatuta in corrispondenza del embo di monte in [cmt] area di armatuta in corrispondenza del embo di valle in [cmt] si sevicine di alezione di alezi

Nr.	Y	В, Н	A_{fs}	$\mathbf{A}_{\mathbf{f}_{\mathbf{i}}}$	N_u	M_u	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1 1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203	▼ Red	▼ Rsd
2	0,39	100, 80	8,04	8,04	976830	-10565	1239,26	25314		
3	0,79	100, 80	8,04	8,04	967974	-22013	614,01	25425		
4	1,18	100, 80	8,04	8,04	958473	-34295	405,32	25536		
5	1,58	100, 80	8,04	8,04	948341	-47394	300,78	25647		
6	1,97	100, 80	8,04	8,04	937616	-61258	237,90	25758		
7	2,36	100, 80	8,04	8,04	926351	-75821	195,87	25868		
8	2,76	100, 80	8,04	8,04	898709	-89437	162,88	25979		
9	3,15	100, 80	8,04	8,04	848142	-100365	134,50	26090		
10		100, 80			795175	- 100303		26201		
11	3,55 3,94	100, 80	8,04 8,04	8,04 8,04	740237	-118168	112,09 93,91	26312		
12	4,34	100, 80	12,06	12,06	712459	-131079	82,17	26423		
13	4,73	100, 80	12,06	12,06	646207	- 138638	68,32	26534		
14	5,12	100, 80	24,63	24,63	661226	- 168677	64,53	29680		
15	5,52	100, 80	24,63	24,63	579730	- 177853	52,53	29791		
16	5,91	100, 80	24,63	24,63	480830	-178057	40,67	29902		
17	6,31	100, 80	24,63	24,63	378474	- 168870	30,01	30013		
18	6.70	100, 80	24,63	24,63	288364	-154209	21,52	30124		
19	7,03	100, 80	24,63	24,63	227790	-141246	16,19	30217		
20	7,37	100, 80	16.59	16,59	124338	-89104	8,44	27275		
21	7.70	100,80	16.50	16.50	96617	70830	628	27360		

41/144 42/144

Armature e tensioni nei materiali della fondazione

Combinazione nº 7

Simbologia adutata
B base de lla sezione espressa in [cm]
H alecza della sezione espressa in [cm]
An area di armatuna in corrispondenza del lenbo inferiore in [cmq]
An area di armatuna in corrispondenza del lenbo superfore in [cmq]
An area di armatuna in corrispondenza del lenbo superfore in [cmq]
An area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, an area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, an area di armatuna corrispondenza del lenbo superfore in [cmq]
M, an area di armatuna corrispondenza del lenbo superfore in [cmq]
M, an area di armatuna corrispondenza del lenbo superfore in [cmq]
M, an area di armatuna corrispondenza del lenbo superfore in [cmq]
M, an area di armatuna corrispondenza del lenbo superfore in [cmq]
M, an area di armatuna del lenbo superfore in [cmq]
M, an area di armatuna del lenbo superfore in [cmq]
M, an area di armatuna del lenbo superfore in [cmq]
M, an area di armatuna del lenbo superfore in [cmq]
M, an area di armatuna del lenbo superfore in [cmq]
M, an area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, an area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, an area di armatuna del lenbo superfore in [cmq]
M, an area di armatuna del lenbo superfore in [cmq]
M, an area di armatuna del lenbo superfore in [cmq]
M, an area di armatuna del lenbo superfore in [cmq]
M, an area di armatuna del lenbo superfore in [cmq]
M, an area di armatuna del lenbo superfore in [cmq]
M, an area di armatuna del lenbo superfore in [cmq]
M, an area di armatuna del lenbo superfore in [cmq]
M, an area di armatuna del lenbo superfore in [cmq]
M, an area di armatuna del lenbo superfore in [cmq]
M, an area di armatuna del lenbo superfore in [cmq]
M, an area di armatuna del lenbo superfore in [cmq]
M, an area di armatuna del lenbo superfore in [cmq]
M, an area di armatuna del lenbo superfore in [cmq]
M, an area di armatuna del lenbo superfore in [cmq]
M, an area di armatuna del lenbo superfore in [cmq]
M, an area di armatuna d

Fondazion e di valle

 $(L'ascissa\,\,X,espressa\,in\,\,[m],\grave{e}\,positiva\,verso\,\,monte\,con\,origine\,in\,corrispondenza\,dell'estre\,no\,\,libero\,della\,\,fondazione\,di\,valle)$

Nr.	Y	В, Н	A_{fs}	A_6	N_u	M_u	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	1257	12,57	0	46091	890,63	30124		
3	0,20	100, 100	1257	12,57	0	46091	223,54	30124		
4	0,30	100, 100	1257	12,57	0	46091	99,75	30124		
5	0,40	100, 100	1257	12,57	0	46091	56,33	30124		
6	0.50	100, 100	12.57	12.57	0	46091	36,20	30124		
7	0.60	100, 100	12.57	12.57	0	46091	25,24	30124		
8	0.70	100, 100	1257	12.57	Õ	46091	18,62	30124		
9	0.80	100, 100	12.57	12.57	Õ	46091	14,31	30124		
10	0.90	100, 100	1659	16,59	ŏ	60583	14,93	30124		
11	1.00	100, 100	1659	16.59	Õ	60583	12.14	30124		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libero della fondazione di monte)

Nr.	Y	В, Н	Ars	An	Nu	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,32	100, 100	1257	12,57	0	-46091	204,84	30124		
3	0,64	100, 100	12,57	12,57	0	-46091	52,79	30124		
4	0,96	100, 100	1257	12,57	0	-46091	24,20	30124		
5	1.28	100, 100	12.57	12.57	0	-46091	14.06	30124		
6	1,60	100, 100	12.57	12,57	0	-46091	9,30	30124		
7	1,92	100, 100	16,59	12,57	0	-60588	8,79	30124		
8	2,24	100, 100	1659	12,57	0	-60588	6,69	30124		
9	2,56	100, 100	1659	16,59	0	-60583	5,32	30124		
10	2,88	100, 100	1659	16,59	0	-60583	4,37	30124		
11	3,20	100, 100	1659	16,59	0	-60583	3,68	30124		

COMBINAZIONE nº 8

Valore del la spinta statica Componente orizzontale della spinta statica Componente vericale della spinta a statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	7519,94 6999,29 2749,45 X = 3,20 21,45 57,17	[kg] [kg] [kg] [m] [°]	Y=-6,79	[m]
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta Inclinazione linea di rottura in condizioni sismiche	1728,53 X = 3,20 52,79	[kg] [m] [°]	Y=-6,79	[m]
Spinta falda Punto d'applicazione della spinta della falda Sottospinta falda	2000,00 X = 3,20 10000,00	[kg] [m] [kg]	Y=-8,03	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte	28064,00 X = 1,58 1452,56 726,28 1461,10 730,55	[kg] [m] [kg] [kg] [kg]	Y=-5,39	[m]

13591,57	[kg]
52142,27	[kg]
52142,27	[kg]
13591,57	[kg]
0,24	[m]
5,00	[m]
53884,57	[kg]
14,61	[°]
12728,99	[kgm]
235992,37	[kg]
	52142,27 52142,27 13591,57 0,24 5,00 53884,57 14,61 12728,99

Tensioni sul terreno

Lunghezza fondazione reagente	5,00	[m]
Tensione terreno allo spigolo di valle	1,3483	[kg/cmq]
Tensione terreno allo spigolo di monte	0,7373	[kg/cma]

Fattori per il calcolo della capacità portante

C oeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$		
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$		
Fattori indinazione	$i_c = 0,70$	$i_q = 0.70$	$i_f = 0.30$		
Fatt ori profon dità	$d_c = 1, 14$	$d_q = 1,07$	$d_{Y} = 1,07$		
I coefficient i N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.					
	$N'_c = 28.50$	$N'_{q} = 17.44$	$N'_{\gamma} = 6.97$		

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	1
Coefficients di ciourazza a series ultimo	4

43/144 44/144

Sollecitazioni paramento

Combinazione nº 8
L'ordinata Y (espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Siozo normale positivo di compressione, espresso in kg Taglio positivo se diretto di montreveno valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,39	788,24	8,54	44,52
3	0,79	1576,47	36,01	96,01
4	1,18	2364,71	85,14	154,52
5	1,58	3152,94	158,83	220,58
6	1,97	3941,18	259,97	293,85
7	2,36	4729,41	391,40	374,30
8	2,76	5517,65	555,95	461,93
9	3,15	6305,88	756,45	556,74
10	3,55	7094,12	995,74	659,05
11	3,94	7882,35	1278,44	783,00
12	4,34	8670,59	1622,85	976,82
13	4,73	9458,82	2068,04	1310,75
14	5,12	10247,06	2669,87	1758,32
15	5,52	11035,29	3466,11	2297,66
16	5,91	11823,53	4493,00	2928,64
17	6,31	1261 1,76	5786,52	3650,62
18	6,70	13400,00	7382,20	4460,36
19	7,03	14066,67	8997,34	5255,76
20	7,37	14733,33	10902,49	6199,40
21	7,70	15400,00	13145,72	7281,44

Sollecitazioni fondazione di valle

Combinazione nº 8
L'asciss a X(spress ai m m) è considerata positiva veso monte con origine in corrispondenza dell'estremo libero della fondazione di valle
Momento positivo se tende le fibre inferiori, espresso in kgm
Taglio pas iñvo se diretto veso Falto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	54,71	1092,23
3	0,20	218,04	2172,24
4	0,30	488,75	3240,03
5	0,40	865,64	4295,61
6	0,50	1347,47	5338,96
7	0,60	1933,02	6370,09
8	0,70	2621,08	7389,00
9	0,80	3410,42	8395,70
10	0,90	4299,81	9390,17
11	1,00	5288,04	10372,42

Sollecitazioni fondazione di monte

Combinazione nº 8
L'asciss Alkspræs ain m) è considerata positiva veso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm
Taglio pos invose diretto veso Talto, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,32	-192,83	-1184,32
3	0,64	-744,61	-2243,50
4	0,96	-1615,32	-3177,55
5	1,28	-2764,90	-3986,48
6	1,60	-4153,32	-4670,27

7	1,92	-5740,53	-5228,93
8	2,24	-7486,49	-5662,40
9	2,56	-9351,15	-5970.80
10	2,88	-11294,49	-6154,12
11	3,20	-13299,78	-6532,20

45/144 46/144

Armature e tensioni nei materiali del muro

Combinazione nº 8

L'ordina a Yespressa in [mi] è considerata positiva verso il basso con origine in testa al muro B bose de lliasezione espressa in [cmi] a lacza della sezione espressa in [cmi] al lacza della sezione espressa in [cmi] a lacza della sezione espressa in [cmi] a lacza di amittura in corrispondenza del embo di montein [cmi] a lacza di amittura in corrispondenza del embo di valle in [cmi] se presono in [kgi]

M, sorro normale ultimo espresso in [kgi]

M, no mento ultimo espresso in [kgi]

VRed Aliquota di taglio assolito dal els, espresso in [kgi]

VRed Resis tenza al taglio, espresso in [kgi]

Nr.	Y	В, Н	A_{fs}	$\mathbf{A}_{\mathbf{fi}}$	Nu	M_u	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,39	100, 80	8,04	8,04	976811	-10589	1239,24	25314		
3	0,79	100, 80	8,04	8.04	967900	-22108	613,97	25425		
4	1,18	100, 80	8,04	8,04	958311	-34504	405,26	25536		
5	1,58	100, 80	8,04	8,04	948058	-47759	300,69	25647		
6	1,97	100, 80	8,04	8,04	937183	-61819	237,79	25758		
7	2,36	100, 80	8,04	8,04	925739	-76612	195,74	25868		
8	2,76	100, 80	8,04	8,04	895236	-90202	162,25	25979		
9	3,15	100, 80	8,04	8,04	843572	- 101 194	133,78	26090		
10	3,55	100, 80	8.04	8,04	790087	-110898	111,37	26201		
11	3,94	100, 80	8,04	8,04	734066	-119058	93,13	26312		
12	4.34	100, 80	12,06	12,06	705254	-132000	81.34	26423		
13	4,73	100, 80	12,06	12,06	637884	- 139465	67,44	26534		
14	5,12	100, 80	24,63	24,63	652002	- 169879	63,63	29680		
15	5,52	100, 80	24.63	24.63	567807	- 178344	51,45	29791		
16	5,91	100, 80	24,63	24,63	466526	-177282	39,46	29902		
17	6,31	100, 80	24,63	24,63	363518	- 166789	28,82	30013		
18	6,70	100, 80	24,63	24,63	274550	-151252	20,49	30124		
19	7,03	100, 80	24,63	24,63	216198	-138285	15,37	30217		
20	7,37	100, 80	1659	16,59	117174	-86707	7,95	27275		
21	7.70	100, 80	16.59	16.59	91520	-78123	594	27369		

Armature e tensioni nei materiali della fondazione

Combinazione nº 8

Combinazione n° 8
Simbologia aduttata
B base dell'asezione espressa in [cm]
H diczza della sezione espressa in [cm]
An, area di armatun in corrispondenza del lenbo inferiore in [cmq]
N, stoza nomule ultim espresso in [kg]
CS comparente since service since service since since

Fondazion e di valle

 $(L'ascissa\ X, espressa\ in\ [m], \`e\ positiva\ verso\ monte\ con\ origine\ in\ corrispondenza\ dell'estre no\ libero\ della\ fondazione\ di\ valle)$

Nr.	Y	В, Н	A_{fs}	A_6	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12,57	12,57	0	46091	842,41	30124		
3	0,20	100, 100	12,57	12,57	0	46091	211,39	30124		
4	0,30	100, 100	12,57	12,57	0	46091	94,30	30124		
5	0,40	100, 100	12,57	12,57	0	46091	53,25	30124		
6	0,50	100, 100	12,57	12,57	0	46091	34,21	30124		
7	0,60	100, 100	12,57	12,57	0	46091	23,84	30124		
8	0,70	100, 100	12,57	12,57	0	46091	17,58	30124		
9	0,80	100, 100	12,57	12,57	0	46091	13,51	30124		
10	0,90	100, 100	16,59	16,59	0	60583	14,09	30124		
11	1,00	100, 100	16,59	16,59	0	60583	11,46	30124		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre no libero della fondazione di nonte)

Nr.	Y	В, Н	Ars	An	Nu	M_{u}	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,32	100, 100	12,57	12,57	0	-46091	239,03	30124		
3	0,64	100, 100	12,57	12,57	0	-46091	61,90	30124		
4	0,96	100, 100	12,57	12,57	0	-46091	28,53	30124		
5	1,28	100, 100	12.57	12,57	0	-46091	16,67	30124		
6	1,60	100, 100	12,57	12,57	0	-46091	11,10	30124		
7	1,92	100, 100	16,59	12,57	0	-60588	10,55	30124		
8	2,24	100, 100	16,59	12,57	0	-60588	8,09	30124		
9	2,56	100, 100	16,59	16,59	0	-60583	6,48	30124		
10	2,88	100, 100	16,59	16,59	0	-60583	5,36	30124		
11	3,20	100, 100	16,59	16,59	0	-60583	4,56	30124		

COMBINAZIONE nº 9

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	9304,12 8876,08 2789,59 X = 3,20 17,45 54,01	[kg] [kg] [kg] [m] [°]	Y = -6,79	[m]
Incremento sismico della spinta Punto d'applicazione del fincremento sismico di spinta Inclinazione linea di rottura in condizioni sismiche	1479,91 X = 3,20 48,89	[kg] [m] [°]	Y=-6,79	[m]
Spinta falda Punto d'applicazione del la spinta della falda Sottospinta falda	2000,00 X = 3,20 10000,00	[kg] [m] [kg]	Y = -8,03	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte	28064,00 X = 1,58 1452,56 -726,28 1461,10 -730,55	[kg] [m] [kg] [kg] [kg]	Y = -5,39	[m]

47/144 48/144

Risultanti Risultanti e dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Momento ribaltante rispetto allo spigolo a valle Momento stabilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione COEFFICIENTI DISICUREZZA Coefficiente di sicurezza a ribaltamento	15271,33 49080,47 59196,55 165165,78 49080,47 15271,33 0,34 5,00 51401,42 17,28 16731,95	[kg] [kg] [m] [m] [m] [m] [m]		
COMBINAZIONE n° 10				
Valore della spinta statica Componente orizzontale della spint a statica Componente verticale della spinta a statica Punto d'applicazione della spinta Inclinaz. della spint a rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	9304,12 8876,08 2789,59 X = 320 17,45 54,01	[kg] [kg] [kg] [m] [°]	Y=-6,79	[m]
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta Inclinazione linea di rottura in condizioni sismiche	1954,49 X = 3,20 49,20	[kg] [m] [°]	Y=-6,79	[m]
Spinta falda Punto d'applicazione della spinta della falda Sottospinta falda	2000,00 X = 3,20 10000,00	[kg] [m] [kg]	Y=-8,03	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte	28064,00 X = 1,58 1452,56 726,28 1461,10 730,55	[kg] [m] [kg] [kg] [kg] [kg]	Y=-5,39	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Moment o ribalt ante rispetto allo spigolo a valle Moment o stabilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Moment o rispetto al baricentro della fondazione	15724,08 52136,42 56214,80 169722,78 52136,42 15724,08 0,32 5,00 54455,98 16,78 16833,09	[kg] [kgm] [kgm] [kg] [m] [m] [kg] [m] [kg]		

3.02

COEFFICIEN TI DISICUREZZA
Coefficiente di sicurezza a ribaltament o

Stabilità globale muro + terreno

Combinazione nº 11

Le accise X sono aundebrate positive verso mone

Le accise X sono aundebrate positive verso flato
Origine in testa at muro (spigolo contro term)

prodella statis cas perso in [kg]

α pagolo flat la base della striscia e forizzontale espresso in [1] (positivo antionario)

angolo flatino del termon lungo la base della striscia

c coesione del termon lungo la base della striscia espressa ain [kg/cmq]

b lagelezza della striscia espressa in [kg/cmq]

u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36 Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -2,87 Y[m] = 1,44

Raggio del cerchio R[m]= 11,82

A scissa a valle del cerchio Xi[m]=-11,45 Xs[m]= 8,00 A scissa a monte del cerchio Larghezza del la striscia dx[m] = 0.78Coefficiente di sicurezza C= 1.63 Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α (°)	Wsinα	b/cosα	ф	c	u
1	1165.13	62.58	1034.21	1.69	28.72	0.000	0.000
2	3145.42	55.39	2588.78	1.37	26.56	0.000	0.000
3	4645.45	49.18	3515.40	1.19	26.56	0.000	0.000
4	5892.25	43.68	4069.37	1.08	26.56	0.000	0.040
5	6955.19	38.65	4344.23	1.00	26.56	0.000	0.108
6	7847.63	33.96	4383.85	0.94	26.56	0.000	0.166
7	8947.09	29.52	4407.93	0.89	26.56	0.000	0.214
8	9646.06	25.26	4116.26	0.86	26.56	0.000	0.254
9	10164.67	21.15	3667.46	0.83	26.56	0.000	0.288
10	10584.81	17.15	3121.34	0.81	26.56	0.000	0.315
11	1743 1.13	13.24	3991.33	0.80	26.56	0.000	0.336
12	1001 8.51	9.39	1633.72	0.79	26.56	0.000	0.352
13	5862.97	5.58	569.68	0.78	26.56	0.000	0.362
14	5709.05	1.79	178.48	0.78	26.56	0.000	0.367
15	5707.00	-1.99	-197.69	0.78	26.56	0.000	0.367
16	5624.79	-5.77	-565.53	0.78	26.56	0.000	0.361
17	5461.33	-9.58	-909.02	0.79	26.56	0.000	0.351
18	5214.37	-13.44	-1211.58	0.80	26.56	0.000	0.335
19	4880.37	-17.35	-1455.65	0.82	26.56	0.000	0.314
20	4454.22	-21.36	-1622.15	0.84	26.56	0.000	0.286
21	3928.76	-25.47	-1689.79	0.86	26.56	0.000	0.252
22	3294.11	-29.74	-1634.03	0.90	26.56	0.000	0.212
23	2536.49	-34.19	-1425.51	0.94	26.56	0.000	0.163
24	1636.11	-38.90	-1027.45	1.00	26.56	0.000	0.105
25	563.41	-43.95	-391.01	1.08	26.56	0.000	0.036

ΣWi= 151316,31 [kg] Σ Wisin α i= 29492,63 [kg] Σ Wtan ϕ = 75698,23 [kg] Σt anox t an $\phi = 2.33$

49/144 50/144

Stabilità globale muro + terreno

Combinazione n° 12

Le se sie Xonor considerate positive verso mme

Le cei sie Xonor considerate positive verso falto
Origine in esta al muno (spigolo contro terra)

De colleatistic alse spresso in [kg]

α angolo fa la base de la striscia e forizzontale espresso in [*] (positivo antionario)

angolo fattrio del terreno lungo la base della striscia

c cossione del terreno lungo la base della striscia espressa in [kg/cmq]

b lamplezza della striscia espressa in [kg/cmq]

μ pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -2,87 Y[m] = 1,44

Raggio del cerchio R[m]= 11,82

A scissa a valle del cerchio Xi[m]=-11,45 Xs[m]= 8,00 A scissa a monte del cerchio Larghezza della striscia dx[m] = 0.78Coefficiente di sicurezza C= 1.58 Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α (°)	Wsinα	b/cosα	ф	c	u
1	1165.13	62.58	1034.21	1.69	28.72	0.000	0.000
2	3145.42	55.39	2588.78	1.37	26.56	0.000	0.000
3	4645.45	49.18	3515.40	1.19	26.56	0.000	0.000
4	5892.25	43.68	4069.37	1.08	26.56	0.000	0.040
5	6955.19	38.65	4344.23	1.00	26.56	0.000	0.108
6	7847.63	33.96	4383.85	0.94	26.56	0.000	0.166
7	8947.09	29.52	4407.93	0.89	26.56	0.000	0.214
8	9646.06	25.26	4116.26	0.86	26.56	0.000	0.254
9	10164.67	21.15	3667.46	0.83	26.56	0.000	0.288
10	10584.81	17.15	3121.34	0.81	26.56	0.000	0.315
11	1743 1.13	13.24	3991.33	0.80	26.56	0.000	0.336
12	1001 8.51	9.39	1633.72	0.79	26.56	0.000	0.352
13	5862.97	5.58	569.68	0.78	26.56	0.000	0.362
14	5709.05	1.79	178.48	0.78	26.56	0.000	0.367
15	5707.00	-1.99	-197.69	0.78	26.56	0.000	0.367
16	5624.79	-5.77	-565.53	0.78	26.56	0.000	0.361
17	5461.33	-9.58	-909.02	0.79	26.56	0.000	0.351
18	5214.37	-13.44	-1211.58	0.80	26.56	0.000	0.335
19	4880.37	-17.35	-1455.65	0.82	26.56	0.000	0.314
20	4454.22	-21.36	-1622.15	0.84	26.56	0.000	0.286
21	3928.76	-25.47	-1689.79	0.86	26.56	0.000	0.252
22	3294.11	-29.74	-1634.03	0.90	26.56	0.000	0.212
23	2536.49	-34.19	-1425.51	0.94	26.56	0.000	0.163
24	1636.11	-38.90	-1027.45	1.00	26.56	0.000	0.105
25	563.41	-43.95	-391.01	1.08	26.56	0.000	0.036

 $\Sigma W = 151316,31 \text{ [kg]}$ ΣWisinα = 29492,63 [kg] ΣWtan φ= 75698,23 [kg] Σtanα tanφ= 2.33

COMBINAZIONE n° 13 Peso mu ro favorevole e Peso terrapieno sfavorevole

Valore del la spinta statica Componente orizzontale del la spint a statica Componente verticale della spinta statica Punto d'applicazione del la spinta Inclinaz. della spint a rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	14202,91 13210,36 5216,25 X = 3,20 21,55 57,17	[kg] [kg] [kg] [m] [°]	Y=-6,55	[m]
Spinta falda Punto d'applicazione del la spinta della falda	2600,00 X = 3,20	[kg] [m]	Y=-8,03	[m]

Sottospinta falda		13000,00	[kg]		
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte		45633,20 X = 1,58	[kg] [m]	Y=-5,39	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione Tensioni sul terreno		15810,36 67089,45 67089,45 15810,36 -0,06 5,00 68927,22 13,26 -4148,38 274907,91	[kg] [kg] [kg] [m] [m] [kg] [j] [kgm]		
Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte		5,00 1,2422 1,4414	[m] [kg/cmq] [kg/cmq]		
Fattori per il calcolo della capacità portante					
Coeff. capacità portante	$N_c = 35.49$	$N_0 = 23.$	18		$N_y = 22.02$
Fattori forma	$s_c = 1,00$	$s_q = 1.0$			$s_{\gamma} = 1.00$
Fattori inclinazione	$i_c = 0,73$	$i_a = 0.7$	13		$i_r = 0.34$
Fatt ori profon dità	$d_c = 1, 14$	$d_{q} = 1,0$)7		$d_7 = 1.07$
I coefficient i N' tengono conto dei fattori di forma, prof	ondità, inclinazione cario	o, in clinazione piano di	posa, inclina	zione pendio	
	$N'_c = 29.53$	$N'_{q} = 18.0$)7		$N'_{\gamma} = 8.10$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	1.66
Coefficiente di sicurezza a carico ultimo	4.10

51/144 52/144

Sollecitazioni paramento

Combinazione nº 13
L'ordinata Y(espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Siozo normale positivo di compressione, espresso in kg Taglio positivo se diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,39	788,24	0,50	3,79
3	0,79	1576,47	3,98	15,14
4	1,18	2364,71	13,43	34,13
5	1,58	3152,94	32,00	61,32
6	1,97	3941,18	62,81	96,34
7	2,36	4729,41	108,96	139,17
8	2,76	5517,65	173,53	189,81
9	3,15	6305,88	259,60	248,28
10	3,55	7094,12	376,93	366,89
11	3,94	7882,35	575,30	675,50
12	4,34	8670,59	931,84	1148,48
13	4,73	9458,82	1500,53	1769,63
14	5,12	10247,06	2342,34	2518,69
15	5,52	11035,29	3498,77	3366,17
16	5,91	11823,53	5008,58	4311,93
17	6,31	1261 1,76	6910,50	5355,93
18	6,70	13400,00	9242,94	6494,94
19	7,03	14066,67	11585,20	7590,09
20	7,37	14733,33	14323,48	8869,90
21	7,70	15400,00	17517,88	10323,74

Sollecitazioni fondazione di valle

Combinazione nº 13
L'asciss a X(spress ain m) è considerata positiva veso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in kgm
Taglio pas iñvo se diretto veso Falto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	49,68	994,22
3	0,20	198,98	1992,42
4	0,30	448,29	2994,60
5	0,40	798,03	4000,77
6	0,50	1248,58	5010,92
7	0,60	1800,35	6025,05
8	0,70	2453,72	7043,16
9	0,80	3209,11	8065,26
10	0,90	4066,91	9091,34
11	1,00	5027,51	10121,40

Sollecitazioni fondazione di monte

Combinazione nº 13
L'asciss a Xispiess ain m) è considerata positiva veso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm Taglio pos invose diretto veso Talto, espresso in kgm

Nr. M 0,00 0,00 0,00 -129,53 -816,39 0,32 0.64 -526,84 - 1673,56 - 1204,96 -2571,51 0,96 -2176,96 1,28 -3510,24 -3455,87 1,60 -4489,75

7	1,92	-5054,75	-5510,04
8	2,24	-6986,64	-6571,11
9	2,56	-9264,61	-7672,96
10	2,88	-11901,69	-8815,60
11	3,20	-14907,53	-9965.01

53/144 54/144

Armature e tensioni nei materiali del muro

Combinazione nº 13

Lordina a Yespressa in [mi] è considerata positiva verso il basso con origine in testa al muro B base della sezione espressa in [cmi]

An alezza della sezione espressa in [cmi]

An area di amattun in corrispondenza del lenho di montein [cmi]

anea di amattun in corrispondenza del lenho di valle in [cmi]

An area di amattun in corrispondenza del lenho di valle in [cmi]

An area di amattun in corrispondenza del lenho di valle in [cmi]

Na sibra no nomelle utiline espresso in [kgi]

M, no mento utimo espresso in [kgi]

VRed Aliquota di tagli o ssobito dal els, espresso in [kgi]

VRdd Resis tenza al taglio, espresso in [kgi]

Nr.	Y	В. Н	A_{fs}	A_{fi}	Nu	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	Õ	1000,00	25203		
2	0,39	100, 80	8,04	8,04	984521	-621	1249,02	25314		
3	0,79	100, 80	8,04	8,04	983083	-2481	623,60	25425		
4	1,18	100, 80	8,04	8,04	980693	-5570	414,72	25536		
5	1,58	100, 80	8,04	8,04	977330	-9918	309,97	25647		
6	1,97	100, 80	8,04	8,04	973007	-15506	246,88	25758		
7	2,36	100, 80	8,04	8,04	967755	-22297	204,62	25868		
8	2,76	100, 80	8,04	8,04	961607	-30243	174,28	25979		
9	3,15	100, 80	8,04	8,04	954603	-39299	151,38	26090		
10	3,55	100, 80	8,04	8,04	946116	-50270	133,37	26201		
11	3,94	100, 80	8,04	8,04	932363	-68049	118,28	26312		
12	4,34	100, 80	12,06	12,06	905109	-97273	104,39	26423		
13	4,73	100, 80	12,06	12,06	772510	-122549	81,67	26534		
14	5,12	100, 80	24,63	24,63	708214	-161888	69,11	29680		
15	5,52	100, 80	24.63	24,63	563116	- 178538	51,03	29791		
16	5,91	100, 80	24,63	24,63	405492	- 171771	34,30	29902		
17	6,31	100, 80	24,63	24,63	276991	-151775	21,96	30013		
18	6,70	100, 80	24,63	24,63	189736	-130874	14,16	30124		
19	7,03	100, 80	24,63	24,63	142394	-117275	10,12	30217		
20	7,37	100, 80	16,59	16,59	74500	-72428	5,06	27275		
21	7.70	100 80	1659	16.59	59159	-67294	3.84	27369		

Armature e tensioni nei materiali della fondazione

Combinazione nº 13

Simbologia adottata
B base dell'a sezione espressa in [cm]

bac de lla sezione espressa in [cm]
altezza del la sezione espressa in [cm]
area di armatua in corrispondenza del le nbo infe nore in [cmq]
area di armatua in corrispondenza del le nbo superiore in [cmq]
stora nomale ultime espresso in [kg]
no mento ultime espresso in [kg]
cefficiente sicurezza ezione
Aliquota di taglio assobito dal cls, espresso in [kg]
Afiquota di taglio assobito dal mantura, espresso in [kg]
Resis tenza al taglio, espresso in [kg]

Fondazion e di valle

 $(L'ascissa\,\,X, espressa\,in\,[m], \grave{e}\,positiva\,verso\,monte\,con\,origine\,in\,corrisponden\,za\,dell'estre\,no\,libero\,della\,fondazione\,di\,valle)$

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12,57	12,57	0	46091	927,81	30124		
3	0,20	100, 100	12,57	12,57	0	46091	231,64	30124		
4	0,30	100, 100	12,57	12,57	0	46091	102,81	30124		
5	0,40	100, 100	12,57	12,57	0	46091	57,76	30124		
6	0,50	100, 100	12,57	12,57	0	46091	36,91	30124		
7	0,60	100, 100	12,57	12,57	0	46091	25,60	30124		
8	0,70	100, 100	12,57	12,57	0	46091	18,78	30124		
9	0,80	100, 100	12,57	12,57	0	46091	14,36	30124		
10	0,90	100, 100	16,59	16,59	0	60583	14,90	30124		
11	1,00	100, 100	16,59	16,59	0	60583	12,05	30124		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in comspondenza dell'estre no libe ro della fondazione di nonte)

Nr.	Y	В, Н	Ars	An	Nu	Mu	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,32	100, 100	12,57	12,57	0	-46091	355,82	30124		
3	0,64	100, 100	12,57	12,57	0	-46091	87,49	30124		
4	0,96	100, 100	12,57	12,57	0	-46091	38,25	30124		
5	1,28	100, 100	12,57	12,57	0	-46091	21,17	30124		
6	1,60	100, 100	12,57	12,57	0	-46091	13,34	30124		
7	1,92	100, 100	16,59	12,57	0	-60588	11,99	30124		
8	2,24	100, 100	16,59	12,57	0	-60588	8,67	30124		
9	2,56	100, 100	16,59	16,59	0	-60583	6,54	30124		
10	2,88	100, 100	16,59	16,59	0	-60583	5,09	30124		
11	3,20	100, 100	16,59	16,59	0	-60583	4,06	30124		

COMBINAZIONE nº 14

Peso mu ro sfavore vole e Peso terrapieno favore vole

Valore del la spinta statica Componente orizzontale della spint a statica Componente verticale della spint a statica Punto d'applicazione del la spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	14202,91 13210,36 5216,25 X = 3,20 21,55 57,17	[kg] [kg] [kg] [m] [°] [°]	Y = -6,55	[m]
Spinta falda Punto d'applicazione del la spinta della falda Sottospinta falda	2600,00 X = 3,20 13000,00	[kg] [m] [kg]	Y = -8,03	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte	37214,00 X = 1,58	[kg] [m]	Y=-5,39	[m]
Risultanti Risul ant e dei carichi applicati in dir. orizzontale Risult ant e dei carichi applicati in dir. verticale Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente	15810,36 67040,25 67040,25 15810,36 0,12 5,00	[kg] [kg] [kg] [kg] [m] [m]		

55/144 56/144 $N'_{\gamma} = 8.09$

Risult ante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	68879,33 13,27 8360,50 267680,32	[kg] [°] [kgm] [kg]
Tensioni sul terreno		
Lunghezza fondazione reagente	5,00	[m]
Tensione terreno allo spigolo di valle	1,5415	[kg/cmq]
Tensione terreno allo spigolo di monte	1,1402	[kg/cmq]

Fattori per il calcolo della capacità portante						
C oeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$			
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$			
Fattori indinazione	$i_c = 0,73$	$i_q = 0.73$	$i_{f} = 0.34$			
Fattori profondità	$d_c = 1, 14$	$d_q = 1,07$	$d_{r} = 1,07$			
I coefficient i N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.						
	$N'_c = 29.52$	$N'_q = 18.06$	$N'_{\gamma} = 8.09$			

COEFFICIEN TI DISICUREZZA Coefficiente di sicurezza a scorrimento 1.66 3.99 Coefficiente di sicurezza a carico ultimo

Sollecitazioni paramento

Combinazione nº 14
Lordinata Y(espressa in m) è conside ata positiva verso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a morte), espresso in kgm Sforzo normale positivo di compressione, espresso in kg

	da monte verso val le	

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,39	1024,71	0,50	3,79
3	0,79	2049,41	3,98	15,14
4	1,18	3074,12	13,43	34,13
5	1,58	4098,82	32,00	61,32
6	1,97	5123,53	62,81	96,34
7	2,36	6148,24	108,96	139, 17
8	2,76	7172,94	173,53	189,81
9	3,15	8197,65	259,60	248, 28
10	3,55	9222,35	376,93	366,89
11	3,94	10247,06	575,30	675,50
12	4,34	11271,76	931,84	1148,48
13	4,73	12296,47	1500,53	1769,63
14	5,12	13321,18	2342,34	2518,69
15	5,52	14345,88	3498,77	3366,17
16	5,91	15370,59	5008,58	4311,93
17	6,31	16395,29	6910,50	5355,93
18	6,70	17420,00	9242,94	6494,94
19	7,03	18286,67	11585,20	7590,09
20	7,37	19153,33	14323,48	8869,90
21	7,70	20020,00	17517,88	10323,74

Sollecitazioni fondazione di valle

Combinazione nº 14
L'ascis a X(septesa ain m) e considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	60,69	1212,44
3	0,20	242,22	2416,86
4	0,30	543,79	3613,25
5	0,40	964,60	4801,62
6	0,50	1503,85	5981,96
7	0,60	2160,73	7154,27
8	0,70	2934,44	8318,56
9	0,80	3824,17	9474,82
10	0,90	4829,13	10623,06
11	1.00	5948.52	11763.26

Sollecitazioni fondazione di monte

Combinazione nº 14

Commizzation III 14.

Lascisa a (Kopersa in m) è considerata positiva verso valle con origine in corrispondenz adell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm
Taglio positivos deriteto twoes Talko, opersso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,32	-315,59	- 1958,74
3	0,64	-1244,82	-3835,29
4	0,96	-2761,41	-5629,65
5	1,28	-4839,03	-7341,82
6	1,60	-7451,41	-8971,81

57/144 58/144 03.5 - Muro sez. D-D - Fascicolo dei calcoli.rtf

1,92 -10572,23 -10519,61 -11985,23 2,24 2,56 2,88 -14175,19 -18234,01 -22722,37 -13368,66 -14669,90 10 11 3,20 -27610,56 -15854,95

Armature e tensioni nei materiali del muro

Combinazione nº 14

Lordinata V(espressa in [mi]) è considerata positiva verso il basso con origine in testa al muro B base dell'assezione espressa in [cmi] di alezza della sevicine espressa in [cmi] di alezza della sevicine espressa in [cmi] di area di armatuta in corrispondenza del entro di monte in [cmi] serio di armatuta in corrispondenza del entro di valle in [cmi] si serio nominei ditime espresso in [kgi]

M, sobre nominei ditime espresso in [kgi]

VRed Aliquota di taglo assolito dal els, espresso in [kgi]

VRsd Aliquota di taglo assolito dal els, espresso in [kgi]

VRd Resis tenza al taglio, espresso in [kgi]

Nr.	Y	В, Н	A_{fs}	A_{fi}	Nu	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,39	100, 80	8,04	8,04	984632	-478	960,89	25347		
3	0,79	100, 80	8,04	8,04	983525	- 1909	479,91	25492		
4	1,18	100, 80	8,04	8,04	981684	-4289	319,34	25636		
5	1,58	100, 80	8,04	8,04	979090	-7643	238,87	25780		
6	1,97	100, 80	8,04	8,04	975749	-11962	190,44	25924		
7	2,36	100, 80	8,04	8,04	971681	-17221	158,04	26068		
8	2,76	100, 80	8,04	8,04	966907	-23392	134,80	26212		
9	3,15	100, 80	8,04	8,04	961450	-30447	117,28	26356		
10	3,55	100, 80	8,04	8,04	954815	-39025	103,53	26500		
11	3,94	100, 80	8,04	8,04	944005	-52999	92,12	26644		
12	4,34	100, 80	12,06	12,06	955537	-78994	84,77	26788		
13	4,73	100, 80	12,06	12,06	866302	- 105714	70,45	26933		
14	5,12	100, 80	24,63	24,63	818498	- 143921	61,44	30113		
15	5,52	100, 80	24,63	24,63	680559	-165979	47,44	30257		
16	5,91	100, 80	24,63	24,63	549614	-179094	35,76	30401		
17	6,31	100, 80	24,63	24,63	408227	-172065	24,90	30545		
18	6,70	100, 80	24,63	24,63	292169	-155023	16,77	30689		
19	7,03	100, 80	24,63	24,63	219921	-139327	12,03	30811		
20	7,37	100, 80	16.59	16,59	114949	-85963	6,00	27897		
21	7,70	100, 80	16,59	16,59	87895	-76910	4,39	28019		

59/144 60/144

Armature e tensioni nei materiali della fondazione

Combinazione n° 14

Simbologia adutata
B base de lla sezione espressa in [cm]
H alecza della sezione espressa in [cm]
An area di armatun in corrispondenza del lenbo inferiore in [cm]
An area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in socione dal consenso in [kg]
VRSd Aliquota di tigglio sosofito dal l'armatura, espresso in [kg]
VRd Resistenza al taglio, espresso in [kg]

Fondazion e di valle

 $(L'ascissa\,\,X,espressa\,in\,\,[m],\grave{e}\,positiva\,verso\,\,monte\,con\,origine\,in\,corrispondenza\,dell'estre\,no\,\,libero\,della\,\,fondazione\,di\,valle)$

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	1257	12,57	0	46091	759,47	30124		
3	0,20	100, 100	1257	12,57	0	46091	190,29	30124		
4	0,30	100, 100	1257	12,57	0	46091	84,76	30124		
5	0,40	100, 100	1257	12,57	0	46091	47,78	30124		
6	0,50	100, 100	12.57	12.57	0	46091	30,65	30124		
7	0,60	100, 100	12.57	12.57	0	46091	21,33	30124		
8	0,70	100, 100	1257	12.57	Õ	46091	15,71	30124		
9	0.80	100, 100	12.57	12.57	Õ	46091	12,05	30124		
10	0,90	100, 100	1659	16.59	Ö	60583	12,55	30124		
11	1,00	100, 100	1659	16,59	0	60583	10,18	30124		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libero della fondazione di monte)

Nr.	Y	В, Н	Ars	An	Nu	Mu	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,32	100, 100	12,57	12,57	0	-46091	146,05	30124		
3	0,64	100, 100	12,57	12,57	0	-46091	37,03	30124		
4	0,96	100, 100	12,57	12,57	0	-46091	16,69	30124		
5	1,28	100, 100	12,57	12,57	0	-46091	9,52	30124		
6	1,60	100, 100	12,57	12,57	0	-46091	6,19	30124		
7	1,92	100, 100	16,59	12,57	0	-60588	5,73	30124		
8	2,24	100, 100	16,59	12,57	0	-60588	4,27	30124		
9	2,56	100, 100	16,59	16,59	0	-60583	3,32	30124		
10	2,88	100, 100	16,59	16,59	0	-60583	2,67	30124		
11	3,20	100, 100	16,59	16,59	0	-60583	2,19	30124		

COMBINAZIONE nº 15 Peso mu ro favorevole e Peso terrapieno favorevole

Valore del la spinta statica Componente orizzontale della spint a statica Componente vetticale della spint a statica Punto d'applicazione della spinta Inclinaz, della spint a rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	14202,91 13210,36 5216,25 X = 3,20 21,55 57,17	[kg] [kg] [kg] [m] [°]	Y=-6,55	[m]
Spinta falda Punto d'applicazione della spinta della falda Sottospinta falda	2600,00 X = 3,20 13000,00	[kg] [m] [kg]	Y=-8,03	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	37214,00 X = 1,58	[kg] [m]	Y=-5,39	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Sforzo normale sul piano di posa della fondazione Sforzot angenziale sul piano di posa della fondazione Eccentricia rispetto al baricentro della fondazione Lunghezza fondazione reagente	15810,36 58670,25 58670,25 15810,36 0,06 5,00	[kg] [kg] [kg] [kg] [m]		

Risult ant e in fondazione		60763,19	[kg]	
Inclinazione della risultante (rispetto alla normale)		15,08	[°]	
Moment o risp ett o al baricentro della fondazione		3278,50	[kgm]	
Carico ultimo della fondazione		248994,93	[kg]	
Tensioni sul terreno				
Lunghezza fondazione reagente		5,00	[m]	
Tensione terreno allo spigolo di valle		1,2521	[kg/cmq]	
Tensione terreno allo spigolo di monte		1,0947	[kg/cmq]	
Fattori per il calcolo della capacità portante Coeff. capacità portante	$N_c = 35.49$	$N_q = 2$	3.18	$N_{\gamma} = 22.02$
Fattori forma	$s_c = 1.00$		1,00	1.00
rattori forma	36-1,00	$s_q =$	1,00	$s_{\gamma} = 1,00$
Fattori indinazione	$i_c = 0,69$	$\mathbf{s}_{\mathbf{q}} = \mathbf{i}_{\mathbf{q}} = \mathbf{i}_{\mathbf{q}}$		$s_{\gamma} = 1,00$ $i_{\ell} = 0,28$
	,		0,69	
Fattori inclinazione	$i_c = 0,69$ $d_c = 1,14$	$i_q = d_q = d_q = d_q = d_q$	0,69 1,07	$i_{\gamma} = 0.28$ $d_{\gamma} = 1.07$
Fattori inclinazione Fattori profon dità	$i_c = 0,69$ $d_c = 1,14$	$i_q = d_q = d_q = d_q = d_q$	0,69 1,07 di posa, inclinazione	$i_{\gamma} = 0.28$ $d_{\gamma} = 1.07$
Fattori inclinazione Fattori profon dità	$i_c = 0,69$ $d_c = 1,14$ profondità, inclinazione cario	$i_q = d_q = 0$ to, inclinazione piano	0,69 1,07 di posa, inclinazione	$i_{\gamma} = 0.28$ $d_{\gamma} = 1.07$ pendio.

1.45 4.24

COEFFICIENTI DISICUREZZA
Coefficiente di sicurezza a scorrimento

Coefficiente di sicurezza a carico ultimo

61/144 62/144

Sollecitazioni paramento

Combinazione nº 15
L'ordinata Y(espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Siozo normale positivo di compressione, espresso in kg Taglio positivo se diretto di montreveno valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,39	788,24	0,50	3,79
3	0,79	1576,47	3,98	15,14
4	1,18	2364,71	13,43	34,13
5	1,58	3152,94	32,00	61,32
6	1,97	3941,18	62,81	96,34
7	2,36	4729,41	108,96	139,17
8	2,76	5517,65	173,53	189,81
9	3,15	6305,88	259,60	248,28
10	3,55	7094,12	376,93	366,89
11	3,94	7882,35	575,30	675,50
12	4,34	8670,59	931,84	1148,48
13	4,73	9458,82	1500,53	1769,63
14	5,12	10247,06	2342,34	2518,69
15	5,52	11035,29	3498,77	3366,17
16	5,91	11823,53	5008,58	4311,93
17	6,31	1261 1,76	6910,50	5355,93
18	6,70	13400,00	9242,94	6494,94
19	7,03	14066,67	11585,20	7590,09
20	7,37	14733,33	14323,48	8869,90
21	7,70	15400,00	17517,88	10323,74

Sollecitazioni fondazione di valle

Combinazione nº 15
L'asciss a X(spress ain m) è considerata positiva veso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in kgm
Taglio pas iñvo se diretto veso Falto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	50,05	1000,52
3	0,20	200,00	1997,88
4	0,30	449,52	2992,10
5	0,40	798,31	3983,18
6	0,50	1246,05	4971,10
7	0,60	1792,43	5955,88
8	0,70	2437,13	6937,51
9	0,80	3179,83	7916,00
10	0,90	4020,22	8891,33
11	1,00	4957,99	9863,52

Sollecitazioni fondazione di monte

Combinazione nº 15
L'asciss a Xispiess ain m) è considerata positiva veso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm Taglio pos invose diretto veso Talto, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,32	-303,12	-1889,10
3	0,64	- 1205,59	-3745,97
4	0,96	-2697,10	-5570,61
5	1,28	-4767,34	-7363,02
6	1,60	-7405,99	-9123,20

7	1,92	-10602,75	-10851, 15
8	2,24	-14347,29	-12546,88
9	2,56	-18629,31	-14210,38
10	2,88	-23438,49	-15841,64
11	3,20	-28761,11	-17406,68

63/144 64/144

Armature e tensioni nei materiali del muro

Combinazione nº 15

Lordinata Y(espressa in [m]) è consideratapositiva vesso il basso con origine in testa al muro Base dell'ascione espressa in [cm]

H altezza della sezione espressa in [cm]

A1, area di armatun in corrispondenza del lenbo di montein [cm]

A2, area di armatun in corrispondenza del lenbo di valle in [cm]

N4, sorzo normale ultimo espresso in [kgm]

M4, no mento ultimo espresso in [kgm]

CS coefficiente siamezza se sione

coefficiente sicurezza se zione Aliquota di taglio assorbito dal cls, espresso in [kg]

Aliquota di taglio assorbito dall'armatura, espresso in [kg] Re sis tenza al taglio, espresso in [kg]

Nr.	Y	В, Н	A_{fs}	A_{fi}	Nu	M_u	CS	V_{Rd}	V_{Rat}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,39	100, 80	8,04	8,04	984521	-621	1249,02	25314		
3	0,79	100, 80	8,04	8,04	983083	-2481	623,60	25425		
4	1,18	100, 80	8,04	8,04	980693	-5570	414,72	25536		
5	1,58	100, 80	8,04	8,04	977330	-9918	309,97	25647		
6	1,97	100, 80	8,04	8,04	973007	-15506	246,88	25758		
7	2,36	100, 80	8,04	8,04	967755	-22297	204,62	25868		
8	2,76	100, 80	8,04	8,04	961607	-30243	174,28	25979		
9	3,15	100, 80	8,04	8,04	954603	-39299	151,38	26090		
10	3,55	100, 80	8,04	8,04	946116	-50270	133,37	26201		
11	3,94	100, 80	8,04	8,04	932363	-68049	118,28	26312		
12	4,34	100, 80	12,06	12,06	905109	-97273	104,39	26423		
13	4,73	100, 80	12,06	12,06	772510	- 122549	81,67	26534		
14	5,12	100, 80	24,63	24,63	708214	- 161888	69,11	29680		
15	5,52	100, 80	24,63	24,63	563116	- 178538	51,03	29791		
16	5,91	100, 80	24,63	24,63	405492	- 171771	34,30	29902		
17	6,31	100, 80	24,63	24,63	276991	-151775	21,96	30013		
18	6,70	100, 80	24,63	24,63	189736	- 130874	14,16	30124		
19	7,03	100, 80	24,63	24,63	142394	-117275	10,12	30217		
20	7,37	100, 80	16,59	16,59	74500	-72428	5,06	27275		
21	7,70	100, 80	16,59	16,59	59159	-67294	3,84	27369		

Armature e tensioni nei materiali della fondazione

Combinazione nº 15

Simbologia adottata
B base della sezione espressa in [cm]

base de lla sezione espressa in [cm]
altezza della sezione espressa in [cm]
area di armatua in corrispondenza del tenbo intiriore in [cmq]
area di armatua in corrispondenza del tenbo superiore in [cmq]
sforzo nomale ultimo espresso in [kg]
no mento ultimo espresso in [kgm]
coefficiente sicurezza sezione
Aliquata di tigo io ssorbito dall'armatura, espresso in [kg]
Resis tanza al tugolio, espresso in [kg]

VRsd

Fondazion e di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estre no libero della fondazione di valle)

Nr.	Y	В, Н	A_{fs}	A_6	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12.57	12,57	0	46091	920,87	30124		
3	0,20	100, 100	12.57	12,57	0	46091	230,46	30124		
4	0,30	100, 100	12.57	12,57	0	46091	102,53	30124		
5	0,40	100, 100	12.57	12,57	0	46091	57,74	30124		
6	0,50	100, 100	12.57	12,57	0	46091	36,99	30124		
7	0.60	100, 100	12.57	12.57	0	46091	25,71	30124		
8	0.70	100, 100	12.57	12,57	0	46091	18,91	30124		
9	0.80	100, 100	12.57	12,57	0	46091	14.49	30124		
10	0,90	100, 100	16.59	16,59	Õ	60583	15,07	30124		
11	1,00	100, 100	16.59	16,59	0	60583	12,22	30124		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre no libero della fondazione di nonte)

Nr.	Y	В. Н	Ars	An	Nu	Mu	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,32	100, 100	12.57	12,57	0	-46091	152,06	30124		
3	0,64	100, 100	12.57	12,57	0	-46091	38,23	30124		
4	0,96	100, 100	12.57	12.57	0	-46091	17.09	30124		
5	1.28	100, 100	12.57	12,57	0	-46091	9,67	30124		
6	1,60	100, 100	12.57	12,57	0	-46091	6,22	30124		
7	1,92	100, 100	16.59	12,57	0	-60588	5,71	30124		
8	2,24	100, 100	16.59	12,57	0	-60588	4,22	30124		
9	2,56	100, 100	16.59	16,59	0	-60583	3,25	30124		
10	2.88	100, 100	16.59	16.59	0	-60583	2.58	30124		
11	3.20	100, 100	16.59	16.59	0	-60583	211	30124		

COMBINAZIONE nº 16

Peso mu ro sfavore vol e e Peso terrapieno sfavore vole

Valore della spinta statica Componente orizzontale della spint a statica Componente verticale della spint a statica Punto d'applicazione della spinta Inclinaz. della spint a rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	14202,91 13210,36 5216,25 X = 3,20 21,55 57,17	[kg] [kg] [kg] [m] [°]	Y = -6,55	[m]
Spinta falda Punto d'applicazione del la spinta della falda Sottospinta falda	2600,00 X = 3,20 13000,00	[kg] [m] [kg]	Y = -8,03	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravant e sulla fondazione a monte	45633,20 X = 1,58	[kg] [m]	Y = -5,39	[m]
Risultanti				
Risult ant e dei carichi applicati in dir. orizzontale	15810,36	[kg]		
Risult ant e dei carichi applicati in dir. verticale Sforzo normale sul piano di posa della fondazione	75459,45 75459,45	[kg] [kg]		
Sforzo tangenziale sul piano di posa della fondazione	15810,36	[kg]		
Eccentricità rispetto al baricentro della fondazione	0,01	[m]		
Lunghezza fondazione reagente	5,00	[m]		

65/144 66/144 $d_{r} = 1.07$

 $d_q = 1,07$

Risult ant e in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	77097,96 11,83 933,62 303154,37	[kg] [°] [kgm] [kg]
Tensioni sul terreno		
Lunghezza fondazione reagente	5,00	[m]
Tensione terreno allo spigolo di valle	1,53 16	[kg/cmq]
Tensione terreno allo spigolo di monte	1,4868	[kg/cmq]

Fattori per il calcolo della capacità portante			
Coeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori indinazione	$i_c = 0.75$	$i_q = 0.75$	$i_{y} = 0.40$

 $d_c = 1.14$

I coefficient i N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio. $N'_{\gamma} = 9.38$ $N'_c = 30.63$ $N'_q = 18.74$

COEFFICIENTI DI SICUREZZA

Fattori profondità

1.86 4.02 Coefficiente di sicurezza a scorrimento Coefficiente di sicurezza a carico ultimo

Sollecitazioni paramento

Combinazione nº 16
L'ordinat y (espressa in m)è conside na positiva verso il basso con origine in testa al muro Momento positivo settende le fibrecontroterra (a monte), espresso in kgm Sōrzo normale positivo di compressione, espresso in kg Taglio positivo es diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,39	1024,71	0,50	3,79
3	0,79	2049,41	3,98	15,14
4	1,18	3074,12	13,43	34,13
5	1,58	4098,82	32,00	61,32
6	1,97	5123,53	62,81	96,34
7 8	2,36	6148,24	108,96	139, 17
	2,76	7172,94	173,53	189,81
9	3,15	8197,65	259,60	248,28
10	3,55	9222,35	376,93	366,89
11	3,94	10247,06	575,30	675,50
12	4,34	11271,76	931,84	1148,48
13	4,73	12296,47	1500,53	1769,63
14	5,12	13321,18	2342,34	2518,69
15	5,52	14345,88	3498,77	3366,17
16	5,91	15370,59	5008,58	4311,93
17	6,31	16395,29	6910,50	5355,93
18	6,70	17420,00	9242,94	6494,94
19	7,03	18286,67	11585,20	7590,09
20	7,37	19153,33	14323,48	8869,90
21	7,70	20020,00	17517,88	10323,74

Sollecitazioni fondazione di valle

Combinazione nº 16
L'ascis a X(septesa ain m) e considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	60,31	1206,15
3	0,20	241,20	2411,40
4	0,30	542,56	3615,75
5	0,40	964,32	4819,21
6	0,50	1506,38	6021,78
7	0,60	2168,65	7223,44
8	0,70	2951,04	8424,21
9	0,80	3853,46	9624,09
10	0,90	4875,82	10823,06
11	1,00	6018,04	12021,14

Sollecitazioni fondazione di monte

Combinazione nº 16

L'asciss a X(espress a in m) è considerata positiva verso valle con origine in corrispondenz a del l'estremo libero della fondazione di monte Momento positivo se tende le fibre inferiori, espresso in kgm Ta glio positivo se diretto verso l'alto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,32	-142,01	-886,03
3	0,64	-566,08	-1762,88
4	0,96	-1269,27	-2630,55
5	1,28	-2248,65	-3489,05
6	1,60	-3501,28	-4338,36

67/144 68/144 03.5 - Muro sez. D-D - Fascicolo dei calcoli.rtf

1,92 -5024,23 -5178,50 2,24 2,56 2,88 -6814,54 -6009,46 -6831,25 -7643,85 -8869.30 10 -11185,56 11 3,20 -13756,98 -8413,28

Armature e tensioni nei materiali del muro

Combinazione nº 16

Lordinata V(espressa in [mi]) è considerata positiva verso il basso con origine in testa al muro B boare dell'assezione espressa in [cmi] a laceza della sevicine espressa in [cmi] al laceza della sevicine espressa in [cmi] a laceza della sevicine espressa in [cmi] a laceza della sevicine espressa in [cmi] a laceza della sevicine espressa in [kmi] a laceza della sevicine espressa in [kmi] sevicine espres

Nr.	Y	В, Н	A_{fs}	$\mathbf{A}_{\mathbf{fi}}$	Nu	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	$\mathbf{V}_{\mathbf{Red}}$	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203	▼ Red	V Rsd
2	0,39	100, 80	8.04	8,04	984632	-478	960,89	25347		
3	0,79	100, 80	8,04	8,04	983525	- 1909	479,91	25492		
4	1,18	100, 80	8,04	8,04	981684	-4289	319,34	25636		
5	1,58	100, 80	8,04	8,04	979090	-7643	238,87	25780		
6	1,97	100, 80	8,04	8,04	975749	-11962	190,44	25924		
7	2,36	100, 80	8,04	8,04	971681	-17221	158,04	26068		
8	2,76	100, 80	8,04	8,04	966907	-23392	134,80	26212		
9	3,15	100, 80	8,04	8,04	961450	-30447	117,28	26356		
10	3,55	100, 80	8,04	8,04	954815	-39025	103,53	26500		
11	3,94	100, 80	8,04	8,04	944005	-52999	92,12	26644		
12	4,34	100, 80	12,06	12,06	955537	-78994	84,77	26788		
13	4,73	100, 80	12,06	12,06	866302	- 105714	70,45	26933		
14	5,12	100, 80	24,63	24,63	818498	- 143921	61,44	30113		
15	5,52	100, 80	24,63	24,63	680559	- 165979	47,44	30257		
16	5,91	100, 80	24,63	24,63	549614	- 179094	35,76	30401		
17	6,31	100, 80	24,63	24,63	408227	-172065	24,90	30545		
18	6,70	100, 80	24,63	24,63	292169	-155023	16,77	30689		
19	7,03	100, 80	24,63	24,63	219921	-139327	12,03	30811		
20	7,37	100, 80	16,59	16,59	114949	-85963	6,00	27897		
21	7,70	100, 80	16,59	16,59	87895	-76910	4,39	28019		

69/144 70/144

Armature e tensioni nei materiali della fondazione

Combinazione nº 16
Simbologia adutata
B base de lla sezione espressa in [cm]
H alecza della sezione espressa in [cm]
An area di armatuna in corrispondenza del lenbo inferiore in [cmq]
An area di armatuna in corrispondenza del lenbo superfore in [cmq]
An area di armatuna in corrispondenza del lenbo superfore in [cmq]
An area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, area di armatuna in corrispondenza del lenbo superfore in [cmq]
M, area di armatuna corrispondenza del lenbo superfore in [cmq]
M, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in [cmq]
N, area di armatuna corrispondenza del lenbo superfore in

Fondazion e di valle

 $(L'ascissa\,\,X,espressa\,in\,\,[m],\grave{e}\,positiva\,verso\,\,monte\,con\,origine\,in\,corrispondenza\,dell'estre\,no\,\,libero\,della\,\,fondazione\,di\,valle)$

Nr.	Y	В, Н	A_{fs}	$\mathbf{A}_{\mathbf{fi}}$	N_u	M_u	CS	V_{Rd}	V_{Ral}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	1257	12,57	0	46091	764,18	30124		
3	0,20	100, 100	1257	12,57	0	46091	191,09	30124		
4	0,30	100, 100	1257	12,57	0	46091	84,95	30124		
5	0.40	100, 100	1257	12,57	0	46091	47,80	30124		
6	0.50	100, 100	1257	12.57	0	46091	30,60	30124		
7	0.60	100, 100	12.57	12,57	0	46091	21,25	30124		
8	0.70	100, 100	1257	12.57	Õ	46091	15,62	30124		
9	0.80	100, 100	12.57	12.57	0	46091	11,96	30124		
10	0.90	100, 100	1659	16,59	Õ	60583	12,43	30124		
11	1.00	100, 100	1659	16,59	0	60583	10,07	30124		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libero della fondazione di monte)

Nr.	Y	B, H	Ars	An	Nu	Mu	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,32	100, 100	12,57	12,57	0	-46091	324,57	30124		
3	0,64	100, 100	12,57	12,57	0	-46091	81,42	30124		
4	0,96	100, 100	12,57	12,57	0	-46091	36,31	30124		
5	1,28	100, 100	12.57	12,57	0	-46091	20,50	30124		
6	1,60	100, 100	12,57	12,57	0	-46091	13,16	30124		
7	1,92	100, 100	16,59	12,57	0	-60588	12,06	30124		
8	2,24	100, 100	16,59	12,57	0	-60588	8,89	30124		
9	2,56	100, 100	16,59	16,59	0	-60583	6,83	30124		
10	2,88	100, 100	1659	16,59	0	-60583	5,42	30124		
11	3,20	100, 100	1659	16,59	0	-60583	4,40	30124		

COMBINAZIONE nº 17

COMBINAZIONE n° 1/				
Valore del la spinta statica Componente orizzontale della spinta statica Componente vetticale della spinta a statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	15723,37 14992,05 4739,52 X = 3,20 17,54 54,01	[kg] [kg] [kg] [m] [°]	Y = -6,52	[m]
Spinta falda Punto d'applicazione della spinta della falda Sottospinta falda	2200,00 X = 3,20 11000,00	[kg] [m] [kg]	Y=-8,03	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	34407,60 X = 1,58	[kg] [m]	Y=-5,39	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Moment oribalt ante rispetto allo spigolo a valle Moment ost abilizzant erispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione	17192,05 54597,12 61700,03 188870,79 54597,12 17192,05 0,17	[kg] [kg] [kgm] [kgm] [kg] [kg]		

Lunghezza fondazione reagente	5,00	[m]
Risult ant e in fondazione	57239,95	[kg]
Inclinazione della risultante (rispetto alla normale)	17,48	[°]
Moment o risp ett o al baricentro della fondazione	9322.04	[kgm]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 3.06

71/144 72/144

Stabilità globale muro + terreno

Combinazione n° 18

Le se ise Xonor considerat positive verso mme

Le se ise Xonor considerat positive verso falto

Origine in esta al mun (spigolo contro tera)

De odellastis da espresso in [kg]

α angolo fa la base de la striscia e forizzontale espresso in [*] (positivo antionario)

angolo fattrio del terreno lungo la base della striscia

c cossione del terreno lungo la base della striscia espressa in [kg/cmq]

b lamplezza della striscia espressa in [kg/cmq]

μ pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -2,15 Y[m] = 0.00

Raggio del cerchio R[m]= 10,22

A scissa a valle del cerchio Xi[m]=-9,88 Xs[m]=7,56 A scissa a monte del cerchio Larghezza della striscia dx[m] = 0.70Coefficiente di sicurezza C= 1.60 Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α (°)	Wsing.	b/cosα	•	c	u
1	2930.55	66.56	2688.70	1.75	28.57	0.000	0.000
2	4772.15	58.21	4056.19	1.32	26.56	0.000	0.000
3	6095.50	51.36	4761.20	1.12	26.56	0.000	0.000
4	7173.86	45.44	5111.54	0.99	26.56	0.000	0.046
5	8076.89	40.10	5202.06	0.91	26.56	0.000	0.111
6	8828.49	35.15	5082.34	0.85	26.56	0.000	0.165
7	9740.82	30.49	4941.69	0.81	26.56	0.000	0.210
8	1035 6.19	26.04	4546.19	0.78	26.56	0.000	0.247
9	1078 6.42	21.76	3998.13	0.75	26.56	0.000	0.278
10	11133.68	17.60	3366.30	0.73	26.56	0.000	0.303
11	13769.23	13.54	3222.69	0.72	26.56	0.000	0.323
12	16864.29	9.54	2795.29	0.71	26.56	0.000	0.337
13	5175.16	5.59	504.35	0.70	26.56	0.000	0.346
14	5034.27	1.67	146.81	0.70	26.56	0.000	0.351
15	4883.47	-2,24	-191.09	0.70	26.56	0.000	0.350
16	4811.90	-6.17	-516.92	0.70	26.56	0.000	0.345
17	4672.59	-10.12	-821.07	0.71	26.56	0.000	0.335
18	4463.48	-14.12	-1089.17	0.72	26.56	0.000	0.320
19	4181.31	-18.20	-1305.92	0.73	26.56	0.000	0.300
20	3821.36	-22,37	-1454.54	0.75	26.56	0.000	0.274
21	3376.98	-26.68	-1516.11	0.78	26.56	0.000	0.242
22	2838.85	-31.15	-1468.52	0.81	26.56	0.000	0.204
23	2193.72	-35.85	-1284.76	0.86	26.56	0.000	0.157
24	1422.09	-40.85	-930.12	0.92	26.56	0.000	0.102
25	493.65	-46.26	-356.67	1.01	26.56	0.000	0.035

 $\Sigma W = 157896,91 \text{ [kg]}$ Σ Wisin α i= 39488,58 [kg] Σ Wtan ϕ = 79062,90 [kg] Σt anotitanφ= 2.60

COMBINAZIONE nº 19

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	10471,27 9740,14 3844,09 X = 3,20 21,54 57,17	[kg] [kg] [kg] [m] [°]	Y=-6,57	[m]
Incremento sismico della spinta Punto d'applicazione dell'increment o sismico di spinta Inclinazione linea di rottura in condizioni sismiche	2412,11 X = 3,20 52,79	[kg] [m] [°]	Y=-6,57	[m]

Spinta falda Punto d'applicazione del la spinta della falda Sottospinta falda		2000,00 X = 3,20 10000,00	[kg] [m] [kg]	Y=-8,03	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte		34164,00 X = 1,58 1452,56 726,28 1778,68 889,34	[kg] [m] [kg] [kg] [kg]	Y=-5,39	[m]
Risultanti Risult ante dei carichi applicati in dir. orizzontale Risult ante dei carichi applicati in dir. verticale Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risult ante in fondazione Inclinazione della risultante (risp etto alla normale) Moment o rispetto al baricentro della fondazione Carico ultimo della fondazione Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte		17284,85 59749,22 59749,22 17284,85 0,23 5,00 62199,16 16,13 13965,85 217499,76	[kg] [kg] [kg] [m] [m] [kg] [sg] [kgm] [kg] [kg] [kg] [kg] [kg/cmq]		
Fattori per il calcolo della capacità portante C coff. capacità portante Fattori forma Fattori indinazione Fattori profondità I coefficient i N' tengono conto dei fattori di forma, profo	$\begin{split} N_c &= 35.49 \\ s_c &= 1,00 \\ i_c &= 0,67 \\ d_c &= 1,14 \\ \text{ndita}, inclinazione carico, ir \\ N'_c &= 27.36 \end{split}$	$\begin{aligned} N_q &= 23 \\ s_q &= 1 \\ i_q &= 0 \\ d_q &= 1 \end{aligned}$ nclinazione piano d $N_q' &= 16$,00 ,67 ,07 i posa, inclina		$N_{\gamma} = 22.02$ $s_{\gamma} = 1,00$ $i_{\gamma} = 0.25$ $d_{\gamma} = 1,07$ $N'_{\gamma} = 5.80$
COEFFICIENTI DISICUREZZA Coefficiente di sicurezza a scorrimento Coefficiente di sicurezza a carico ultimo		1.35 3.64			

73/144 74/144

Combinazione nº 19

Comminazione n 19
Lordinar Vespresa in mje considenta positiva veso il basso conorigine in testa al muro
Momento positivo setende le fibrecontro terra (a morte), espresso in kgm
Sforzo normale positivo di compressione, espresso in kg
Taglio pos itvose diretto da monte vesto valle, espresso in kg

Nr. M 0,00 0,00 0,00 0,00 8,55 44,53 0,39 788,24 0.79 1576.47 36,02 96.06 2364.71 85,18 154,63 1.18 3152,94 1,58 158,93 220,78 1,97 3941,18 260,17 294,15 2,36 2,76 4729,41 391,74 374,74 5517.65 556,50 462,53 557,55 6305,88 757,27 3,15 3,55 7094,12 1001,58 696,96 3,94 7882,35 1328,48 992,85 11 12 13 4,34 8670,59 1804,72 1437,46 4,73 9458,82 2479,66 2016,75 5,12 10247,06 3408,59 2712,32 15 5.52 11035,29 4629,53 3498,58 11823,53 4375,61 6178,22 16 5,91 6.31 1261 1.76 8090,46 5343,35 18 6.70 13400,00 10401,70 6398.83 19 14066,67 12697,63 7,03 7402,09

Sollecitazioni fondazione di valle

7,37 7,70

20

Combinazione nº 19
L'asciss a X(spress ain m) è considerata positiva veso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in kgm
Taglio pas iñoses diretto veso Falso, espresso in kg

15352,87

18415,49

8553,61

9843,56

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	63,78	1273,46
3	0,20	254,25	2533,52
4	0,30	570,04	3780,16
5	0,40	1009,83	5013,40
6	0,50	1572,27	6233,23
7	0,60	2256,03	7439,66
8	0,70	3059,76	8632,68
9	0,80	3982,12	9812,29
10	0,90	5021,77	10978,49
11	1.00	6177.37	12131.29

14733,33

15400,00

Sollecitazioni fondazione di monte

Combinazione nº 19

1,60

Commizzation II 19 de considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo set ende le fibre inferiori, espresso in Igm Taglio posi fivos derietto twee o fallo, opersos in Igm

-5759,01

Nr. M 0,00 0,00 0,00 -231,88 - 1426,38 0,32 0.64 -898.24 -2715,47 - 1955,14 0,96 -3867,28 -3358,65 1,28 -4881,79

-5064,84

7	1,92	-7029,78	-6498,94
8	2,24	-9209,52	-7101,59
9	2,56	-11560,15	-7566,94
10	2,88	-14037,72	-7895,00
11	3,20	-16599, 14	-8105,78

75/144 76/144

Armature e tensioni nei materiali del muro

Combinazione nº 19

Lordina a Yespressa in [mi] è considerata positiva verso il basso con origine in testa al muro B bose de lliasezione espressa in [cmi] a lacza della sezione della sezione della controla del enbo di valle in [cmi] sezione matteria della controla del enbo di valle in [cmi] sezione matteria della controla de

Nr.	Y	В, Н	A_{fs}	A_{fi}	Nu	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,39	100, 80	8,04	8,04	976810	-10591	1239,24	25314		
3	0,79	100, 80	8,04	8,04	967895	-22116	613,96	25425		
4	1,18	100, 80	8,04	8,04	958298	-34521	405,25	25536		
5	1,58	100, 80	8,04	8,04	948035	-47789	300,68	25647		
6	1,97	100, 80	8,04	8,04	937148	-61864	237,78	25758		
7	2,36	100, 80	8,04	8,04	925690	-76676	195,73	25868		
8	2,76	100, 80	8,04	8,04	894958	-90263	162,20	25979		
9	3,15	100, 80	8,04	8,04	843207	-101260	133,72	26090		
10	3,55	100, 80	8,04	8,04	788071	-111264	111,09	26201		
11	3,94	100, 80	8,04	8,04	718772	- 121141	91,19	26312		
12	4,34	100, 80	12,06	12,06	659658	-137303	76,08	26423		
13	4,73	100, 80	12,06	12,06	553280	- 145044	58,49	26534		
14	5,12	100, 80	24,63	24,63	539637	- 179506	52,66	29680		
15	5,52	100, 80	24,63	24,63	410807	-172342	37,23	29791		
16	5,91	100, 80	24,63	24,63	299527	- 156514	25,33	29902		
17	6,31	100, 80	24,63	24,63	215073	- 137970	17,05	30013		
18	6,70	100, 80	24,63	24,63	156670	- 121615	11,69	30124		
19	7,03	100, 80	24,63	24,63	122661	-110723	8,72	30217		
20	7,37	100, 80	16,59	16,59	67143	-69966	4,56	27275		
21	7,70	100, 80	16,59	16,59	55155	-65955	3,58	27369		

Armature e tensioni nei materiali della fondazione

Combinazione nº 19

Simbologia adottata
B base dell'a sezione espressa in [cm]

bace de lla sezione espressa in [cm]
altezza del la sezione espressa in [cm]
area di armatua in corrispondenza del le nbo inferiore in [cmq]
area di armatua in corrispondenza del le nbo superiore in [cmq]
storzo nomale ultimo espresso in [kg]
no mento ultimo espresso in [kg]
no mento ultimo espresso in [kg]
Aliquat di tiggio assobito dal cls, espresso in [kg]
Aliquat di tiggio assobito dal mantura, espresso in [kg]
Resis tenza al taglio, espresso in [kg]

Ars N_u M_u CS VRcd VRsd

Fondazion e di valle

 $(L'ascissa\ X, espressa\ in\ [m], \`e\ positiva\ verso\ monte\ con\ origine\ in\ corrispondenza\ dell'estre no\ libero\ della\ fondazione\ di\ valle)$

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12.57	12,57	0	46091	722,61	30124		
3	0,20	100, 100	12.57	12,57	0	46091	181,29	30124		
4	0,30	100, 100	12.57	12,57	0	46091	80,86	30124		
5	0,40	100, 100	12.57	12,57	0	46091	45,64	30124		
6	0,50	100, 100	12.57	12.57	0	46091	29,32	30124		
7	0.60	100, 100	12.57	12,57	0	46091	20,43	30124		
8	0.70	100, 100	12.57	12,57	0	46091	15,06	30124		
9	0.80	100, 100	12.57	12,57	0	46091	11,57	30124		
10	0.90	100, 100	16.59	16,59	Ö	60583	12,06	30124		
11	1.00	100, 100	16.59	16.59	0	60583	9.81	30124		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre no libero della fondazione di nonte)

Nr.	Y	В, Н	Ars	An	Nu	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,32	100, 100	12,57	12,57	0	-46091	198,77	30124		
3	0,64	100, 100	12,57	12,57	0	-46091	51,31	30124		
4	0,96	100, 100	12,57	12,57	0	-46091	23,57	30124		
5	1,28	100, 100	12,57	12,57	0	-46091	13,72	30124		
6	1,60	100, 100	12,57	12,57	0	-46091	9,10	30124		
7	1,92	100, 100	16,59	12,57	0	-60588	8,62	30124		
8	2,24	100, 100	16,59	12,57	0	-60588	6,58	30124		
9	2,56	100, 100	16,59	16,59	0	-60583	5,24	30124		
10	2,88	100, 100	16,59	16,59	0	-60583	4,32	30124		
11	3,20	100, 100	16,59	16,59	0	-60583	3,65	30124		

COMBINAZIONE nº 20

Valore del la spint a statica Componente orizzontale del la spint a statica Componente verticale del la spint a statica Punto d'applicazione del la spinta Inclinaz, del la spint a rispetto alla normale al la superficie Inclinazione linea di rottura in condizioni statiche	10471,27 9740,14 3844,09 X = 3,20 21,54 57,17	[kg] [kg] [kg] [m] [°]	Y=-6,57	[m]
Incremento sismico della spinta Punto d'applicazione dell'increment o sismico di spinta Inclinazione linea di rottura in condizioni sismiche	$ \begin{array}{l} 1878,54 \\ X = 3,20 \\ 52,54 \end{array} $	[kg] [m] [°]	Y = -6,57	[m]
Spinta falda Punto d'applicazione del la spinta della falda Sottospinta falda	$2000,00 \\ X = 3,20 \\ 10000,00$	[kg] [m] [kg]	Y = -8,03	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte	34164,00 X = 1,58 1452,56 -726,28 1778,68 -889,34	[kg] [m] [kg] [kg] [kg]	Y=-5,39	[m]

77/144 78/144

Risul		

Risult ant e dei carichi applicati in dir. orizzontale	16788,53	[kg]
Risult ant e dei carichi applicati in dir. verticale	56322,10	[kg]
Sforzo normale sul piano di posa della fondazione	56322,10	[kg]
Sforzo t angenziale sul piano di posa della fondazione	16788,53	[kg]
Eccentricità rispetto al baricentro della fondazione	0,25	[m]
Lunghezza fondazione reagente	5,00	[m]
Risult ant e in fondazione	58771,03	[kg]
Inclinazione della risultante (rispetto alla normale)	16,60	[°]
Moment o risp ett o al baricentro del la fondazione	14087,38	[kgm]
Carico ultimo della fondazione	210281.74	[kg]

Tensioni sul terreno

Lunghezza fondazione reagente	5,00	[m]
Tensione terreno allo spigolo di valle	1,4645	[kg/cmq]
Tensione terreno allo spigolo di monte	0.7883	[kg/cma]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori indinazione	$i_c = 0,67$	$i_q = 0.67$	$i_{i} = 0.23$
Fattori profon dità	$d_c = 1, 14$	$d_q = 1,07$	$d_f = 1,07$
Logofficient i N' tengana conte dei fottori di forme	profondità inclinazione carico	in alineatione niene di nece inalineatione nandio	

 $N'_c = 27.01$ $N'_q = 16.53$

COEFFICIEN TI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	1.31
Coefficiente di sicurezza a carico ultimo	3.73

Sollecitazioni paramento

Combinazione nº 20
L'ordinat y (espressa in m) è conside na positiva verso il basso con origine in testa al muro Momento positivo settende le fibrecontroterra (a monte), espresso in kgm Sōrzo normale positivo di compressione, espresso in kg Taglio positivo es diretto di montreveso valle, espresso in kg

Nr.	Y	N	M	Т
1	0,00	0,00	0,00	0,00
2	0,39	788,24	8,53	44,38
3	0,79	1576,47	35,86	95,46
4	1,18	2364,71	84,66	153,28
5	1,58	3152,94	157,67	218,36
6	1,97	3941,18	257,69	290,35
7	2,36	4729,41	387,45	369, 25
	2,76	5517,65	549,65	455,04
9	3,15	6305,88	747,03	547,76
10	3,55	7094,12	986,79	682,97
11	3,94	7882,35	1306,29	967,98
12	4,34	8670,59	1769,44	1395,35
13	4,73	9458,82	2423,50	1951,66
14	5,12	10247,06	3321,40	2619,28
15	5,52	11035,29	4499,52	3373,72
16	5,91	11823,53	5992,10	4215,05
17	6,31	1261 1,76	7833,39	5143,22
18	6,70	13400,00	10057,33	6155,38
19	7,03	14066,67	12265,67	7119,66
20	7,37	14733,33	14820,04	8230,60
21	7,70	15400,00	17768,05	9478,81

Sollecitazioni fondazione di valle

Combinazione nº 20
L'ascis a X(septesa ain m) e considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	60,50	1207,78
3	0,20	241,10	2402,03
4	0,30	540,46	3582,76
5	0,40	957,21	4749,97
6	0,50	1490,00	5903,65
7	0,60	2137,48	7043,80
8	0,70	2898,31	8170,44
9	0,80	3771,12	9283,55
10	0,90	4754,57	10383,13
11	1,00	5847,30	11469,20

Sollecitazioni fondazione di monte

Combinazione nº 20

Comminazione II 20 .

Lascisa a (Sepsessain m) è considerata positiva verso valle con origine in corrispondenz adell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivos deriteto twoes Talko, opersso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,32	-268,41	-1654,45
3	0,64	- 1044,08	-3170,42
4	0,96	-2282,71	-4547,91
5	1,28	-3939,97	-5786,91
6	1,60	-5971,56	-6887,43

79/144 80/144 03.5 - Muro sez. D-D - Fascicolo dei calcoli.rtf

1,92 -8333,15 -7849,46 2,24 2,56 2,88 -10980,44 -8673,00 -13869,10 -16954,83 -9358.07 10 -9904,64 11 3,20 -20194,14 -10332,74

Armature e tensioni nei materiali del muro

Combinazione nº 20

Lordinata V(espressa in [mi]) è considerata positiva veso il basso con origine in testa al muro B base dell'assezione espressa in [cmi] di necre ad dis avvine es espressa in [cmi] di necre ad di necre ad del necre ad de

Nr.	Y	В, Н	A_{fs}	$\mathbf{A}_{\mathbf{fi}}$	Nu	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	V_{Rot}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203	▼ Red	▼ Rsd
2	0,39	100, 80	8.04	8,04	976828	-10567	1239,26	25314		
3	0.79	100, 80	8,04	8,04	967968	-22021	614,01	25425		
4	1,18	100, 80	8.04	8.04	958460	-34312	405,32	25536		
5	1,58	100, 80	8,04	8,04	948318	-47424	300,77	25647		
6	1,97	100, 80	8,04	8,04	937581	-61303	237.89	25758		
7	2,36	100, 80	8,04	8,04	926302	-75885	195,86	25868		
8	2,76	100, 80	8,04	8,04	898427	-89499	162,83	25979		
9	3,15	100, 80	8,04	8,04	847771	-100432	134,44	26090		
10	3,55	100, 80	8,04	8,04	793199	-110333	111,81	26201		
11	3,94	100, 80	8,04	8,04	725702	-120265	92,07	26312		
12	4,34	100, 80	12,06	12,06	668506	-136425	77,10	26423		
13	4,73	100, 80	12,06	12,06	564015	- 14451 0	59,63	26534		
14	5,12	100, 80	24,63	24,63	552205	-178987	53,89	29680		
15	5,52	100, 80	24,63	24,63	426919	-174072	38,69	29791		
16	5,91	100, 80	24,63	24,63	313146	- 15870 1	26,48	29902		
17	6,31	100, 80	24,63	24,63	227204	-141120	18,02	30013		
18	6,70	100, 80	24,63	24,63	165228	- 12401 1	12,33	30124		
19	7,03	100, 80	24,63	24,63	129637	-113039	9,22	30217		
20	7,37	100, 80	16,59	16,59	70760	-71176	4,80	27275		
21	7,70	100, 80	16,59	16,59	57985	-66902	3,77	27369		

81/144 82/144

Dicultanti

Armature e tensioni nei materiali della fondazione

Combinazione n° 20
Simbologia adutata
B base de lla sezione espressa in [cm]
H alecza della sezione espressa in [cm]
An area di armatun in corrispondenza del lenbo inferiore in [cm]
An area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in socione dal consenso in [kg]
VRSd Aliquota di tiggli o sosofrito dal l'armatura, espresso in [kg]
VRd Resistenza al taglio, espresso in [kg]

Fondazion e di valle

 $(L'ascissa\,\,X,espressa\,in\,\,[m],\grave{e}\,positiva\,verso\,\,monte\,con\,origine\,in\,corrispondenza\,dell'estre\,no\,\,libero\,della\,\,fondazione\,di\,valle)$

Nr.	Y	В, Н	A_{fs}	A_6	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	1257	12,57	0	46091	761,82	30124		
3	0.20	100, 100	12.57	12.57	0	46091	191,17	30124		
4	0.30	100, 100	12.57	12.57	0	46091	85.28	30124		
5	0.40	100, 100	12.57	12.57	0	46091	48,15	30124		
6	0.50	100, 100	12.57	12.57	0	46091	30,93	30124		
7	0.60	100, 100	12.57	12.57	0	46091	21.56	30124		
8	0.70	100, 100	1257	12.57	Õ	46091	15,90	30124		
9	0.80	100, 100	12.57	12.57	Õ	46091	12,22	30124		
10	0.90	100, 100	1659	16.59	ŏ	60583	12,74	30124		
11	1.00	100, 100	1659	16.59	Õ	60583	10,36	30124		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libero della fondazione di monte)

Nr.	Y	B, H	Ars	An	Nu	Mu	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,32	100, 100	1257	12,57	0	-46091	171,72	30124		
3	0,64	100, 100	1257	12,57	0	-46091	44,15	30124		
4	0,96	100, 100	12.57	12.57	0	-46091	20.19	30124		
5	1.28	100, 100	12.57	12.57	0	-46091	11.70	30124		
6	1,60	100, 100	1257	12,57	Õ	-46091	7,72	30124		
7	1,92	100, 100	1659	12,57	0	-60588	7,27	30124		
8	2.24	100, 100	1659	12.57	0	-60588	5,52	30124		
9	2,56	100, 100	1659	16,59	0	-60583	4,37	30124		
10	2,88	100, 100	1659	16.59	0	-60583	3,57	30124		
11	3,20	100, 100	1659	16,59	0	-60583	3,00	30124		

COMBINAZIONE n° 21				
Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	12963,34 12361,65 3903,57 X = 3,20 17,53 54,01	[kg] [kg] [kg] [m] [°]	Y = -6,57	[m]
Incremento sismico della spinta Punto d'applicazione dell'increment o sismico di spinta Inclinazione linea di rottura in condizioni sismiche	2727,75 X = 3,20 49,20	[kg] [m] [°]	Y=-6,57	[m]
Spinta falda Punto d'applicazione del la spinta della falda Sottospinta falda	2000,00 X = 3,20 10000,00	[kg] [m] [kg]	Y=-8,03	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte Inerzia del muro Inerzia verticale del muro Inerzia verticale del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte	34164,00 X = 1,58 1452,56 726,28 1778,68 889,34	[kg] [m] [kg] [kg] [kg] [kg]	Y=-5,39	[m]

Risultanti				
Risult ant e dei carichi applicati in dir. orizzontale Risult ant e dei carichi applicati in dir. verticale	20263,80 59744,58	[kg]		
M oment o ribalt ante rispetto allo spigolo a valle	68654,12	[kg] [kgm]		
M oment o stabilizzant e rispetto allo spigolo a valle	197637,71	[kgm]		
Sforzo normale sul piano di posa del la fondazione	59744,58	[kg]		
Sforzo tangenziale sul piano di posa della fondazione	20263,80	[kg]		
Eccentricità rispetto al baricentro della fondazione	0,34	[m]		
Lunghezza fondazione reagente	5,00	[m]		
Risult ante in fondazione	63087,53	[kg]		
Inclinazione della risultante (rispetto alla normale)	18,74	[°]		
Moment o risp ett o al baricentro della fondazione	20377,87	[kgm]		
COEFFICIENTI DI SICUREZZA				
Coefficiente di sicurezza a ribaltamento	2.88			
COMBINAZIONE n° 22				
Valore della spinta statica	12963,34	[kg]		
Componente orizzontale della spint a statica	12361,65	[kg]		
Componente verticale della spint a statica	3903,57	[kg]		
Punto d'applicazione del la spinta	X = 3,20	[m]	Y = -6,57	[m]
Inclinaz, della spinta rispetto alla normale alla superficie	17,53	[°]		
Inclinazione linea di rottura in condizioni statiche	54,01	[°]		
Incremento sismico della spinta	2066,51	[kg]		
Punto d'applicazione del l'increment o sismico di spinta	X = 3,20	[m]	Y = -6.57	[m]
Inclinazione linea di rottura in condizioni sismiche	48,89	[°]		
Spinta falda	2000,00	[kg]		
Punto d'applicazione del la spinta della falda	X = 3.20	[m]	Y = -8.03	[m]
Sottospinta falda	10000,00	[kg]	1 - 0,03	[***]
•				
Peso terrapieno gravante sulla fondazione a monte	34164,00	[kg]		
Baricent ro terrapieno gravant e sulla fondazione a monte	X = 1.58	[m]	Y = -5,39	[m]
Inerzia del muro	1452,56	[kg]		
Inerzia verticale del muro Inerzia del terrapieno fondazione di monte	-726,28 1778,68	[kg]		
Inerzia dei tetrapieno fondazione di monte	-889,34	[kg] [kg]		
Therzia verticale dei terrapieno fondazione di monte	-009,34	[Ag]		
<u>Risultanti</u>				
Risult ante dei carichi applicati in dir. or zzontale	19633,25	[kg]		
Risult ant e dei carichi applicati in dir. verticale	56314,22	[kg]		
Moment o ribalt ante rispetto allo spigolo a valle Moment o st abilizzant e rispetto allo spigolo a valle	71693,25 192259,53	[kgm]		
Sforzo normale sul piano di posa del la fondazione	192259,53 56314,22	[kgm] [kg]		
Sforzo t angenziale sul piano di posa della fondazione	19633.25	[kg]		
Eccentricità rispetto al baricentro della fondazione	0,36	[m]		
Lunghezza fondazione reagente	5,00	[m]		
Risult ant e in fondazione	59638,55	[kg]		
Inclinazione della risultante (rispetto alla normale)	19,22	[°]		
Moment o risp ett o al baricentro della fondazione	20219,28	[kgm]		

2.68

83/144 84/144

<u>COEFFICIENTI DI SICUREZZA</u> Coefficiente di sicurezza a ribaltament o

Stabilità globale muro + terreno

Combinazione nº 23

Le ascisse X sono considerate positive verso nunte Le ordinate Y s ono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra) W peso della stris cia espresso in [kg]

angolo fra la base della striscia e l'orizzontale espresso in [º] (positivo antiorario) angolo d'attrito del terreno lungo la base della striscia

coesione del terreno lungo la base della striscia espressa in [kg/cmq] larghezza della striscia espressa in [m] pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -2,87 Y[m] = 1,44

Raggio del cerchio R[m]= 11,82

A scissa a valle del cerchio Xi[m] = -11,45A scissa a monte del cerchio Xs[m] = 8.00Larghezza della striscia dx[m] = 0.78Coefficiente di sicurezza C= 1.45 Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α (°)	Wsinα	b/cosα	φ.	c	u
1	2721.72	62.58	2415.89	1.69	28.72	0.000	0.000
2	4702.01	55.39	3869.90	1.37	26.56	0.000	0.000
3	6202.04	49.18	4693.34	1.19	26.56	0.000	0.000
4	7448.84	43.68	5144.40	1.08	26.56	0.000	0.040
5	8511.78	38.65	5316.48	1.00	26.56	0.000	0.108
6	9404.22	33.96	5253.40	0.94	26.56	0.000	0.166
7	10503.68	29.52	5174.81	0.89	26.56	0.000	0.214
8	11202.65	25.26	4780.51	0.86	26.56	0.000	0.254
9	11721.26	21.15	4229.09	0.83	26.56	0.000	0.288
10	12141.39	17.15	3580.36	0.81	26.56	0.000	0.315
11	17572.30	13.24	4023.66	0.80	26.56	0.000	0.336
12	1001 8.51	9.39	1633.72	0.79	26.56	0.000	0.352
13	5862.97	5.58	569.68	0.78	26.56	0.000	0.362
14	5709.05	1.79	178.48	0.78	26.56	0.000	0.367
15	5707.00	-1.99	-197.69	0.78	26.56	0.000	0.367
16	5624.79	-5.77	-565.53	0.78	26.56	0.000	0.361
17	5461.33	-9.58	-909.02	0.79	26.56	0.000	0.351
18	5214.37	-13.44	-1211.58	0.80	26.56	0.000	0.335
19	4880.37	-17.35	-1455.65	0.82	26.56	0.000	0.314
20	4454.22	-21.36	-1622.15	0.84	26.56	0.000	0.286
21	3928.76	-25.47	-1689.79	0.86	26.56	0.000	0.252
22	3294.11	-29.74	-1634.03	0.90	26.56	0.000	0.212
23	2536.49	-34.19	-1425.51	0.94	26.56	0.000	0.163
24	1636.11	-38.90	-1027.45	1.00	26.56	0.000	0.105
25	563.41	-43.95	-391.01	1.08	26.56	0.000	0.036

 $\Sigma W = 167023,38 \, [kg]$ $\Sigma W_i \sin \alpha_i = 38734,28 \text{ [kg]}$ Σ Wtan ϕ = 83624,80 [kg] Σt anoxt an $\phi = 2.33$

Stabilità globale muro + terreno

Combinazione nº 24

Comminazione il 24

Le assisse X sono considerate positive verso monte

Le orlimate Y sono considerate positive verso falto
Origine in testa a muro fospioo contro terra)

W peso della striscia espresso in [Rg]

a aggolo fia la base della striscia e forizzontale espresso in [7] (positivo antionario)

angolo diatrito del erreno lungo la base della striscia

coesione del terremo lungo la base della striscia espressa in [kg/cmq] larghezza della striscia espressa in [m] pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -2,87 Y[m] = 1,44

Raggio del cerchio R[m]= 11,82

A scissa a valle del cerchio Xi[m] = -11,45A scissa a monte del cerchio Xs[m] = 8.00Larghezza del la striscia dx[m] = 0.78Coefficiente di sicurezza C= 1.41 Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α (°)	Wsinα	b/cosα	ф	c	u
1	2721.72	62.58	2415.89	1.69	28.72	0.000	0.000
2	4702.01	55.39	3869.90	1.37	26.56	0.000	0.000
3	6202.04	49.18	4693.34	1.19	26.56	0.000	0.000
4	7448.84	43.68	5144.40	1.08	26.56	0.000	0.040
5	8511.78	38.65	5316.48	1.00	26.56	0.000	0.108
6	9404.22	33.96	5253.40	0.94	26.56	0.000	0.166
7	10503.68	29.52	5174.81	0.89	26.56	0.000	0.214
8	11202.65	25.26	4780.51	0.86	26.56	0.000	0.254
9	11721.26	21.15	4229.09	0.83	26.56	0.000	0.288
10	12141.39	17.15	3580.36	0.81	26.56	0.000	0.315
11	17572.30	13.24	4023.66	0.80	26.56	0.000	0.336
12	1001 8.51	9.39	1633.72	0.79	26.56	0.000	0.352
13	5862.97	5.58	569.68	0.78	26.56	0.000	0.362
14	5709.05	1.79	178.48	0.78	26.56	0.000	0.367
15	5707.00	-1.99	-197.69	0.78	26.56	0.000	0.367
16	5624.79	-5.77	-565.53	0.78	26.56	0.000	0.361
17	5461.33	-9.58	-909.02	0.79	26.56	0.000	0.351
18	5214.37	-13.44	-1211.58	0.80	26.56	0.000	0.335
19	4880.37	-17.35	-1455.65	0.82	26.56	0.000	0.314
20	4454.22	-21.36	-1622.15	0.84	26.56	0.000	0.286
21	3928.76	-25.47	-1689.79	0.86	26.56	0.000	0.252
22	3294.11	-29.74	-1634.03	0.90	26.56	0.000	0.212
23	2536.49	-34.19	-1425.51	0.94	26.56	0.000	0.163
24	1636.11	-38.90	-1027.45	1.00	26.56	0.000	0.105
25	563.41	-43.95	-391.01	1.08	26.56	0.000	0.036

 $\Sigma W = 167023,38 \text{ [kg]}$ $\Sigma W_i \sin \alpha_i = 38734,28 \text{ [kg]}$ Σ Wtan ϕ = 83624,80 [kg]

 Σt anoxt an $\phi = 2.33$

COMBINAZIONE nº 25
Peso mu ro sfavore vol e e Peso terrapieno favorevole

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	9775,92 9099,07 3574,29 X = 3.20 21,45 57,17	[kg] [kg] [kg] [m] [°]	Y=-6,79	[m]
Spinta falda Punto d'applicazione del la spinta della falda	2600,00 X = 3,20	[kg] [m]	Y = -8,03	[m]

85/144 86/144

Sottospinta falda	13000,00	[kg]		
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	28064,00 X = 1,58	[kg] [m]	Y=-5,39	[m]
Risultanti carichi esterni	22//2			
Componente dir . X Componente dir . Y	-32663 11050	[kg] [kg]		
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	-20963,43 67298,29 67298,29 -20963,43 -0,83 5,00 70487,76 -17,30 -56081,91 149601,57	[kg] [kg] [m] [m] [°] [kg] [c]		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	5,00 0,0000 2,6919	[m] [kg/cmq] [kg/cmq]		

Fattori per il calcolo della capacità portante

C	oeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$
F	attori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
F	attori indinazione	$i_c = 0,65$	$i_q = 0.65$	$i_{y} = 0.21$
F	attori profon dità	$d_c = 1, 14$	$d_q = 1,07$	$d_f = 1,07$
I	coefficient i N' tengono conto dei fattori di fo	orma, profondità, inclinazione carico	, inclinazione piano di posa, inclinazion	ne pendio.
		$N'_{-} = 26.50$	N'. = 16.21	N' = 4.98

COEFFICIEN TI DISICUREZZA Coefficiente di sicurezza a scorrimento 99.99 Coefficiente di sicurezza a carico ultimo 2.22

Sollecitazioni paramento

Combinazione nº 25

L'ordinta Y(espressa in m) è considenta positiva veso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Sōrzo normale positivo di compressione, espresso in kg Taglio positivo es diretto di montreveso valle, espresso in kg

Nr.	Y	N	M	Т
1	0,00	0.00	0.00	0,00
2	0,39	1024,71	123,50	586,26
3	0.79	2049,41	430,24	929,90
4	1,18	3074,12	824,61	1031,00
5	1,58	4098,82	1211,15	890, 12
6	1,97	5123,53	1494,40	506,88
7	2,36	6148,24	1578,85	-118,73
8	2,76	7172,94	1368,97	-986,72
9	3,15	8197,65	769,24	-2097,08
10	3,55	9222,35	-315,85	-3449,48
11	3,94	10247,06	- 1979,91	-5028,55
12	4,34	11271,76	-4301,62	-6781,87
13	4,73	12296,47	-7337,14	-8633,12
14	5,12	13321,18	-11124,37	-10611,05
15	5,52	14345,88	-15720,86	-12739,43
16	5,91	15370,59	-21185,83	-15018,41
17	6,31	16395,29	-27578,78	-17448,68
18	6,70	17420,00	-34959,70	-20033,77
19	7,03	18286,67	-41462, 19	-18952,60
20	7,37	19153,33	-47576, 18	-17703,92
21	7,70	20020,00	-53247,30	-16298,42

Sollecitazioni fondazione di valle

Combinazione nº 25
L'ascis a X(septesa ain m) e considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr.	X	M	Т
1	0,00	0,00	0,00
2	0,10	-70,60	- 1403,08
3	0,20	-278,82	-2752,32
4	0,30	-619,27	-4047,73
5	0,40	- 1086,57	-5289,29
6	0,50	-1675,34	-6477,02
7	0,60	-2380,18	-7610,90
8	0,70	-3195,72	-8690,95
9	0,80	-4116,58	-9717,16
10	0,90	-5137,36	-10689,54
11	1.00	-6252.69	-11608.07

Sollecitazioni fondazione di monte

Combinazione nº 25

L'asciss a X(espress a in m) è considerata positiva verso valle con origine in corrispondenz a del l'estremo libero della fondazione di monte Momento positivo se tende le fibre inferiori, espresso in kgm Ta glio positivo se diretto verso l'alto, espresso in kg

X	M	T
0,00	0,00	0,00
0,32	598,73	3650,21
0,64	2277,33	6749,11
0,96	4859,36	9296,70
1,28	8168,41	11292,98
1,60	12028,06	12737,96
	0,00 0,32 0,64 0,96 1,28	0,00 0,00 0,32 598,73 0,64 2277,33 0,96 4859,36 1,28 8168,41

87/144 88/144 03.5 - Muro sez. D-D - Fascicolo dei calcoli.rtf

13631,63 13973,99 13765,04 13004,79 1,92 16261,89 2,24 2,56 2,88 20693,49 25146,44 29444,32 10 11 3,20 33380,36 11277,23

Armature e tensioni nei materiali del muro

Combinazione nº 2.5

Lordinata V(espressa in [mi]) è considerata positiva verso il basso con origine in testa al muro B bace dell'assezione espressa in [cmi] di alezza della sevicane espressa in [cmi] di alezza della sevicane espressa in [cmi] di area di armattura in corrispondenza del embo di monte in [cmi] serio di armattura in corrispondenza del embo di valle in [cmi] si serio nomine il trium espresso in [kgi]
M, sobre no nomine il ufirim espresso in [kgi]
VRed Aliquota di taglo assorbito dal els, espresso in [kgi]
VRed Resis tenza al taglio, espresso in [kgi]

Nr.	Y	В, Н	A_{fs}	$\mathbf{A}_{\mathbf{fi}}$	Nu	M_u	CS	V_{Rd}	$\mathbf{V}_{\mathbf{Rol}}$	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,39	100, 80	8,04	8,04	842011	-101477	821,71	25347		
3	0,79	100, 80	8,04	8,04	622159	-130610	303,58	25492		
4	1,18	100, 80	8,04	8,04	494050	-132525	160,71	25636		
5	1,58	100, 80	8,04	8,04	434918	-128513	106,11	25780		
6	1,97	100, 80	8,04	8,04	443356	- 12931 5	86,53	25924		
7	2,36	100, 80	8,04	8,04	521161	-133833	84,77	26068		
8	2,76	100, 80	8,04	8,04	665359	-126985	92,76	26212		
9	3,15	100, 80	8,04	8,04	914956	-85857	111,61	26356		
10	3,55	100, 80	8,04	8,04	959580	32864	104,05	26500		
11	3,94	100, 80	8,04	8,04	660161	127554	64,42	26644		
12	4,34	100, 80	12,06	12,06	333365	127222	29,58	26788		
13	4,73	100, 80	12,06	12,06	133919	79908	10,89	26933		
14	5,12	100, 80	24,63	24,63	139140	116194	10,45	30113		
15	5,52	100, 80	24,63	24,63	91641	100425	6,39	30257		
16	5,91	100, 80	24,63	24,63	66900	92211	4,35	30401		
17	6,31	100, 80	24,63	24,63	51847	87213	3,16	30545		
18	6,70	100, 80	24,63	24,63	41794	83876	2,40	30689		
19	7,03	100, 80	24,63	24,63	36169	82008	1,98	30811		
20	7,37	100, 80	16,59	16,59	22099	54894	1,15	27897		
21	7,70	100, 80	16,59	16,59	20429	54335	1,02	28019		

89/144 90/144

Armature e tensioni nei materiali della fondazione

Combinazione nº 25 Simbologia adottata B base della sezione espressa in [cm]

base de lla sezione espressa in [cm] alezza della sezione espressa in [cm] area di armatura in corrispondenza del lenbo inferiore in [cmq] area di armatura in corrispondenza del lenbo superiore in [cmq] sibrzo nomale ultimo espresso in [kg] momento ultimo espresso in [kgm] coefficiente sicurezza sezione. Aliquota di tiggio assorbio dal els., espresso in [kg] Aliquota di riggio assorbio dall'armatura, espresso in [kg] Resistanza al trajlo, espresso in [kg]

H
Afs
Afs
N
u
CS
VRcd
VRsd
VRd

Fondazion e di valle

 $(L'ascissa\,\,X,espressa\,in\,\,[m],\grave{e}\,positiva\,verso\,\,monte\,con\,origine\,in\,corrispondenza\,dell'estre\,mo\,\,libero\,della\,\,fondazione\,di\,valle)$

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	1257	12,57	0	-46091	652,83	30124		
3	0,20	100, 100	12.57	12,57	0	-46091	165,31	30124		
4	0,30	100, 100	12.57	12,57	0	-46091	74,43	30124		
5	0,40	100, 100	12.57	12,57	0	-46091	42,42	30124		
6	0.50	100, 100	12.57	12.57	0	-46091	27,51	30124		
7	0.60	100, 100	12.57	12.57	0	-46091	19.36	30124		
8	0.70	100, 100	12.57	12.57	0	-46091	14.42	30124		
9	0.80	100, 100	12.57	12.57	0	-46091	11.20	30124		
10	0.90	100, 100	1659	16,59	Õ	-60583	11.79	30124		
11	1,00	100, 100	1659	16,59	0	-60583	9,69	30124		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libe ro della fondazione di monte)

Nr.	Y	В, Н	Ars	An	Nu	M_u	CS	V_{Rd}	V_{Red}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,32	100, 100	1257	12,57	0	46091	76,98	30124		
3	0,64	100, 100	12.57	12,57	0	46091	20,24	30124		
4	0,96	100, 100	12.57	12,57	0	46091	9,49	30124		
5	1.28	100, 100	12.57	12.57	0	46091	5,64	30124		
6	1,60	100, 100	12.57	12,57	0	46091	3,83	30124		
7	1,92	100, 100	16,59	12,57	0	46074	2,83	30124		
8	2,24	100, 100	1659	12,57	0	46074	2,23	30124		
9	2,56	100, 100	1659	16,59	0	60583	2,41	30124		
10	2.88	100, 100	1659	16,59	0	60583	2,06	30124		
11	3,20	100, 100	1659	16,59	0	60583	1,81	30124		

COMBINAZIONE nº 26

Peso mu ro favorevole e Peso terrapieno favorevole

Valor e della spinta statica Componente orizzontale della spint a statica Componente verticale della spint a statica Punto d'applicazione della spinta a statica Punto d'applicazione della spinta Inclinaz. della spint a rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	9775,92 9099,07 3574,29 X = 3,20 21,45 57,17	[kg] [kg] [kg] [m] [°]	Y=-6,79	[m]
Spinta falda Punto d'applicazione della spinta della falda Sottospinta falda	2600,00 X = 3,20 13000,00	[kg] [m] [kg]	Y=-8,03	[m]
Peso ter rapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte	28064,00 X = 1,58	[kg] [m]	Y=-5,39	[m]
Risultanti carichi esterni Componente dir. X Componente dir. Y	-32663 11050	[kg] [kg]		
Risultanti Risult ant e dei carichi applicati in dir. orizzontale Risult ant e dei carichi applicati in dir. verticale	-20963,43 58928,29	[kg] [kg]		

Sforzo normale sul piano di posa del la fondazione	58928,29	[kg]
Sforzo tangenziale sul piano di posa della fondazione	-20963,43	[kg]
Eccentricità rispetto al baricentro della fondazione	-0,83	[m]
Lunghezza fondazione reagente	5,00	[m]
Risult ant e in fondazione	62546,05	[kg]
Inclinazione della risultante (rispetto alla normale)	-19,58	[°]
Moment o rispett o al baricentro della fondazione	-49106,91	[kgm]
Carico ultimo della fondazione	131040,99	[kg]

<u>Tensioni sul terreno</u> Lunghezza fondazione reagente 5.00 Tensione terreno allo spigolo di valle 0,0000 [kg/cmq] Tensione terreno allo spigolo di monte 2,3571 [kg/cmq]

Fattori per il calcolo della capacità portante

C oeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori indinazione	$i_c = 0,61$	$i_q = 0.61$	$i_{f} = 0.15$
Fatt ori profon dità	$d_c = 1, 14$	$d_q = 1,07$	$d_{\gamma} = 1.07$
I coefficient i N' tengono conto dei fattori di forma	, profondità, inclinazione carico	, in clinazione piano di posa, inclinazion	ne pendio.
	$N'_c = 24.86$	$N'_q = 15.21$	$N'_{\gamma} = 3.56$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	99.99
Coefficients di signerara a series ultimo	2 22

91/144 92/144

Combinazione nº 26
L'ordinata Y(espressa in m)è considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Siozo normale positivo di compressione, espresso in kg Taglio positivo se diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,39	788,24	156,33	751,94
3	0,79	1576,47	560,08	1255,52
4	1,18	2364,71	1113,36	1510,80
5	1,58	3152,94	1718,44	1518,35
6	1,97	3941,18	2277,59	1277,80
7	2,36	4729,41	2693,05	789,11
8	2,76	5517,65	2867,00	52,30
9	3,15	6305,88	2701,67	-932,64
10	3,55	7094,12	2099,28	-2165,37
11	3,94	7882,35	963,96	-3630,51
12	4,34	8670,59	-785,27	- 5275,66
13	4,73	9458,82	- 3206,79	-7024,49
14	5,12	10247,06	-6340,80	-8905,76
15	5,52	11035,29	-10247, 10	-10943,23
16	5,91	11823,53	-14987,18	-13137,05
17	6,31	1261 1,76	-20622,82	-15487,91
18	6,70	13400,00	-27216,26	-17999,34
19	7,03	14066,67	-33030,86	-16860,37
20	7,37	14733,33	-38438,38	-15558,00
21	7,70	15400,00	-43385,81	-14102,91

Sollecitazioni fondazione di valle

Combinazione nº 26
L'ascisa X(spress ain m) è considerata positiva veso monte con origine in corrispondenza dell'estremo libero della fondazione di valle
Momento positivo se tende le fibre inferiori, espresso in kgm
Taglio pas iñvo se diretto veso Falto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	-66,96	- 1331,43
3	0,20	-264,71	-2615,71
4	0,30	-588,54	-3852,86
5	0,40	- 1033,71	-5042,86
6	0,50	- 1595,54	-6185,72
7	0,60	-2269,29	-7281,43
8	0,70	-3050,25	-8330,01
9	0,80	-3933,72	-9331,44
10	0,90	-4914,97	-10285,72
11	1.00	-5989.29	-11192.87

Sollecitazioni fondazione di monte

Combinazione nº 26

Commizzation: A considerata positiva verso valle on origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo se tende le fibre infecio, respuesso in kgm Taglio positivo est ende e direto veso Tolko, opereso in kgm

Nr. M 0,00 0,00 0,00 469,37 2853,13 0,32 0.64 1774,51 5223,52 3760,93 7111,17 0,96 1,28 6274,17 8516,08 1,60 9159,73 9438,25

7	1.92	12263.15	9877.67
8	2,24	15429,95	9834,36
9	2,56	18505.65	9308,31
10	2,88	21335,78	8299,51
11	3,20	23735.51	6391.98

93/144 94/144

Armature e tensioni nei materiali del muro

Combinazione nº 26

Lordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro Base dell'ascione espressa in [cm]

H altezza della sezione espressa in [cm]

A1, area di armatuni in corrispondenza del lenbo di montein [cm]

A2, area di armatuni in corrispondenza del lenbo di valle in [cm]

N4, sorzo normale ultimo espresso in [kgm]

M4, no mento ultimo espresso in [kgm]

CS coefficiente siamezza se sone

coefficiente sicurezza se zione Aliquota di taglio assorbito dal cls, espresso in [kg]

Aliquota di taglio assorbito dall'armatura, espresso in [kg] Re sis tenza al taglio, espresso in [kg]

Nr.	Y	B, H	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rot}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,39	100, 80	8,04	8.04	648317	- 128583	822,49	25314		
3	0,79	100, 80	8,04	8,04	320187	-113755	203,10	25425		
4	1,18	100, 80	8,04	8,04	166153	-78229	70,26	25536		
5	1,58	100, 80	8,04	8,04	114095	-62185	36,19	25647		
6	1,97	100, 80	8,04	8.04	98312	-56814	24,94	25758		
7	2,36	100, 80	8,04	8,04	101947	-58051	21,56	25868		
8	2,76	100, 80	8,04	8,04	130270	-67689	23,61	25979		
9	3,15	100, 80	8,04	8,04	211946	-90805	33,61	26090		
10	3,55	100, 80	8,04	8,04	433986	-128424	61,18	26201		
11	3,94	100, 80	8,04	8,04	837090	- 102370	106,20	26312		
12	4,34	100, 80	12,06	12,06	950045	86042	109,57	26423		
13	4,73	100, 80	12,06	12,06	403844	136914	42,69	26534		
14	5,12	100, 80	24,63	24,63	228509	141399	22,30	29680		
15	5,52	100, 80	24,63	24,63	117336	108955	10,63	29791		
16	5,91	100, 80	24,63	24,63	74820	94840	6,33	29902		
17	6,31	100, 80	24,63	24,63	53714	87833	4,26	30013		
18	6,70	100, 80	24,63	24,63	41199	83678	3,07	30124		
19	7,03	100, 80	24,63	24,63	34719	81527	2,47	30217		
20	7,37	100, 80	16,59	16,59	20885	54487	1,42	27275		
21	7,70	100, 80	16,59	16,59	19132	53901	1,24	27369		

Armature e tensioni nei materiali della fondazione

Combinazione nº 26

Simbologia adottata
B base della sezione espressa in [cm]

base de lla sezione espressa in [cm]
altezza della sezione espressa in [cm]
area di armatua in corrispondenza del enho infisiore in [cmq]
area di armatua in corrispondenza del enho supeñore in [cmq]
sforzo nomale ultimo espresso in [kg]
no mento ultimo espresso in [kgm]
coefficiente sicurezza sezione
Aliquata di tigoli o ssorbito dal l'est, espresso in [kg]
Aliquata di rigoli o ssorbito dall'armatura, espresso in [kg]
Resis tanza al tugolio, espresso in [kg]

Ars N_u M_u CS VRcd VRsd

Fondazion e di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estre no libero della fondazione di valle)

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12.57	12,57	0	-46091	688,30	30124		
3	0,20	100, 100	12.57	12,57	0	-46091	174,12	30124		
4	0,30	100, 100	12.57	12,57	0	-46091	78,32	30124		
5	0,40	100, 100	12.57	12,57	0	-46091	44,59	30124		
6	0,50	100, 100	12.57	12,57	0	-46091	28,89	30124		
7	0.60	100, 100	12.57	12,57	0	-46091	20,31	30124		
8	0,70	100, 100	12.57	12,57	0	-46091	15,11	30124		
9	0.80	100, 100	12.57	12,57	0	-46091	11.72	30124		
10	0,90	100, 100	16.59	16,59	0	-60583	12,33	30124		
11	1,00	100, 100	16.59	16,59	0	-60583	10,12	30124		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre no libero della fondazione di nonte)

Nr.	Y	В, Н	Ars	An	Nu	Mu	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,32	100, 100	12.57	12,57	0	46091	98,20	30124		
3	0,64	100, 100	12.57	12,57	0	46091	25,97	30124		
4	0,96	100, 100	12.57	12,57	0	46091	12,26	30124		
5	1.28	100, 100	12.57	12,57	0	46091	7,35	30124		
6	1,60	100, 100	12.57	12,57	0	46091	5,03	30124		
7	1,92	100, 100	16.59	12,57	0	46074	3,76	30124		
8	2,24	100, 100	16.59	12,57	0	46074	2,99	30124		
9	2,56	100, 100	16.59	16,59	0	60583	3,27	30124		
10	2,88	100, 100	16.59	16,59	0	60583	2,84	30124		
11	3.20	100, 100	16.59	16.59	Ô	60583	2.55	30124		

COMBINAZIONE nº 27

Peso mu ro sfavore vol e e Peso terrapieno sfavore vole

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica	9775,92 9099,07 3574,29	[kg] [kg] [kg]		
Punto d'applicazione del la spinta	X = 3,20	[m]	Y = -6,79	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	21,45	[°]		
Inclinazione linea di rottura in condizioni statiche	57,17	[°]		
Spinta falda	2600,00	[kg]		
Punto d'applicazione del la spinta della falda	X = 3.20	[m]	Y = -8.03	[m]
Sottospinta falda	13000,00	[kg]		. ,
Peso terrapieno gravante sulla fondazione a monte	36483,20	[kg]		
Baricent ro terrapieno gravant e sulla fondazione a monte	X = 1,58	[m]	Y = -5,39	[m]
Risultanti carichi esterni				
Componente dir. X	-32663	[kg]		
Componente dir. Y	11050	[kg]		
Risultanti				
Risult ant e dei carichi applicati in dir. orizzontale	-20963,43	[kg]		
Risult ant e dei carichi applicati in dir verticale	75717 49	[kø]		

95/144 96/144

Sforzo normale sul piano di posa della fondazione	75717,49	[kg]
Sforzo t angenziale sul piano di posa della fondazione	-20963,43	[kg]
Eccentricità rispetto al baricentro della fondazione	-0,83	[m]
Lunghezza fondazione reagente	5,00	[m]
Risult ant e in fondazione	78565,92	[kg]
Inclinazione del la risultante (rispetto alla normale)	-15,48	[°]
Moment o risp etto al baricentro della fondazione	-63097,91	[kgm]
Carico ultimo della fondazione	166057,84	[kg]

<u>Tensioni sul terreno</u> Lunghezza fondazione reagente 5,00 Tensione terreno allo spigolo di valle 0,0000 [kg/cmq] Tensione terreno allo spigolo di monte 3,0287 [kg/cmq]

Fattori per il calcolo della capacità portante

C oeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$		
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$		
Fattori indinazione	$i_c = 0,69$	$i_q = 0,69$	$i_f = 0.27$		
Fattori profon dità	$d_c = 1, 14$	$d_q = 1,07$	$d_{r} = 1,07$		
I coefficient i N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.					
	$N'_c = 27.85$	$N'_q = 17.04$	$N'_{\gamma} = 6.30$		

COEFFICIEN TI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	99.9
Coefficiente di sicurezza a carico ultimo	2 10

Sollecitazioni paramento

Combinazione nº 27

L'ordinat y (espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo settende le fibrecontroterra (a monte), espresso in kgm Sórzo normale positivo di compressione, espresso in kg Taglio positivo es diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	Т
1	0,00	0.00	0,00	0,00
2	0,39	1024,71	124,61	591,90
3	0.79	2049,41	434,66	941,00
4	1,18	3074,12	834,45	1047,35
5	1,58	4098,82	1228,44	911,52
6	1,97	5123,53	1521,09	533, 15
7	2,36	6148,24	1616,82	-87,79
8	2,76	7172,94	1420,02	-951,31
9	3,15	8197,65	835, 10	-2057,40
10	3,55	9222,35	-233,55	-3405,72
11	3,94	10247,06	-1879,58	-4980,91
12	4,34	11271,76	-4181,79	-6730,54
13	4,73	12296,47	-7196,39	-8578,30
14	5,12	13321,18	-10961,36	-10552,93
15	5,52	14345,88	-15534,33	-12678,22
16	5,91	15370,59	-20974,59	-14954,30
17	6,31	16395,29	-27341,73	-17381,86
18	6,70	17420,00	-34695,82	-19964,44
19	7,03	18286,67	-41174,86	-18881,30
20	7,37	19153,33	-47264,78	-17630,80
21	7,70	20020,00	-52911,24	-16223,60

Sollecitazioni fondazione di valle

Combinazione nº 27
L'ascis a X(septesa ain m) e considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr. 0.00 0.00 0.00 0,10 -70,49 -1399,71 0,20 -277,92 -2738,85 0,30 -616,24 -4017,42 -1079,39 -5235,41 0,40 -6392,83 0,50 -1661,30 0,60 -2355,93 -7489,67 0.70 -3157,22 -8525,94 -9501,63 0.80 -4059,10 -10416,75 10 0,90 -5055,53 1,00 -6140,43 -11271,30 11

Sollecitazioni fondazione di monte

Combinazione nº 27

L'asciss a X(espress a in m) è considerata positiva verso valle con origine in corrispondenz a del l'estremo libero della fondazione di monte Momento positivo se tende le fibre inferiori, espresso in kgm Ta glio positivo se diretto verso l'alto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,32	767,48	4693,38
3	0,64	2937,60	8766,48
4	0,96	6311,87	12219,31
5	1,28	10691,79	15051,85
6	1,60	15878,89	17264,12

97/144 98/144 03.5 - Muro sez. D-D - Fascicolo dei calcoli.rtf

18856,11 19827,83 20179,26 19910,42 1,92 21674,67 2,24 2,56 2,88 27880,64 34298,31 40729,20 10 11 3,20 46944,48 18605,30

Armature e tensioni nei materiali del muro

Combinazione nº 27

Lordinata V(espressa in [mi]) è considerata positiva verso il basso con origine in testa al muro B base dell'assezione espressa in [cmi] di alezza della sevicane espressa; in [cmi] di alezza della sevicane espressa in [cmi] di area di armattura in corrispondenza del embo di monte in [cmi] serio di armattura in corrispondenza del embo di valle in [cmi] si serio nomine il trium espresso in [kgi]
M, sobre no nomine il ufirim espresso in [kgi]
VRed Aliquota di taglo assorbito dal els, espresso in [kgi]
VRed Resis tenza al taglio, espresso in [kgi]

Nr.	Y	В, Н	A_{fs}	A_6	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	ō	1000,00	25203		
2	0,39	100, 80	8,04	8,04	838977	- 102028	818,75	25347		
3	0,79	100, 80	8,04	8,04	617520	-130970	301,32	25492		
4	1,18	100, 80	8,04	8,04	486966	-132184	158,41	25636		
5	1,58	100, 80	8,04	8,04	425951	-127660	103,92	25780		
6	1,97	100, 80	8,04	8,04	431908	-128226	84,30	25924		
7	2,36	100, 80	8,04	8,04	506173	-133110	82,33	26068		
8	2,76	100, 80	8,04	8,04	649176	- 128517	90,50	26212		
9	3,15	100, 80	8,04	8,04	892146	-90883	108,83	26356		
10	3,55	100, 80	8,04	8,04	966077	24465	104,75	26500		
11	3,94	100, 80	8,04	8,04	682231	125139	66,58	26644		
12	4,34	100, 80	12,06	12,06	349451	129645	31,00	26788		
13	4,73	100, 80	12,06	12,06	139384	81573	11,34	26933		
14	5,12	100, 80	24,63	24,63	142609	117346	10,71	30113		
15	5,52	100, 80	24,63	24,63	93228	100952	6,50	30257		
16	5,91	100, 80	24,63	24,63	67790	92506	4,41	30401		
17	6,31	100, 80	24,63	24,63	52409	87400	3,20	30545		
18	6,70	100, 80	24,63	24,63	42176	84002	2,42	30689		
19	7,03	100, 80	24,63	24,63	36465	82106	1,99	30811		
20	7,37	100, 80	16,59	16,59	22268	54950	1,16	27897		
21	7,70	100, 80	16,59	16,59	20577	54384	1,03	28019		

99/144 100/144

Armature e tensioni nei materiali della fondazione

Combinazione nº 27
Simbologia adottata
B base della sezione espressa in [cm]

base dellas ezione espressa în [cm] alezza della sezione espressa în [cm] area di armatura în corrispondenza del lenbo inferiore în [cmq] area di armatura în corrispondenza del lenbo superiore în [cmq] sărza nomalie ultime espresso în [kgi] no mento ultime espresso în [kgi] coefficiente sicurezza se zione Aliquota di tiglio assorbia del est, espresso în [kg] Aliquota di înglio assorbia della matura, espresso în [kg] Resis tanza al tuglio, espresso în [kg]

H
Afs
Afs
N
u
CS
VRcd
VRsd
VRd

Fondazion e di valle

 $(L'ascissa\,\,X,espressa\,in\,\,[m],\grave{e}\,positiva\,verso\,\,monte\,con\,origine\,in\,corrispondenza\,dell'estre\,mo\,\,libero\,della\,\,fondazione\,di\,valle)$

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	1257	12,57	0	-46091	653,87	30124		
3	0,20	100, 100	1257	12,57	0	-46091	165,84	30124		
4	0,30	100, 100	1257	12,57	0	-46091	74,79	30124		
5	0,40	100, 100	1257	12,57	0	-46091	42,70	30124		
6	0.50	100, 100	12.57	12.57	0	-46091	27,74	30124		
7	0.60	100, 100	12.57	12.57	0	-46091	19.56	30124		
8	0.70	100, 100	12.57	12.57	0	-46091	14.60	30124		
9	0.80	100, 100	12.57	12.57	0	-46091	11.36	30124		
10	0.90	100, 100	1659	16,59	Õ	-60583	11.98	30124		
11	1,00	100, 100	1659	16,59	0	-60583	9,87	30124		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libe ro della fondazione di monte)

Nr.	Y	B, H	Ars	An	Nu	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,32	100, 100	12.57	12,57	0	46091	60,06	30124		
3	0,64	100, 100	1257	12,57	0	46091	15,69	30124		
4	0,96	100, 100	12.57	12,57	0	46091	7,30	30124		
5	1.28	100, 100	12.57	12.57	0	46091	4,31	30124		
6	1,60	100, 100	1257	12.57	Ö	46091	2,90	30124		
7	1,92	100, 100	1659	12.57	0	46074	2.13	30124		
8	2,24	100, 100	1659	12.57	0	46074	1,65	30124		
9	2,56	100, 100	1659	16,59	0	60583	1,77	30124		
10	2,88	100, 100	1659	16,59	0	60583	1.49	30124		
11	3,20	100, 100	1659	16,59	Õ	60583	1,29	30124		

COMBINAZIONE nº 28

Peso mu ro favorevole e Peso terrapieno sfavorevole

Valore del la spinta statica Componente orizzontale del la spint a statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz, della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	9775,92 9099,07 3574,29 X = 3,20 21,45 57,17	[kg] [kg] [kg] [m] [°] [°]	Y=-6,79	[m]
Spinta falda Punto d'applicazione della spinta della falda Sottospinta falda	2600,00 X = 3,20 13000,00	[kg] [m] [kg]	Y=-8,03	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravant e sulla fondazione a monte	36483,20 X = 1,58	[kg] [m]	Y=-5,39	[m]
Risultanti carichi esterni Componente dir. X Componente dir. Y	-32663 11050	[kg] [kg]		
Risultanti Risult ant e dei carichi applicati in dir. orizzontale Risult ant e dei carichi applicati in dir. verticale	-20963,43 67347,49	[kg] [kg]		

Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risult ant e in fondazione Inclinazione della risultante (rispetto alla normale) Moment o rispetto al baricentro della fondazione	67347,49 -20963,43 -0,83 5,00 70534,74 -17.29 -56122,91	[kg] [kg] [m] [m] [kg] [°] [kgm]
	-56122,91 149704,09	[kgm] [kg]

<u>Tensioni sul terreno</u> Lunghezza fondazione reagente 5.00 Tensione terreno allo spigolo di valle 0,0000 [kg/cmq] Tensione terreno allo spigolo di monte 2,6939 [kg/cmq]

Fattori per il calcolo della capacità portante

C oeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$			
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$			
Fattori indinazione	$i_c = 0,65$	$i_q = 0.65$	$i_{f} = 0.21$			
Fattori profondità	$d_c = 1, 14$	$d_q = 1,07$	$d_{\gamma} = 1,07$			
I coefficient i N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.						
	$N'_c = 26.51$	$N'_{q} = 16.22$	$N'_{\gamma} = 4.99$			

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	99.99
oefficiente di sicurezza a carico ultimo	2 22

101/144 102/144

Combinazione nº 28
L'ordinata Y (espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Siozo normale positivo di compressione, espresso in kg Taglio positivo ed diretto di montre verso valle, espresso in kg

	*7			70
Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,39	788,24	157,45	757,59
3	0,79	1576,47	564,50	1266,62
4	1,18	2364,71	1123,20	1527,15
5	1,58	3152,94	1735,73	1539,76
6	1,97	3941,18	2304,28	1304,07
7	2,36	4729,41	2731,02	820,05
8	2,76	5517,65	2918,05	87,71
9	3,15	6305,88	2767,53	-892,96
10	3,55	7094,12	2181,58	-2121,61
11	3,94	7882,35	1064,28	-3582,87
12	4,34	8670,59	-665,44	-5224,33
13	4,73	9458,82	-3066,04	-6969,68
14	5,12	10247,06	-6177,78	-8847,65
15	5,52	11035,29	-10060,57	-10882,02
16	5,91	11823,53	-14775,95	-13072,94
17	6,31	1261 1,76	-20385,77	-15421,09
18	6,70	13400,00	-26952,38	-17930,01
19	7,03	14066,67	-32743,53	-16789,07
20	7,37	14733,33	-38126,98	-15484,87
21	7,70	15400,00	-43049,75	-14028,09

Sollecitazioni fondazione di valle

Combinazione nº 28
L'asciss a X(spiess ai m pì è considerata positiva veso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in kgm
Taglio pas iñvo se diretto veso Falto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	-66,85	- 1328,06
3	0,20	-263,82	-2602,24
4	0,30	-585,50	-3822,55
5	0,40	- 1026,53	-4988,98
6	0,50	- 1581,50	-6101,53
7	0,60	-2245,04	-7160,20
8	0,70	-3011,75	-8164,99
9	0,80	-3876,24	-9115,90
10	0,90	-4833,13	-10012,94
11	1.00	-5877.03	-10856, 10

Sollecitazioni fondazione di monte

Combinazione nº 28

COMMIZZADE II a de considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo se tende le fibre inferiori, espresso in Igm Taglio positivo est ende cel derito teves o flost, o pereso in Igm Taglio positivo e di entro teves o flost, o pereso in Igm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,32	638,12	3896,30
3	0,64	2434,78	7240,90
4	0,96	5213,44	10033,78
5	1,28	8797,55	12274,95
6	1,60	13010,56	13964,41

7	1.92	17675.93	15102,16
8	2,24	22617.09	15688,20
9	2,56	27657.52	15722,53
10	2,88	32620.66	15205,14
11	3.20	37299.63	13720.05

103/144 104/144

Armature e tensioni nei materiali del muro

Combinazione nº 28

Lordina a Yespressa in [mi] è considerata positiva verso il basso con origine in testa al muro B base della sezione espressa in [cmi]
An alezza della sezione espressa in [cmi]
An area di amattun in corrispondenza del lenho di montein [cmi]
An area di amattun in corrispondenza del lenho di valle in [cmi]
An area di amattun in corrispondenza del lenho di valle in [cmi]
An area di amattun in corrispondenza del lenho di valle in [cmi]
An area di amattun espresso in [kgi]
M, no mento ultimo espresso in [kgi]
VRdd Aliquota di taglio assobito dal est, espresso in [kgi]
VRdd Resis tenza al taglio, espresso in [kgi]

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	ō	1000,00	25203		
2	0,39	100, 80	8,04	8,04	644997	- 128841	818,28	25314		
3	0,79	100, 80	8,04	8,04	314874	-112751	199,73	25425		
4	1,18	100, 80	8,04	8,04	162368	-77122	68,66	25536		
5	1,58	100, 80	8,04	8,04	111119	-61172	35,24	25647		
6	1,97	100, 80	8,04	8,04	95588	-55887	24,25	25758		
7	2,36	100, 80	8,04	8,04	98496	-56877	20,83	25868		
8	2,76	100, 80	8,04	8,04	123878	-65514	22,45	25979		
9	3,15	100, 80	8,04	8,04	200917	-88178	31,86	26090		
10	3,55	100, 80	8,04	8,04	410280	- 126169	57,83	26201		
11	3,94	100, 80	8,04	8,04	803423	- 108478	101,93	26312		
12	4,34	100, 80	12,06	12,06	959698	73653	110,68	26423		
13	4,73	100, 80	12,06	12,06	429600	139253	45,42	26534		
14	5,12	100, 80	24,63	24,63	237857	143400	23,21	29680		
15	5,52	100, 80	24,63	24,63	120758	110091	10,94	29791		
16	5,91	100, 80	24,63	24,63	76277	95324	6,45	29902		
17	6,31	100, 80	24,63	24,63	54500	88094	4,32	30013		
18	6,70	100, 80	24,63	24,63	41682	83838	3,11	30124		
19	7,03	100, 80	24,63	24,63	35075	81645	2,49	30217		
20	7,37	100, 80	16,59	16,59	21081	54553	1,43	27275		
21	7,70	100, 80	16,59	16,59	19302	53958	1,25	27369		

Armature e tensioni nei materiali della fondazione

Combinazione nº 28

Simbologia adottata
B base della sezione espressa in [cm]

bac de lla sezione espressa in [cm]
altezza del la sezione espressa in [cm]
area di armatua in corrispondenza del le nbo infe nore in [cmq]
area di armatua in corrispondenza del le nbo superiore in [cmq]
stora nomale ultime espresso in [kg]
no mento ultime espresso in [kg]
cefficiente sicurezza ezione
Aliquota di taglio assobito dal cls, espresso in [kg]
Afiquota di taglio assobito dal mantura, espresso in [kg]
Resis tenza al taglio, espresso in [kg]

Ars N_u M_u CS VRcd VRsd

Fondazion e di valle

 $(L'ascissa\,\,X,espressa\,in\,[m],\grave{e}\,positiva\,verso\,monte\,con\,origine\,in\,corrisponden\,za\,dell'estre\,no\,libero\,della\,fondazione\,di\,valle)$

Nr.	Y	B, H	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12,57	12,57	0	-46091	689,45	30124		
3	0,20	100, 100	12,57	12,57	0	-46091	174,71	30124		
4	0,30	100, 100	12,57	12,57	0	-46091	78,72	30124		
5	0,40	100, 100	12,57	12,57	0	-46091	44,90	30124		
6	0,50	100, 100	12,57	12,57	0	-46091	29,14	30124		
7	0,60	100, 100	12,57	12,57	0	-46091	20,53	30124		
8	0,70	100, 100	12,57	12,57	0	-46091	15,30	30124		
9	0,80	100, 100	12.57	12,57	0	-46091	11,89	30124		
10	0,90	100, 100	16,59	16,59	0	-60583	12,53	30124		
11	1,00	100, 100	16,59	16,59	0	-60583	10,31	30124		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre no libero della fondazione di nonte)

Nr.	Y	В, Н	Ars	An	Nu	Mu	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,32	100, 100	12.57	12,57	0	46091	72,23	30124		
3	0,64	100, 100	12.57	12,57	0	46091	18,93	30124		
4	0,96	100, 100	12.57	12.57	0	46091	8,84	30124		
5	1.28	100, 100	12.57	12,57	0	46091	5,24	30124		
6	1,60	100, 100	12.57	12,57	0	46091	3,54	30124		
7	1,92	100, 100	16.59	12,57	0	46074	2,61	30124		
8	2,24	100, 100	16.59	12,57	0	46074	2,04	30124		
9	2,56	100, 100	16.59	16,59	0	60583	2,19	30124		
10	2,88	100, 100	16.59	16.59	0	60583	1.86	30124		
11	3.20	100, 100	16.59	16.59	Ô	60583	1.62	30124		

COMBINAZIONE nº 29

Valore della spinta statica Componente orizzontale della spint a statica Componente verticale della spint a statica Punto d'applicazione della spinta Inclinaz, della spint a rispetto alla normale alla superficie Inclinazione l'inea di rottura in condizioni statiche	10234,53 9763,69 3068,55 X = 3,20 17,45 54,01	[kg] [kg] [kg] [m] [°]	Y = -6,79	[m]
Spinta falda Punto d'applicazione del la spinta della falda Sottospinta falda	2200,00 X = 3,20 11000,00	[kg] [m] [kg]	Y = -8,03	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte	25257,60 X = 1,58	[kg] [m]	Y=-5,39	[m]
<u>Risultanti carichi esterni</u> Componente dir. X Componente dir. Y	-27638 9350	[kg] [kg]		
Risultanti Risult ant e dei carichi applicati in dir. orizzontale Risult ant e dei carichi applicati in dir. verticale Moment o ribalt ante rispetto allo spigolo a valle	-15673,81 53126,15 47595,01	[kg] [kg] [kgm]		

105/144 106/144

Moment o stabilizzant e rispetto allo spigolo a valle	271243,15	[kgm]
Sforzo normale sul piano di posa della fondazione	53126,15	[kg]
Sforzo t angenzia le sul piano di posa della fondazione	-15673,81	[kg]
Eccentricità rispetto al baricentro della fondazione	-0,83	[m]
Lunghezza fondazione reagente	5,00	[m]
Risult ant e in fondazione	55390,04	[kg]
Inclinazione della risultante (rispetto alla normale)	-16,44	[°]
Moment o risp ett o al baricentro del la fondazione	-44271,79	[kgm]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltament o

5.70

Stabilità globale muro + terreno

Combinazione n° 30

Letacsice X sono considerate positive verso mme
Le ontinue troo considerate positive verso mme
Le ontinue troo considerate positive verso falso
Origine in less al muno (spigolo contro tem)

which is a manual propositive troop troop troop tempo troop angolo dista side aspresso in [kg]

angolo fina la base della striscia e forizzontale espresso in [l] (positivo antiomnio)
angolo distato del terreno lungo la base della striscia espressa in [kg/cmq]
b manual care della striscia espressa in [kg/cmq]

pressione rettra lungo la base della striscia espressa in [kg/cmq]

mentione trooper la lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36 Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -2,87

Raggio del cerchio R[m]= 10,61

A scissa a valle del cerchio Xi[m]=-11,11 Xs[m]= 7,25 A scissa a monte del cerchio Larghezza del la striscia dx[m] = 0.73Coefficiente di sicurezza C= 1.98 Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	w	α (°)	Wsinα	b/cosα	ф	с	u
1	1270.52	67.10	1170.38	1.89	28.42	0.000	0.000
2	3348.72	58.47	2854.21	1.40	26.56	0.000	0.000
3	4832.57	51.49	3781.26	1.18	26.56	0.000	0.000
4	6045.79	45.47	4310.01	1.05	26.56	0.000	0.073
5	7047.40	40.05	4534.77	0.96	26.56	0.000	0.141
6	8070.86	35.04	4633.52	0.90	26.56	0.000	0.198
7	8967.99	30.32	4526.86	0.85	26.56	0.000	0.245
8	9542.50	25.82	4155.55	0.82	26.56	0.000	0.284
9	1001 4.34	21.48	3667.17	0.79	26.56	0.000	0.317
10	13403.37	17.27	3979.68	0.77	26.56	0.000	0.342
11	18104.05	13.16	4121.35	0.75	26.56	0.000	0.362
12	12145.79	9.11	1923.69	0.74	26.56	0.000	0.377
13	7827.02	5.11	697.57	0.74	26.56	0.000	0.386
14	5730.10	1.14	113.82	0.73	26.56	0.000	0.390
15	5714.14	-2.83	-282.25	0.74	26.56	0.000	0.389
16	5623.02	-6.81	-667.20	0.74	26.56	0.000	0.383
17	5455.39	-10.83	-1025.16	0.75	26.56	0.000	0.371
18	5208.67	-14.90	-1339.58	0.76	26.56	0.000	0.355
19	4878.87	-19.05	-1592.73	0.78	26.56	0.000	0.332
20	4460.21	-23.31	-1765.06	0.80	26.56	0.000	0.304
21	3944.52	-27.71	-1834.31	0.83	26.56	0.000	0.269
22	3320.30	-32,30	-1774.16	0.87	26.56	0.000	0.226
23	2571.00	-37.13	-1552.05	0.92	26.56	0.000	0.175
24	1671.82	-42.30	-1125.23	0.99	26.56	0.000	0.114
25	583.15	-47.95	-433.01	1.10	26.56	0.000	0.040

 $\Sigma W = 159782,09 \text{ [kg]}$ Σ Wisin α i= 31079,09 [kg] Σ Wtan φ = 79926,79 [kg] Σt anotanφ= 2.47

COMBINAZIONE nº 31 Peso mu ro sfavore vol e e Peso terrapieno sfavore vole

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione del la spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	14202,91 13210,36 5216,25 X = 3,20 21,55 57,17	[kg] [kg] [kg] [m] [°]	Y = -6,55	[m]
Spinta falda Punto d'applicazione del la spinta della falda	2600,00 X = 3,20	[kg] [m]	Y = -8,03	[m]

107/144 108/144

Sottospinta falda	13000,00	[kg]		
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte	45633,20 X = 1,58	[kg] [m]	Y=-5,39	[m]
Risultanti carichi esterni Componente dir. X Componente dir. Y	-32663 11050	[kg] [kg]		
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Sforzo normale sul piano di posa della fondazione Sforzo t angenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	-16852,14 86509,45 86509,45 -16852,14 -0,83 5,00 88135,57 -11,02 -72091,21 212118,01	[kg] [kg] [kg] [m] [m] [o] [o]		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	5,00 0,0000 3,4604	[m] [kg/cmq] [kg/cmq]		

Fattori per il calcolo della capacità portante

C oen . capacita portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori indinazione	$i_c = 0,77$	$i_q = 0.77$	$i_{y} = 0.43$
Fattori profondità	$d_c = 1, 14$	$d_q = 1,07$	$d_r = 1,07$
I coefficient i N' tengono conto dei fattori di forma	a, profondità, inclinazione carico,	inclinazione piano di posa, inclinazio	one pendio.
	N' - 31 27	N'. = 1913	N' - 1015

COEFFICIEN TI DISICUREZZA Coefficiente di sicurezza a scorrimento 99.99 Coefficiente di sicurezza a carico ultimo 2.45

Sollecitazioni paramento

Combinazione nº 31
L'ordinta Y(espressa in m) è considenta positiva veso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in lgm Sōrzo normale positivo di compressione, espresso in kg Taglio positivo ed oftento di montre veso valle, espresso in kg

Nr.	Y	N	M	Т
1	0,00	0.00	0.00	0,00
2	0,39	1024,71	103, 17	483,68
3	0,79	2049.41	349.85	728,31
4	1,18	3074,12	645,85	733,96
5	1,58	4098,82	897, 10	501, 19
6	1,97	5123,53	1009,54	29,62
7	2,36	6148,24	889,07	-680,76
8	2,76	7172,94	441,57	- 1629,96
9	3,15	8197,65	-427,09	-2817,94
10	3,55	9222,35	-1804,33	-4192,40
11	3,94	10247,06	-3737,58	-5623,48
12	4,34	11271,76	-6246,90	-7136,81
13	4,73	12296,47	-9375,51	-8748,60
14	5,12	13321,18	-13159,64	-10479, 10
15	5,52	14345,88	-17654,98	-12357,80
16	5,91	15370,59	-22919,98	-14384,83
17	6,31	16395,29	-29013, 10	-16560, 25
18	6,70	17420,00	-35993, 13	-18887,28
19	7,03	18286,67	-42076,72	-17585,27
20	7,37	19153,33	-47697,79	-16113,31
21	7,70	20020,00	-52801, 15	-14482,05

Sollecitazioni fondazione di valle

Combinazione nº 31
L'ascis a X(septesa ain m) e considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	-70,35	-1395,40
3	0,20	-276,77	-2721,58
4	0,30	-612,36	-3978,57
5	0,40	- 1070,18	-5166,34
6	0,50	-1643,32	-6284,91
7	0,60	-2324,85	-7334,26
8	0,70	-3107,86	-8314,41
9	0,80	-3985,43	-9225,36
10	0,90	-4950,63	-10067,09
11	1.00	-5996.54	-10839,62

Sollecitazioni fondazione di monte

Combinazione nº 31

Comminazione II 37 .
L'acise a Megassea in mè considerata positiva verso valle con origine in corrispondenz adell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivos deriento useo Tallo, ospresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,32	830, 19	5070,55
3	0,64	3169,56	9432,41
4	0,96	6791,33	13085,58
5	1,28	11468,74	16030,07
6	1,60	16974,99	18265,88

109/144 110/144 03.5 - Muro sez. D-D - Fascicolo dei calcoli.rtf

1,92 23083,31 19793,00 2,24 2,56 2,88 20611,43 20721,18 20122,25 29566,91 36199,03 42752,88 10 11 3,20 49005,09 18848,62

Armature e tensioni nei materiali del muro

Combinazione nº 31

Lordinata V(espressa in [mi]) è considerata positiva veso il basso con origine in testa al muro B base dell'assezione espressa in [cmi] di alezza della sevicane espressa; in [cmi] di alezza della sevicane espressa; in [cmi] di area di armattura in corrispondenza del entro di monte in [cmi] serio di armattura in corrispondenza del entro di valle in [cmi] si serio nomine il trium espresso in [kgi]
M, sobre no nomine il utimo espresso in [kgi]
VRed Aliquota di taglo assorbito dal est, espresso in [kgi]
VRed Resis tenza al taglio, espresso in [kgi]

NT	Y	р п			N		CS	X 7	X 7	X 7
Nr.		B, H	Ars	A _{fi}	Nu	M _u		V _{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,39	100, 80	8,04	8,04	895460	-90153	873,87	25347		
3	0,79	100, 80	8,04	8,04	713206	-121750	348,01	25492		
4	1,18	100, 80	8,04	8,04	621810	- 130638	202,27	25636		
5	1,58	100, 80	8,04	8,04	603398	-132064	147,21	25780		
6	1,97	100, 80	8,04	8,04	651373	-128347	127,13	25924		
7	2,36	100, 80	8,04	8,04	778747	-112612	126,66	26068		
8	2,76	100, 80	8,04	8,04	940229	-57881	131,08	26212		
9	3,15	100, 80	8,04	8,04	946843	49330	115,50	26356		
10	3,55	100, 80	8,04	8,04	654694	128089	70,99	26500		
11	3,94	100, 80	8,04	8,04	302937	110495	29,56	26644		
12	4,34	100, 80	12,06	12,06	155769	86328	13,82	26788		
13	4,73	100, 80	12,06	12,06	81728	62314	6,65	26933		
14	5,12	100, 80	24,63	24,63	106728	105433	8,01	30113		
15	5,52	100, 80	24,63	24,63	77893	95860	5,43	30257		
16	5,91	100, 80	24,63	24,63	60389	90049	3,93	30401		
17	6,31	100, 80	24,63	24,63	48692	86166	2,97	30545		
18	6,70	100, 80	24,63	24,63	40364	83401	2,32	30689		
19	7,03	100, 80	24,63	24,63	35552	81803	1,94	30811		
20	7,37	100, 80	16,59	16,59	22034	54872	1,15	27897		
21	7,70	100, 80	16,59	16,59	20627	54401	1,03	28019		

111/144 112/144

Armature e tensioni nei materiali della fondazione

Combinazione nº 31
Simbologia adottata
B base della sezione espressa in [cm]

base dellas ezione espressa în [cm] alezza della sezione espressa în [cm] area di armatura în corrispondenza del lenbo inferiore în [cmq] area di armatura în corrispondenza del lenbo superiore în [cmq] sărza nomalie ultime espresso în [kgi] no mento ultime espresso în [kgi] coefficiente sicurezza se zione Aliquota di tiglio assorbia del est, espresso în [kg] Aliquota di înglio assorbia della matura, espresso în [kg] Resis tanza al tuglio, espresso în [kg]

Fondazion e di valle

 $(L'ascissa\,\,X,espressa\,in\,\,[m],\grave{e}\,positiva\,verso\,\,monte\,con\,origine\,in\,corrispondenza\,dell'estre\,no\,\,libero\,della\,\,fondazione\,di\,valle)$

Nr.	Y	В, Н	A_{fs}	A_6	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	1257	12,57	0	-46091	655,20	30124		
3	0,20	100, 100	1257	12,57	0	-46091	166,53	30124		
4	0,30	100, 100	12.57	12.57	0	-46091	75,27	30124		
5	0.40	100, 100	1257	12,57	0	-46091	43,07	30124		
6	0,50	100, 100	12.57	12.57	0	-46091	28,05	30124		
7	0,60	100, 100	12.57	12.57	0	-46091	19,83	30124		
8	0,70	100, 100	1257	12.57	Õ	-46091	14.83	30124		
9	0.80	100, 100	12.57	12.57	0	-46091	11,56	30124		
10	0,90	100, 100	1659	16.59	Õ	-60583	12.24	30124		
11	1,00	100, 100	1659	16,59	0	-60583	10,10	30124		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libe ro della fondazione di monte)

Nr.	Y	B, H	Ars	An	Nu	Mu	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,32	100, 100	12,57	12,57	0	46091	55,52	30124		
3	0,64	100, 100	12,57	12,57	0	46091	14,54	30124		
4	0,96	100, 100	12,57	12,57	0	46091	6,79	30124		
5	1,28	100, 100	1257	12,57	0	46091	4,02	30124		
6	1,60	100, 100	12,57	12,57	0	46091	2,72	30124		
7	1,92	100, 100	16,59	12,57	0	46074	2,00	30124		
8	2,24	100, 100	16,59	12,57	0	46074	1,56	30124		
9	2,56	100, 100	16,59	16,59	0	60583	1,67	30124		
10	2,88	100, 100	16,59	16,59	0	60583	1,42	30124		
11	3,20	100, 100	16,59	16,59	0	60583	1,24	30124		

COMBINAZIONE nº 32

Peso mu ro favorevole e Peso terrapieno sfavorevole

Valore della spinta statica	14202,91	[kg]		
Componente orizzontale della spinta statica	13210,36	[kg]		
Componente verticale della spinta statica	5216,25	[kg]		
Punto d'applicazione della spinta	X = 3.20	[m]	Y = -6.55	[m]
Inclinaz, della spinta rispetto alla normale alla superficie	21,55	[°]		
Inclinazione linea di rottura in condizioni statiche	57,17	[°]		
Spinta falda	2600.00	[kg]		
Punto d'applicazione della spinta della falda	X = 3.20	[m]	Y = -8.03	[m]
Sottospinta falda	13000,00	[kg]		. ,
Peso terrapieno gravante sulla fondazione a monte	45633,20	[kg]		
Baricent ro terrapieno gravant e sulla fondazione a monte	X = 1.58	[m]	Y = -5,39	[m]
Risultanti carichi esterni				
Componente dir. X	-32663	[kg]		
Componente dir. Y	11050	[kg]		
componente da . I	11000	[46]		
Risultanti				
Risult ant e dei carichi applicati in dir. orizzontale	-16852,14	[kg]		
Risult ant e dei carichi applicati in dir. verticale	78139,45	[kg]		

Sforzo normale sul piano di posa della fondazione	78139,45	[kg]
Sforzo tangenziale sul piano di posa della fondazione	-16852,14	[kg]
Eccentricità rispetto al baricentro della fondazione	-0,83	[m]
Lunghezza fondazione reagente	5,00	[m]
Risult ant e in fondazione	79936,03	[kg]
Inclinazione della risultante (rispetto alla normale)	-12,17	[°]
Moment o risp etto al baricentro della fondazione	-65116,21	[kgm]
Carico ultimo della fondazione	199443,71	[kg]

<u>Tensioni sul terreno</u> Lunghezza fondazione reagente 5.00 Tensione terreno allo spigolo di valle 0,0000 [kg/cmq] Tensione terreno allo spigolo di monte 3,1256 [kg/cmq]

Fattori per il calcolo della capacità portante

C oeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$				
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$				
Fattori inclinazione	$i_c = 0,75$	$i_q = 0.75$	$i_7 = 0.38$				
Fatt ori profon dità	$d_c = 1, 14$	$d_q = 1,07$	$d_{y} = 1,07$				
I coefficient i N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.							
	$N'_c = 30.37$	$N'_q = 18.58$	$N'_{\gamma} = 9.07$				

COEFFICIENTI DI SICUREZZA

99.99 2.55 Coefficiente di sicurezza a scorrimento Coefficiente di sicurezza a carico ultimo

113/144 114/144

Combinazione nº 32
L'ordinata Y(espressa in m)è considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Siozo normale positivo di compressione, espresso in kg Taglio positivo se diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,39	788,24	136,00	649,37
3	0,79	1576,47	479,70	1053,94
4	1,18	2364,71	934,60	1213,77
5	1,58	3152,94	1404,39	1129,42
6	1,97	3941,18	1792,73	800,54
7	2,36	4729,41	2003,27	227,08
8	2,76	5517,65	1939,60	-590,94
9	3,15	6305,88	1505,34	- 1653,50
10	3,55	7094,12	610,80	-2908,28
11	3,94	7882,35	-793,72	-4225,45
12	4,34	8670,59	-2730,54	-5630,61
13	4,73	9458,82	- 5245,16	-7139,98
14	5,12	10247,06	-8376,07	-8773,81
15	5,52	11035,29	-12181,22	-10561,60
16	5,91	11823,53	-16721,33	-12503,47
17	6,31	1261 1,76	-22057, 14	-14599,48
18	6,70	13400,00	-28249,69	-16852,85
19	7,03	14066,67	-33645,39	-15493,03
20	7,37	14733,33	-38559,99	-13967,38
21	7,70	15400,00	-42939,66	-12286,54

Sollecitazioni fondazione di valle

Combinazione nº 32
L'ascisa X(spress ain m) è considerata positiva veso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in kgm
Taglio pas iñvo se diretto veso Falto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0.10	-66,71	- 1323,74
3	0,20	-262,67	-2584,98
4	0,30	-581,62	-3783,70
5	0,40	-1017,32	-4919,91
6	0,50	-1563,52	-5993,61
7	0,60	-2213,96	-7004,79
8	0,70	-2962,39	-7953,47
9	0,80	-3802,57	-8839,63
10	0.90	-4728,23	-9663,28
11	1.00	-5733.14	-10424 42

Sollecitazioni fondazione di monte

Combinazione nº 32
L'asciss a Xispiess ain mì 5 considerata positiva veso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm Taglio pos invose diretto veso Talto, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,32	700,83	4273,47
3	0,64	2666,74	7906,82
4	0,96	5692,91	10900,06
5	1,28	9574,50	13253,17
6	1,60	14106,66	14966,17

7	1,92	19084,57	16039,05
8	2,24	24303,37	16471,81
9	2,56	2955 8.24	16264,45
10	2,88	34644,34	15416,97
11	3,20	39360.24	13963,38

115/144 116/144

Armature e tensioni nei materiali del muro

Combinazione nº 32

L'ordinata Y(espressa in [mi]) è considerata positiva verso il basso con origine in testa al muro B base della sezione espressa in [cmi]
An alezza della sezione espressa in [cmi]
An area di amattuna in corrispondenza del lenho di montein [cmi]
An area di amattuna in corrispondenza del lenho di valle in [cmi]
An area di amattuna in corrispondenza del lenho di valle in [cmi]
An area di amattuna in corrispondenza del lenho di valle in [cmi]
An area di amattuna espresso in [kgi]
M, no mento ultimo espresso in [kgi]
VRed Aliquota di tagli o ssobito dal es, espresso in [kgi]
VRdd Resis tenza al taglio, espresso in [kgi]

Nr.	Y	В, Н	A_{fs}	A_{fi}	Nu	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	ō	1000,00	25203		
2	0,39	100, 80	8,04	8,04	708566	-122258	898,93	25314		
3	0,79	100, 80	8,04	8,04	416625	- 126773	264,28	25425		
4	1,18	100, 80	8,04	8,04	256767	- 101481	108,58	25536		
5	1,58	100, 80	8,04	8,04	193718	-86286	61,44	25647		
6	1,97	100, 80	8,04	8,04	182455	-82994	46,29	25758		
7	2,36	100, 80	8,04	8,04	217503	-92129	45,99	25868		
8	2,76	100, 80	8,04	8,04	327569	-115149	59,37	25979		
9	3,15	100, 80	8,04	8,04	559284	- 133512	88,69	26090		
10	3,55	100, 80	8,04	8,04	923496	-79512	130,18	26201		
11	3,94	100, 80	8,04	8,04	895410	90164	113,60	26312		
12	4,34	100, 80	12,06	12,06	446853	140723	51,54	26423		
13	4,73	100, 80	12,06	12,06	155582	86274	16,45	26534		
14	5,12	100, 80	24,63	24,63	144207	117877	14,07	29680		
15	5,52	100, 80	24,63	24,63	90692	100110	8,22	29791		
16	5,91	100, 80	24,63	24,63	64680	91474	5,47	29902		
17	6,31	100, 80	24,63	24,63	49402	86402	3,92	30013		
18	6,70	100, 80	24,63	24,63	39410	83084	2,94	30124		
19	7,03	100, 80	24,63	24,63	33983	81282	2,42	30217		
20	7,37	100, 80	16,59	16,59	20809	54462	1,41	27275		
21	7,70	100, 80	16,59	16,59	19358	53977	1,26	27369		

Armature e tensioni nei materiali della fondazione

Combinazione nº 32

Combinazione n° 32
Simbologia aduttal
B base dell'asezione espressa in [cm]
H diezza della sezione espressa in [cm]
An, area di armatun in corrispondenza del enbo inferiore in [cmq]
N, storzo nomale ultim espresso in [kg]
CS
CS
CS
CHIEF STATE A CANTON CONTROLLE STATE ST

Fondazion e di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estre no libero della fondazione di valle)

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12,57	12,57	0	-46091	690,94	30124		
3	0,20	100, 100	12,57	12,57	0	-46091	175,48	30124		
4	0,30	100, 100	12,57	12,57	0	-46091	79,25	30124		
5	0,40	100, 100	12,57	12,57	0	-46091	45,31	30124		
6	0,50	100, 100	12,57	12,57	0	-46091	29,48	30124		
7	0,60	100, 100	12,57	12,57	0	-46091	20,82	30124		
8	0,70	100, 100	12,57	12,57	0	-46091	15,56	30124		
9	0,80	100, 100	12,57	12,57	0	-46091	12,12	30124		
10	0,90	100, 100	16,59	16,59	0	-60583	12,81	30124		
11	1,00	100, 100	16,59	16,59	0	-60583	10,57	30124		

Fondazion e di monte

(L'asciss a X, espressa in [m], è positiva verso valle con origine in comspondenza dell'estre no libe ro della fondazione di nonte)

Nr.	Y	В, Н	Ars	An	Nu	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,32	100, 100	12,57	12,57	0	46091	65,77	30124		
3	0,64	100, 100	12,57	12,57	0	46091	17,28	30124		
4	0,96	100, 100	12,57	12,57	0	46091	8,10	30124		
5	1,28	100, 100	12.57	12,57	0	46091	4,81	30124		
6	1,60	100, 100	12,57	12,57	0	46091	3,27	30124		
7	1,92	100, 100	16,59	12,57	0	46074	2,41	30124		
8	2,24	100, 100	16,59	12,57	0	46074	1,90	30124		
9	2,56	100, 100	16,59	16,59	0	60583	2,05	30124		
10	2,88	100, 100	16,59	16,59	0	60583	1,75	30124		
11	3,20	100, 100	16,59	16,59	0	60583	1,54	30124		

COMBINAZIONE nº 33

Peso mu ro sfavore vole e Peso terrapieno favore vole

Valore della spinta statica	14202,91	[kg]		
Componente orizzontale della spinta statica	13210,36	[kg]		
Componente verticale della spint a statica	5216,25	[kg]		
Punto d'applicazione del la spinta	X = 3,20	[m]	Y = -6,55	[m]
Inclinaz, della spintarispetto alla normale alla superficie	21,55	[°]		
Inclinazione linea di rottura in condizioni statiche	57,17	[°]		
Spinta falda	2600,00	[kg]		
Punto d'applicazione del la spinta della falda	X = 3.20	[m]	Y = -8.03	[m]
Sottospinta falda	13000,00	[kg]		. ,
Peso terrapieno gravante sulla fondazione a monte	37214,00	[kg]		
Baricent ro terrapieno gravant e sulla fondazione a monte	X = 1,58	[m]	Y = -5,39	[m]
Risultanti carichi esterni				
Componente dir. X	-32663	[kg]		
Componente dir. Y	11050	[kg]		
Risultanti				
Risult ant e dei carichi applicati in dir. orizzontale	-16852,14	[kg]		
Risultante dei carichi applicati in dir verticale	78090.25	[kø]		

117/144 118/144 $N'_{y} = 9.06$

Sforzo normale sul piano di posa della fondazione	78090,25	[kg]
Sforzo t angenzia le sul piano di posa della fondazione	-16852,14	[kg]
Eccentricità rispetto al baricentro della fondazione	-0,83	[m]
Lunghezza fondazione reagente	5,00	[m]
Risult ant e in fondazione	79887,93	[kg]
Inclinazione della risultante (rispetto alla normale)	-12,18	[°]
Moment o risp ett o al baricentro della fondazione	-65075,21	[kgm]
Carico ultimo della fondazione	199363,35	[kg]

<u>Tensioni sul terreno</u> Lunghezza fondazione reagente 5,00 Tensione terreno allo spigolo di valle 0,0000 [kg/cmq] Tensione terreno allo spigolo di monte 3,1236 [kg/cmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori indinazione	$i_c = 0,75$	$i_q = 0.75$	$i_f = 0.38$
Fattori profon dità	$d_c = 1, 14$	$d_q = 1,07$	$d_{y} = 1,07$
I coefficient i N' tengono conto dei fattori di	forma, profondità, inclinazione carico,	inclinazione piano di posa, inclinazione pendio).

 $N'_{a} = 18.58$

 $N'_c = 30.37$

COEFFICIEN TI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	99.99
Coefficiente di sicurezza a carico ultimo	2.55

Sollecitazioni paramento

Combinazione nº 33

L'ordinat y (espressa in m) è conside na positiva verso il basso con origine in testa al muro Momento positivo settende le fibrecontroterra (a monte), espresso in kgm Sōrzo normale positivo di compressione, espresso in kg Taglio positivo es diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	Т
1	0,00	0.00	0,00	0,00
2	0,39	1024,71	102,05	478,04
3	0.79	2049,41	345,43	717,22
4	1,18	3074,12	636,01	717,61
5	1,58	4098,82	879,81	479,78
6	1,97	5123,53	982,85	3,35
7	2,36	6148,24	851, 10	-711,70
8	2,76	7172,94	390,52	-1665,36
9	3,15	8197,65	-492,94	-2857,62
10	3,55	9222,35	-1886,64	-4236,16
11	3,94	10247,06	-3837,90	-5671,12
12	4,34	11271,76	-6366,73	-7188,14
13	4,73	12296,47	-9516,26	-8803,42
14	5,12	13321,18	-13322,65	-10537,21
15	5,52	14345,88	-17841,51	-12419,01
16	5,91	15370,59	-23131,22	-14448,95
17	6,31	16395,29	-29250, 15	-16627,07
18	6,70	17420,00	-36257,01	-18956,61
19	7,03	18286,67	-42364,04	-17656,57
20	7,37	19153,33	-48009, 19	-16186,44
21	7,70	20020,00	-53137,21	-14556,86

Sollecitazioni fondazione di valle

Combinazione nº 33
L'ascis a X(septesa ain m) e considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr.	X	M	Т
1	0,00	0,00	0,00
2	0,10	-70,46	-1398,76
3	0,20	-277,67	-2735,06
4	0,30	-615,39	-4008,88
5	0,40	-1077,36	-5220,22
6	0,50	- 1657,35	-6369,10
7	0,60	-2349,10	-7455,50
8	0,70	-3146,37	-8479,43
9	0,80	-4042,90	-9440,89
10	0,90	-5032,46	-10339,88
11	1,00	-6108,80	-11176,39

Sollecitazioni fondazione di monte

Combinazione nº 33

Comminazione II 39 de considerata positiva verso valle con origine in corrispondenz adell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivos derietto useo Tallo, opresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,32	661,44	4027,37
3	0,64	2509,28	7415,03
4	0,96	5338,82	10162,98
5	1,28	8945,35	12271,20
6	1,60	13124,16	13739,72

119/144 120/144 03.5 - Muro sez. D-D - Fascicolo dei calcoli.rtf

14568,52 14757,60 1,92 17670,53 2,24 2,56 2,88 22379,77 27047,16 31467,99 14306,96 13216,62 10

35440,97

11520,55

11

3,20

Armature e tensioni nei materiali del muro

Combinazione nº 33

Lordinata V(espressa in [mi]) è considerata positiva verso il basso con origine in testa al muro B boare dell'assezione espressa in [cmi] di alezza della sevicane espressa in [cmi] di alezza della sevicane espressa in [cmi] di area di armattura in corrispondenza del embo di monte in [cmi] serio di armattura in corrispondenza del embo di valle in [cmi] si serio nomine il trium espresso in [kgi]
M, sobre no nomine il ufirim espresso in [kgi]
VRed Aliquota di taglo assorbito dal els, espresso in [kgi]
VRed Resis tenza al taglio, espresso in [kgi]

Nr.	Y	В, Н	A_{fs}	A_6	Nu	M_u	CS	V_{Rd}	V_{Rot}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	Õ	1000,00	25203		
2	0,39	100, 80	8,04	8,04	898516	-89479	876,85	25347		
3	0,79	100, 80	8,04	8,04	718746	-121144	350,71	25492		
4	1,18	100, 80	8,04	8,04	628809	-130095	204,55	25636		
5	1,58	100, 80	8,04	8,04	612110	-131389	149,34	25780		
6	1,97	100, 80	8,04	8,04	663197	-127222	129,44	25924		
7	2,36	100, 80	8,04	8,04	794858	-110032	129,28	26068		
8	2,76	100, 80	8,04	8,04	945196	-51460	131,77	26212		
9	3,15	100, 80	8,04	8,04	941221	56598	114,82	26356		
10	3,55	100, 80	8,04	8,04	633979	129694	68,74	26500		
11	3,94	100, 80	8,04	8,04	286958	107476	28,00	26644		
12	4,34	100, 80	12,06	12,06	149739	84578	13,28	26788		
13	4,73	100, 80	12,06	12,06	79587	61592	6,47	26933		
14	5,12	100, 80	24,63	24,63	104773	104784	7,87	30113		
15	5,52	100, 80	24,63	24,63	76782	95492	5,35	30257		
16	5,91	100, 80	24,63	24,63	59681	89814	3,88	30401		
17	6,31	100, 80	24,63	24,63	48207	86005	2,94	30545		
18	6,70	100, 80	24,63	24,63	40015	83285	2,30	30689		
19	7,03	100, 80	24,63	24,63	35270	81710	1,93	30811		
20	7,37	100, 80	16,59	16,59	21869	54817	1,14	27897		
21	7,70	100, 80	16,59	16,59	20477	54351	1,02	28019		

121/144 122/144

Armature e tensioni nei materiali della fondazione

Combinazione n° 33

Simbologia adutata
B base de lla sezione espressa in [cm]
H alecza della sezione espressa in [cm]
An area di armatun in corrispondenza del lenbo inferiore in [cm]
An area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in socione dal consenso in [kg]
VRSd Aliquota di tigglio sosofito dal l'armatura, espresso in [kg]
VRd Resistenza al taglio, espresso in [kg]

Fondazion e di valle

 $(L'ascissa\,\,X,espressa\,in\,\,[m],\grave{e}\,positiva\,verso\,\,monte\,con\,origine\,in\,corrispondenza\,dell'estre\,mo\,\,libero\,della\,\,fondazione\,di\,valle)$

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	1257	12,57	0	-46091	654,16	30124		
3	0.20	100, 100	12.57	12.57	0	-46091	165,99	30124		
4	0,30	100, 100	1257	12,57	0	-46091	74,90	30124		
5	0,40	100, 100	1257	12,57	0	-46091	42,78	30124		
6	0.50	100, 100	12.57	12.57	0	-46091	27,81	30124		
7	0,60	100, 100	12.57	12.57	0	-46091	19,62	30124		
8	0.70	100, 100	1257	12.57	0	-46091	14,65	30124		
9	0.80	100, 100	12.57	12.57	0	-46091	11.40	30124		
10	0,90	100, 100	1659	16.59	Õ	-60583	12.04	30124		
11	1,00	100, 100	1659	16,59	0	-60583	9,92	30124		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libe ro della fondazione di monte)

Nr.	Y	B, H	Ars	An	Nu	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,32	100, 100	1257	12,57	0	46091	69,68	30124		
3	0,64	100, 100	12,57	12,57	0	46091	18,37	30124		
4	0,96	100, 100	1257	12,57	0	46091	8,63	30124		
5	1,28	100, 100	12.57	12,57	0	46091	5,15	30124		
6	1,60	100, 100	12,57	12,57	0	46091	3,51	30124		
7	1,92	100, 100	16,59	12,57	0	46074	2,61	30124		
8	2,24	100, 100	1659	12,57	0	46074	2,06	30124		
9	2,56	100, 100	16,59	16,59	0	60583	2,24	30124		
10	2,88	100, 100	1659	16,59	0	60583	1,93	30124		
11	3,20	100, 100	16,59	16,59	0	60583	1,71	30124		

COMBINAZIONE nº 34

Peso mu ro favorevole e Peso terrapieno favorevole

Valore del la spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	14202,91 13210,36 5216,25 X = 3,20 21,55 57,17	[kg] [kg] [kg] [m] [°]	Y=-6,55	[m]
Spinta falda Punto d'applicazione della spinta della falda Sottospinta falda	2600,00 X = 3,20 13000,00	[kg] [m] [kg]	Y=-8,03	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravant e sulla fondazione a monte	37214,00 X = 1,58	[kg] [m]	Y=-5,39	[m]
Risultanti carichi esterni Componente dir. X Componente dir. Y	-32663 11050	[kg] [kg]		
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale	-16852,14 69720,25	[kg] [kg]		

Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione	69720,25 -16852,14 -0,83	[kg] [kg] [m]
Lunghezza fondazione reagente Risult ant e in fondazione Inclinazione della risultante (rispetto alla normale)	5,00 71728,01 -13.59	[m] [kg] [°]
Moment o risp etto al baricentro della fondazione Carico ultimo della fondazione	-58100,21 184551,41	[kgm] [kg]

<u>Tensioni sul terreno</u> Lunghezza fondazione reagente 5.00 Tensione terreno allo spigolo di valle 0,0000 [kg/cmq] Tensione terreno allo spigolo di monte 2,78 88 [kg/cmq]

Fattori per il calcolo della capacità portante

C oeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori indinazione	$i_c = 0,72$	$i_q = 0.72$	$i_{f} = 0.33$
Fattori profondità	$d_c = 1, 14$	$d_q = 1,07$	$d_{\gamma} = 1,07$
I coefficient i N' tengono conto dei fattori di	forma, profondità, inclinazione carico,	in clinazione piano di posa, inclinazi	one pendio.
	$N'_c = 29.27$	$N'_{q} = 17.91$	$N'_{\gamma} = 7.82$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	99.99
Coefficiente di sicurezza a carico ultimo	2.65

123/144 124/144

Combinazione nº 34

Lordinata Y(espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Siozo normale positivo di compressione, espresso in kg
Taglio positivo ed diretto di montreveno valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,39	788,24	134,88	643,72
3	0,79	1576,47	475,27	1042,84
4	1,18	2364,71	924,76	1197,41
5	1,58	3152,94	1387,10	1108,01
6	1,97	3941,18	1766,04	774,26
7	2,36	4729,41	1965,30	196,14
8	2,76	5517,65	1888,55	-626,35
9	3,15	6305,88	1439,49	- 1693,18
10	3,55	7094,12	528,50	-2952,04
11	3,94	7882,35	-894,04	-4273,09
12	4,34	8670,59	-2850,37	- 5681,93
13	4,73	9458,82	-5385,92	-7194,80
14	5,12	10247,06	- 8539,08	-8831,92
15	5,52	11035,29	-12367,75	-10622,81
16	5,91	11823,53	-16932,57	-12567,59
17	6,31	1261 1,76	-22294, 19	-14666,30
18	6,70	13400,00	-28513,58	-16922, 18
19	7,03	14066,67	-33932,71	-15564,33
20	7,37	14733,33	-38871,39	-14040,51
21	7,70	15400,00	-43275,72	-12361,36

Sollecitazioni fondazione di valle

Combinazione nº 34
L'ascisa X(spress ain m) è considerata positiva veso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in kgm
Taglio pas iñvo se diretto veso Falto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	-66,82	- 1327,11
3	0,20	-263,56	-2598,45
4	0,30	-584,65	-3814,01
5	0,40	- 1024,51	-4973,79
6	0,50	- 1577,55	-6077,80
7	0,60	-2238,21	-7126,03
8	0,70	-3000,90	-8118,48
9	0,80	-3860,04	-9055,16
10	0,90	-4810,07	-9936,06
11	1.00	-5845.40	-10761.19

Sollecitazioni fondazione di monte

Combinazione nº 34
L'asciss a Xispiess ain m) è considerata positiva veso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo se tende le fibre inferiori, espresso in kgm Taglio pos invose diretto veso Talto, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,32	532,08	3230,30
3	0,64	2006,47	5889,45
4	0,96	4240,40	7977,45
5	1,28	7051,11	9494,30
6	1,60	1025 5,83	10440,01

7	1,92	13671,79	10814,56
8	2,24	17116,23	10617,97
9	2,56	20406,37	9850,23
10	2,88	23359,45	8511,34
11	3.20	25796.12	6635,30

125/144 126/144

Armature e tensioni nei materiali del muro

Combinazione nº 34

Lordinata Viespressa in [mi] è considerata positiva verso il basso con origine in testa al muro B base della sezione espressa in [cmi]
An alezza della sezione espressa in [cmi]
An area di amattuna in corrispondenza del lenho di montein [cmi]
An area di amattuna in corrispondenza del lenho di valle in [cmi]
An area di amattuna in corrispondenza del lenho di valle in [cmi]
An area di amattuna in corrispondenza del lenho di valle in [cmi]
An area di amattuna espresso in [kgi]
M, no mento ultimo espresso in [kgi]
VRed Aliquota di tagli o ssobito dal es, espresso in [kgi]
VRdd Resis tenza al taglio, espresso in [kgi]

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,39	100, 80	8,04	8,04	712152	-121865	903,48	25314		
3	0,79	100, 80	8,04	8,04	422292	- 12731 2	267,87	25425		
4	1,18	100, 80	8,04	8,04	263490	-103042	111,43	25536		
5	1,58	100, 80	8,04	8,04	199863	-87927	63,39	25647		
6	1,97	100, 80	8,04	8,04	190386	-85312	48,31	25758		
7	2,36	100, 80	8,04	8,04	227349	-94474	48,07	25868		
8	2,76	100, 80	8,04	8,04	342883	-117360	62,14	25979		
9	3,15	100, 80	8,04	8,04	583256	-133144	92,49	26090		
10	3,55	100, 80	8,04	8,04	931332	-69382	131,28	26201		
11	3,94	100, 80	8,04	8,04	861268	97688	109,27	26312		
12	4,34	100, 80	12,06	12,06	421495	138563	48,61	26423		
13	4,73	100, 80	12,06	12,06	147289	83867	15,57	26534		
14	5,12	100, 80	24,63	24,63	139631	116357	13,63	29680		
15	5,52	100, 80	24,63	24,63	88748	99464	8,04	29791		
16	5,91	100, 80	24,63	24,63	63630	91125	5,38	29902		
17	6,31	100, 80	24,63	24,63	48756	86187	3,87	30013		
18	6,70	100, 80	24,63	24,63	38978	82941	2,91	30124		
19	7,03	100, 80	24,63	24,63	33649	81172	2,39	30217		
20	7,37	100, 80	16,59	16,59	20618	54398	1,40	27275		
21	7,70	100, 80	16,59	16,59	19188	53919	1,25	27369		

Armature e tensioni nei materiali della fondazione

Combinazione nº 34

Simbologia adottata
B base della sezione espressa in [cm]

bace de lla sezione espressa in [cm]
altezza del la sezione espressa in [cm]
area di armatua in corrispondenza del le nbo inferiore in [cmq]
area di armatua in corrispondenza del le nbo superiore in [cmq]
storzo nomale ultimo espresso in [kg]
no mento ultimo espresso in [kg]
no mento ultimo espresso in [kg]
Aliquat di tiggio assobito dal cls, espresso in [kg]
Aliquat di tiggio assobito dal mantura, espresso in [kg]
Resis tenza al taglio, espresso in [kg]

Ars N_u M_u CS VRcd VRsd

Fondazion e di valle

 $(L'ascissa\ X, espressa\ in\ [m], \`e\ positiva\ verso\ monte\ con\ origine\ in\ corrispondenza\ dell'estre no\ libero\ della\ fondazione\ di\ valle)$

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12,57	12,57	0	-46091	689,78	30124		
3	0,20	100, 100	12,57	12,57	0	-46091	174,88	30124		
4	0,30	100, 100	12,57	12,57	0	-46091	78,84	30124		
5	0,40	100, 100	12,57	12,57	0	-46091	44,99	30124		
6	0,50	100, 100	12,57	12,57	0	-46091	29,22	30124		
7	0,60	100, 100	12.57	12,57	0	-46091	20,59	30124		
8	0,70	100, 100	12,57	12,57	0	-46091	15,36	30124		
9	0,80	100, 100	12.57	12,57	0	-46091	11,94	30124		
10	0,90	100, 100	16,59	16,59	0	-60583	12,60	30124		
11	1,00	100, 100	16,59	16,59	0	-60583	10,36	30124		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre no libero della fondazione di nonte)

Nr.	Y	В, Н	Ars	An	Nu	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,32	100, 100	12,57	12,57	0	46091	86,63	30124		
3	0,64	100, 100	12,57	12,57	0	46091	22,97	30124		
4	0,96	100, 100	12,57	12,57	0	46091	10,87	30124		
5	1,28	100, 100	12,57	12,57	0	46091	6,54	30124		
6	1,60	100, 100	12,57	12,57	0	46091	4,49	30124		
7	1,92	100, 100	16,59	12,57	0	46074	3,37	30124		
8	2,24	100, 100	16,59	12,57	0	46074	2,69	30124		
9	2,56	100, 100	16,59	16,59	0	60583	2,97	30124		
10	2,88	100, 100	16,59	16,59	0	60583	2,59	30124		
11	3,20	100, 100	16,59	16,59	0	60583	2,35	30124		

COMBINAZIONE nº 35

15723,37 14992,05 4739,52 X = 3,20 17,54 54,01	[kg] [kg] [kg] [m] [°]	Y = -6,52	[m]
2200,00 X = 3,20 11000,00	[kg] [m] [kg]	Y=-8,03	[m]
34407,60 X = 1,58	[kg] [m]	Y=-5,39	[m]
-27638 9350	[kg] [kg]		
-10445,45 63947,12 61700,03	[kg] [kg] [kgm]		
	14992.05 4739,52 X = 3.20 17,54 54,01 2200,00 X = 3.20 11000,00 34407,60 X = 1.58 -27638 9350	14992.05	14992.05 [kg] 4739.52 [kg] X = 3.20 [m] Y = -6.52 17.54 [°] 54.01 [°] 2200.00 [kg] X = 3.20 [m] Y = -8.03 11000.00 [kg] 34407.60 [kg] X = 1.58 [m] Y = -5.39 -27638 [kg] 9350 [kg] -10445.45 [kg] 63947.12 [kg]

127/144 128/144

Moment o stabilizzant e rispetto allo spigolo a valle	310544,54	[kgm]
Sforzo normale sul piano di posa della fondazione	63947,12	[kg]
Sforzo t angenzia le sul piano di posa della fondazione	-10445,45	[kg]
Eccentricità rispetto al baricentro della fondazione	-0,83	[m]
Lunghezza fondazione reagente	5,00	[m]
Risult ant e in fondazione	64794,61	[kg]
Inclinazione del la risultante (rispetto alla normale)	-9,28	[°]
Moment o risp ett o al baricentro della fondazione	-53289,27	[kgm]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltament o

5.03

Stabilità globale muro + terreno

Combinazione n° 36

Le accise X sono onsiderate positive veso mme
Le onimine trono considerate positive veso finto
Origine in testa al muno (spigolo contro tem)

peso della sticia espresso in [kg]

amplo fin la base della striccia porizionale espresso in [r] (positivo antiomio)
amplo diatrio del articcia la posicia de spresso in [r]

pessione del carrio in magolo diatrio del articcia espresso in [r]

implezzo dela striccia espresso in [r]

pressione nettra lango la base della striscia espressa in [kg/cm]

Metodo di Bishop Numero di cerchi analizzati 36 Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -2,87

Raggio del cerchio R[m]= 10,61

Xi[m]=-11,11 Xs[m]= 7,25 A scissa a valle del cerchio A scissa a monte del cerchio Larghezza del la striscia dx[m] = 0.73Coefficiente di sicurezza C= 1.67 Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α (°)	Wsinα	b/cosα	ф	с	u
1	3179.92	67.10	2929.26	1.89	28.42	0.000	0.000
2	5258.11	58.47	4481.64	1.40	26.56	0.000	0.000
3	6741.96	51.49	5275.26	1.18	26.56	0.000	0.000
4	7955.18	45.47	5671.21	1.05	26.56	0.000	0.073
5	8956.79	40.05	5763.40	0.96	26.56	0.000	0.141
6	9980.25	35.04	5729.71	0.90	26.56	0.000	0.198
7	10877.38	30.32	5490.68	0.85	26.56	0.000	0.245
8	1145 1.89	25.82	4987.05	0.82	26.56	0.000	0.284
9	11923.73	21.48	4366.38	0.79	26.56	0.000	0.317
10	14684.36	17.27	4360.03	0.77	26.56	0.000	0.342
11	18104.05	13.16	4121.35	0.75	26.56	0.000	0.362
12	12145.79	9.11	1923.69	0.74	26.56	0.000	0.377
13	7827.02	5.11	697.57	0.74	26.56	0.000	0.386
14	5730.10	1.14	113.82	0.73	26.56	0.000	0.390
15	5714.14	-2.83	-282,25	0.74	26.56	0.000	0.389
16	5623.02	-6.81	-667.20	0.74	26.56	0.000	0.383
17	5455.39	-10.83	-1025.16	0.75	26.56	0.000	0.371
18	5208.67	-14.90	-1339.58	0.76	26.56	0.000	0.355
19	4878.87	-19.05	-1592.73	0.78	26.56	0.000	0.332
20	4460.21	-23.31	-1765.06	0.80	26.56	0.000	0.304
21	3944.52	-27.71	-1834.31	0.83	26.56	0.000	0.269
22	3320.30	-32.30	-1774.16	0.87	26.56	0.000	0.226
23	2571.00	-37.13	-1552.05	0.92	26.56	0.000	0.175
24	1671.82	-42.30	-1125.23	0.99	26.56	0.000	0.114
25	583.15	-47.95	-433.01	1.10	26.56	0.000	0.040

ΣWi= 178247,59 [kg] Σ Wisin α i= 42520,29 [kg] ΣWtanφ= 89236,43 [kg] Σt anotanφ= 2.47

129/144 130/144

Combinazione nº 37

Lordinata Y(espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Siozo normale positivo di compressione, espresso in kg Taglio positivo se diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,39	788,24	93,85	445, 18
3	0,79	1576,47	326,42	703,94
4	1,18	2364,71	624,23	776,33
5	1,58	3152,94	913,94	662,77
6	1,97	3941,18	1122,20	362,99
7	2,36	4729,41	1175,60	-123,03
8	2,76	5517,65	1000,76	-795,29
9	3,15	6305,88	524,26	- 1653,79
10	3,55	7094,12	-327,28	-2698,28
11	3,94	7882,35	- 1625,78	-3916,92
12	4,34	8670,59	-3431,70	-5269,41
13	4,73	9458,82	-5788,16	-6697,02
14	5,12	10247,06	-8724,21	-8221,88
15	5,52	11035,29	-12284,07	-9862,27
16	5,91	11823,53	-16513,20	-11618,31
17	6,31	1261 1.76	-21457.29	-13490,52
18	6,70	13400,00	-27162,42	-15481,62
19	7,03	14066,67	-32188,35	-14651,97
20	7,37	14733,33	-36916,09	-13693,32
21	7,70	15400,00	-41303,75	-12613,90

Sollecitazioni fondazione di valle

Combinazione nº 37
L'asciss a X(spiess ai m pì è considerata positiva veso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in kgm Taglio pas iñvo se diretto veso Falto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	-54,22	- 1076,58
3	0,20	-213,75	-2106,31
4	0,30	-473,92	-3089,21
5	0,40	-830,03	-4025,26
6	0,50	- 1277,41	-4914,47
7	0,60	-1811,37	-5756,83
8	0,70	-2427,22	-6552,35
9	0,80	-3120,28	-7301,03
10	0,90	-3885,86	-8002,87
11	1.00	-4719.29	-8657.86

Sollecitazioni fondazione di monte

Combinazione nº 37

Commizzature II a de considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo set tende le fibre infacio, espresso in Igm Taglio positivo est ende cel derito teves o londo, opereso in Ig.

Nr. M 0,00 596,57 0,00 0,00 3648,61 0,32 0.64 2283,94 6817,54 4908,63 9506,81 0,96 8317,14 11716,41 1,28 13446,34 1,60 12355,97

7	1,92	1687 1,63	14696,59
8	2,24	21710.62	15467.18
9	2,56	26719.46	15758,10
10	2,88	31744,64	15569,35
11	3.20	36609.34	14580.92

131/144 132/144

Armature e tensioni nei materiali del muro

Combinazione nº 37

Communatorie II vi Lordinata V(sepressa in [m]) è considerata positiva verso il basso con origine in testa al muro B base de lla sezione espressa in [cm] H altezza della sezione espressa in [cm] Ars area di armatura in corrispondenza del enbo di monte in [cm]

area di armatura in corrispondenza del lembo di valle in [cmq] tens ione nel ca leestruzzo espressa in [kg/c mq]

tens ione tangenziale nel calcestruzzo espressa in [kg/cmq] tens ione nel l'armatura disposta sul lembo di monte in [kg/cmq]

tens ione nell'armatura disposta sul lembo di valle in [kg/cmq]

Nr.	Y	В, Н	A_{fs}	A_{fi}	σ.	τ	σs	σi
1	0,00	100, 80	8,04	8,04	0,00	0,00	0,00	0,00
2	0,39	100, 80	8,04	8,04	0,18	0.07	-0,35	-2,51
3	0,79	100, 80	8,04	8,04	0,50	0,11	1,74	-6,93
4	1,18	100, 80	8,04	8,04	0,98	0,12	8,56	-13,17
5	1,58	100, 80	8,04	8,04	1,48	0,10	17,09	-19,57
6	1,97	100, 80	8,04	8,04	1,80	0,06	19,81	-23,95
7	2,36	100, 80	8,04	8,04	1,83	-0,02	13,05	-24,68
8	2,76	100, 80	8,04	8,04	1,58	-0,12	2,50	-21,96
9	3,15	100, 80	8,04	8,04	1,22	-0,26	-5,44	-17,51
10	3,55	100, 80	8,04	8,04	1,15	-0,42	-16,68	-9,15
11	3,94	100, 80	8,04	8,04	2,51	-0,61	-34,55	8,51
12	4,34	100, 80	12,06	12,06	5,62	-0,83	-71,36	110,19
13	4,73	100, 80	12,06	12,06	10,21	- 1,05	-120,66	334,11
14	5,12	100, 80	24,63	24,63	11,54	- 1,29	-139,65	329,28
15	5,52	100, 80	24,63	24,63	16,12	- 1,55	-190,96	520,98
16	5,91	100, 80	24,63	24,63	21,50	-1,82	-250,86	752,81
17	6,31	100, 80	24,63	24,63	27,76	-2,12	-320,11	1027,03
18	6,70	100, 80	24,63	24,63	34,94	-2,43	-399,42	1346,14
19	7,03	100, 80	24,63	24,63	41,26	-2,30	-469,05	1628,01
20	7,37	100, 80	16,59	16,59	57,13	-2,15	-614,84	2774,38
21	7.70	100, 80	1659	16,59	63.84	-1.98	-684.81	3134,05

Armature e tensioni nei materiali della fondazione

Combinazione nº 37

Simbologia adottata
B base della sezione espressa in [cm]

altezza della sezione espressa in [cm] area di armatura in corrispondenza del le nbo inferiore in [cmq]

area di armatura in corrispondenza del le nbo superiore in [cmq] tens ione nel calcestruzzo espressa in [kg/cmq]

tens ione tartestruzzo spiesza in [kg/cmq] tens ione tangenziale nel cakestruzzo espressa in [kg/cmq] tens ione nell'armatura disposta in corrispondenza del lembo inferiore in [kg/cmq] tens ione nell'armatura disposta in corrispondenza del lembo superiore in [kg/cmq]

Fondazion e di valle

 $(L'ascissa\ X, espressa\ in\ [m], \`e\ positiva\ verso\ monte\ con\ origine\ in\ corrispondenza\ dell'estreno\ libero\ della\ fondazione\ di\ valle)$

Nr.	X	В, Н	A_{fs}	A_{fi}	σ.	τ	σ _{ii}	σ _{fs}
1	0,00	100, 100	12,57	12,57	0,00	0,00	0,00	0,00
2	0,10	100, 100	12,57	12,57	0,06	-0,13	-0,67	4,81
3	0,20	100, 100	12,57	12,57	0,26	-0,26	-2,64	18,96
4	0,30	100, 100	12,57	12,57	0,57	-0,38	-5,86	42,04
5	0,40	100, 100	12.57	12,57	0,99	-0,50	-10,26	73,63
6	0,50	100, 100	12,57	12,57	1,53	-0,61	-15,79	113,31
7	0,60	100, 100	12,57	12,57	2,17	-0,71	-22,39	160,68
8	0,70	100, 100	12,57	12,57	2,91	-0,81	-30,01	215,31
9	0,80	100, 100	12,57	12,57	3,74	-0,90	-38,58	276,78
10	0,90	100, 100	16,59	16,59	4,06	-0,99	-43,86	262,63
11	1.00	100, 100	16.59	16.59	4.93	- 1.07	-53.27	318.95

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre no libero della fondazione di nonte)

Nr.	X	В, Н	A_{fs}	A_{fi}	σ .	τ.	G ii	o fs
1	0,00	100, 100	12,57	12,57	0,00	0,00	0,00	0,00
2	0,32	100, 100	12,57	12,57	0,71	0,45	52,92	-7,38
3	0,64	100, 100	12,57	12,57	2,74	0,84	202,60	-28,24
4	0,96	100, 100	12,57	12,57	5,88	1,18	435,42	-60,68
5	1,28	100, 100	12,57	12,57	9,97	1,45	737,77	-102,82
6	1,60	100, 100	12,57	12,57	14,81	1,67	1096,03	-152,75
7	1,92	100, 100	16,59	12,57	19,70	1,82	1494,88	-201,29
8	2,24	100, 100	16,59	12,57	25,35	1,92	1923,63	-259,02
9	2,56	100, 100	16,59	16,59	27,91	1,95	1805,83	-301,59
10	2,88	100, 100	16,59	16,59	33,16	1,93	2145,46	-358,31
11	3,20	100, 100	16,59	16,59	38,24	1,81	2474,24	-413,21

Verifiche a fessurazione

Combinazione nº 37

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

(capitasa in [in]) e consistenta postaria vicio frosas e con originate area di armatura in corrispondenza del lembo di monte in [cmq] area di armatura in corrispondenza del lembo di valle in [cmq] Momento di prima fe ssurazione espressa in [kgm]

Momento a gente nella sezione espressa in [kgm]

deformazione media espressa in [%] Distanza media tra le fessure espressa in [mm] Apentura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Y	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	A_{fi}	$\mathbf{M}_{\mathbf{pf}}$	M	€ m	S_{m}	w
1	0,00	8,04	8,04	-16102	0	0,0000	0,00	0,000
2	0,39	8,04	8,04	-16102	-94	0,0000	0,00	0,000
3	0,79	8,04	8,04	-16102	-326	0.0000	0,00	0.000
4	1,18	8,04	8,04	-16102	-624	0.0000	0,00	0,000
5	1,58	8,04	8,04	-16102	-914	0,000	0,00	0,000
6	1,97	8,04	8,04	-16102	-1122	0.0000	0,00	0.000
7	2,36	8,04	8,04	-16102	-1176	0,0000	0,00	0,000
8	2,76	8,04	8,04	-16102	-1001	0.0000	0,00	0.000
9	3,15	8.04	8.04	-16102	-524	0.0000	0.00	0.000
10	3,55	8,04	8,04	16102	327	0,0000	0,00	0,000
11	3.94	8.04	8.04	16102	1626	0.0000	0,00	0.000
12	4,34	12,06	12,06	16475	3432	0,0000	0,00	0,000

133/144 134/144

13 14 15 16 17 18 19 20 21	4,73 5,12 5,52 5,91 6,31 6,70 7,03 7,37 7,70	12,06 24,63 24,63 24,63 24,63 24,63 16,59 16,59	12,06 24,63 24,63 24,63 24,63 24,63 24,63 16,59 16,59	16475 17644 17644 17644 17644 17644 17644 16895 16895	5788 8724 12284 16513 21457 27162 32188 36916 41304	0,0000 0,0000 0,0000 0,0000 0,0293 0,0459 0,0624 0,1145 0,1337	0,00 0,00 0,00 0,00 132,83 132,83 132,83 163,96	0,000 0,000 0,000 0,000 0,066 0,104 0,141 0,319 0,373
Verifice	a fessurazione fo	ondazion e						
N°	Y	$\mathbf{A}_{\mathbf{f}_{0}}$	$\mathbf{A}_{\mathbf{f}_{\mathbf{i}}}$	\mathbf{M}_{pf}	M	εm	S_{m}	w
1	-1,80	12.57	12,57	-25528	0	0,000	0.00	0,000
2	-1,70	1257	12,57	-25528	-54	0,0000	0,00	0,000
3	-1,60	1257	12,57	-25528	-214	0,0000	0,00	0,000
4	-1,50	1257	12,57	-25528	-474	0.0000	0,00	0,000
5	-1,40	1257	12,57	-25528	-830	0.0000	0,00	0,000
6	-1,30	1257	12,57	-25528	- 1277	0,000,0	0,00	0,000
7	-1,20	1257	12,57	-25528	-1811	0.0000	0,00	0,000
8	-1,10	12.57	12,57	-25528	-2427	0,0000	0.00	0,000
9	-1,00	1257	12,57	-25528	-3120	0,0000	0.00	0,000
10	-0,90	1659	16,59	-26019	-3886	0,0000	0.00	0,000
11	-0,80	1659	16,59	-26019	-4719	0,0000	0.00	0,000
12	0,00	16,59	16,59	26019	36609	0,0890	163,96	0,248
13	0,32	1659	16,59	26019	31745	0,0690	163,96	0,192
14	0,64	16,59	16,59	26019	26719	0,0516	163,96	0,144
15	0.96	1659	12,57	25618	21711	0,000,0	0.00	0,000
16	1,28	1659	12,57	25618	16872	0,0000	0.00	0,000
17	1,60	12,57	12,57	25528	12356	0,0000	0,00	0,000
18	1,92	12,57	12,57	25528	8317	0,0000	0,00	0,000
19	2,24	12,57	12,57	25528	4909	0,0000	0,00	0,000
20	2,56	12,57	12,57	25528	2284	0,0000	0,00	0,000
21	2,88	12,57	12,57	25528	597	0,0000	0,00	0,000
22	3,20	1257	12,57	-25528	0	0.0000	0.00	0,000

Combinazione nº 38

L'ordinat y (espressa in m)è considenta positiva verso il basso con origine in testa al muro Momento positivo settende le fibrecontroterra (a monte), espresso in kgm Sōrzo normale positivo di compressione, espresso in kg Taglio positivo es diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,39	788,24	83,13	391,07
3	0,79	1576,47	284,01	597,60
4	1,18	2364,71	529,93	619,63
5	1,58	3152,94	748,27	457,60
6	1,97	3941,18	866,42	111,23
7	2,36	4729,41	811,73	-419,51
8	2,76	5517,65	511,53	-1134,61
9	3,15	6305,88	-106,83	-2034,07
10	3,55	7094,12	- 11 14,07	-3101,32
11	3,94	7882,35	-2561,82	-4254,38
12	4,34	8670,59	-4475,87	-5479,16
13	4,73	9458,82	-6890,95	-6784,73
14	5,12	10247,06	-9837,29	-8186,12
15	5,52	11035,29	-13358,64	-9702,53
16	5,91	11823,53	-17500,23	-11333,66
17	6,31	1261 1,76	-22307,30	-13079,56
18	6,70	13400,00	-27825,30	-14942,72
19	7,03	14066,67	-32653,38	-14003,54
20	7,37	1473 3,3 3	-37146,55	-12934, 10
21	7,70	15400,00	-41262,49	-11742,58

Sollecitazioni fondazione di valle

Combinazione nº 38
L'ascis a X(septesa ain m) e considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr.	X	M	Т
1	0,00	0,00	0,00
2	0,10	-54,15	-1074,42
3	0,20	-213,18	-2097,68
4	0,30	-471,98	-3069,78
5	0,40	-825,43	-3990,72
6	0,50	-1268,42	-4860,51
7	0,60	-1795,83	-5679,13
8	0,70	-2402,54	-6446,59
9	0,80	-3083,44	-7162,89
10	0,90	-3833,41	-7828,04
11	1,00	-4647,34	-8442,02

Sollecitazioni fondazione di monte

Combinazione nº 38

COMMIZZONE II 30.

Lascisa A(Spessa in m) è considerata positiva verso valle con origine in corrispondenz adell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm
Taglio positivos deriteto twoes Talko, opersso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,32	627,92	3837,19
3	0,64	2399,92	7150,51
4	0,96	5148,37	9939,95
5	1,28	8705,61	12205,52
6	1,60	12904,02	13947,21

135/144 136/144 03.5 - Muro sez. D-D - Fascicolo dei calcoli.rtf

1,92 2,24 2,56 2,88

3,20

10

11

17575,95 22553,76

27669,82 32756,48

37639,64

15165,04 15858,98

16029,06 15675,26

14702,59

Combinazione nº 38

Lordinara Y(espressa in [m]) è considerata positiva veso il basso con origine in testa al muro B bore de lilascezione espressa in [cm] al carzati adda avviane espressa in [cm] al carzati adda avviane espressa in [cm] al cara di ammutun in corrispondenza del enho di valle in [cm] area di ammutun in corrispondenza del enho di valle in [cm] que in science nel carbestrazzo espressa in [gg/cmq] que in science nel farmatura disposta sul lembo di monte in [gg/cmq] que in cara di ammutun disposta sul lembo di valle in [gg/cmq] que in cen in nel farmatura disposta sul lembo di valle in [gg/cmq]

Armature e tensioni nei materiali del muro

Nr.	Y	В, Н	A_{fs}	A_6	σc	τ	σs	G ii
1	0,00	100, 80	8,04	8,04	0.00	0.00	0.00	0,00
2	0,39	100, 80	8,04	8,04	0.17	0.06	-0,48	-2,39
3	0,79	100, 80	8,04	8,04	0,45	0,09	0,67	-6,24
4	1,18	100, 80	8,04	8,04	0.81	0,10	3,97	-11,14
5	1,58	100, 80	8,04	8,04	1,15	0.07	7,00	-15,70
6	1,97	100, 80	8,04	8,04	1,33	0,02	6,00	-18,25
7	2,36	100, 80	8,04	8,04	1,30	-0.07	1,23	-18,15
8	2,76	100, 80	8,04	8,04	1,12	-0,18	-4,16	-15,93
9	3,15	100, 80	8,04	8,04	0,86	-0,32	-12,71	-10,25
10	3,55	100, 80	8,04	8,04	1,85	-0,49	-25,82	0,13
11	3,94	100, 80	8,04	8,04	4,34	-0,67	-56,24	67,73
12	4,34	100, 80	12,06	12,06	7,73	-0,86	-93,86	215,61
13	4,73	100, 80	12,06	12,06	12,32	- 1,06	-141,93	458,31
14	5,12	100, 80	24,63	24,63	12,97	-1,28	-155,39	393,16
15	5,52	100, 80	24,63	24,63	17,48	- 1,52	-205,85	583,26
16	5,91	100, 80	24,63	24,63	22,74	-1,78	-264,39	810,29
17	6,31	100, 80	24,63	24,63	28,82	-2,05	-331,69	1076,65
18	6,70	100, 80	24,63	24,63	35,77	-2,34	-408,41	1384,89
19	7,03	100, 80	24,63	24,63	41,84	-2,20	-475,34	1655,21
20	7,37	100, 80	16,59	16,59	57,48	-2,03	-618,42	2794,23
21	7,70	100, 80	16,59	16,59	63,78	-1,84	-684,17	3130,49

137/144 138/144

Armature e tensioni nei materiali della fondazione

Combinazione nº 38

Combinazione n° 38
Simbologia adottata
B base del lasezione espressa in [cm]
H altezza del la sezione espressa in [cm]
An area di armatum in corrispondenza del lenbo inferiore in [cmq]
An area di armatum in corrispondenza del lenbo superiore in [cmq]
Cotas isone nel calestruzzo espressa in [kg/cmq]
Cotas isone integenziale nel calestruzzo espressa in [kg/cmq]
Cotas isone nell'armatura disposta in corrispondenza del lembo superiore in [kg/cmq]

Fondazion e di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estre no libero della fondazione di valle)

Nr.	X	В, Н	A_{fs}	A_{fi}	σc	τ	σ_{ii}	σ _{fs}
1	0,00	100, 100	12,57	12,57	0,00	0,00	0,00	0,00
2	0,10	100, 100	12,57	12,57	0,06	-0,13	-0,67	4,80
3	0,20	100, 100	12,57	12,57	0,26	-0,26	-2,64	18,91
4	0,30	100, 100	12,57	12,57	0,57	-0,38	-5,83	41,87
5	0,40	100, 100	12.57	12,57	0,99	-0,49	-10,20	73.22
6	0,50	100, 100	12,57	12,57	1,52	-0,60	-15,68	112,51
7	0,60	100, 100	12,57	12,57	2,15	-0,70	-22,20	159,30
8	0,70	100, 100	12,57	12,57	2,88	-0,80	-29,70	213,12
9	0,80	100, 100	12,57	12,57	3,70	-0,89	-38,12	273,52
10	0,90	100, 100	16,59	16,59	4,00	-0,97	-43,27	259,08
11	1.00	100, 100	1659	16.59	4.85	- 1.05	-52.46	314.09

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libero della fondazione di monte)

Nr.	X	В, Н	A_{fs}	A_{fi}	σc	τ	σ si	G rs
1	0,00	100, 100	1257	12,57	0,00	0,00	0,00	0,00
2	0,32	100, 100	12.57	12,57	0,75	0,48	55,70	-7,76
3	0,64	100, 100	12,57	12,57	2,88	0,89	212,88	-29,67
4	0,96	100, 100	12,57	12,57	6,17	1,23	456,68	-63,65
5	1,28	100, 100	12,57	12,57	10,43	1,51	772,23	-107,63
6	1,60	100, 100	12,57	12,57	15,47	1,73	1144,65	-159,53
7	1,92	100, 100	1659	12,57	20.52	1,88	1557,28	-209,69
8	2,24	100, 100	1659	12,57	2634	1,96	1998,33	-269,08
9	2,56	100, 100	16,59	16,59	28,90	1,99	1870,06	-312,31
10	2,88	100, 100	16,59	16,59	34,22	1,94	2213,84	-369,73
11	3.20	100 100	1659	16.59	3932	1.82	2543.87	-424 84

Verifiche a fessurazione

Combinazione nº 38

Commitazione il 30 consideratapositiva verso il baso con origine in testa al muio A_{r_h} area di armatura in corrispondenza del lenho di monte in [cmg] A_{r_h} area di armatura in corrispondenza del lenho di valle in [cmg] $M_{g'e}$ Momento di prima Essuazione espressi in [kgm]

A_{fs} A_{fi} M_{pf} Momento agente nel la sezione espressa in [kgm]

deformazione media espressa in [%]
Distanza nedia tra le fessure espressa in [mm]
Apertura nedia della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Y	$\mathbf{A}_{\mathbf{f}s}$	A_6	$\mathbf{M}_{\mathbf{pf}}$	M	€ m	S_{m}	w
1	0,00	8,04	8,04	-16102	0	0,0000	0,00	0,000
2	0,39	8,04	8,04	-16102	-83	0,0000	0,00	0,000
3	0,79	8,04	8,04	-16102	-284	0,0000	0,00	0,000
4	1,18	8,04	8,04	-16102	-530	0,0000	0,00	0,000
5	1,58	8,04	8,04	-16102	-748	0,0000	0,00	0,000
6	1,97	8,04	8,04	-16102	-866	0,0000	0.00	0,000
7	2,36	8,04	8,04	-16102	-812	0,0000	0,00	0,000
8	2,76	8,04	8,04	-16102	-512	0,0000	0,00	0,000
9	3,15	8,04	8,04	16102	107	0,0000	0,00	0,000
10	3,55	8,04	8,04	16102	1114	0,0000	0,00	0,000
11	3,94	8,04	8,04	16102	2562	0,0000	0.00	0,000
12	4,34	12,06	12,06	16475	4476	0,0000	0,00	0,000

13	4,73	12,06	12,06	16475	6891	0,0000	0,00	0,000
14	5,12	24,63	24,63	17644	9837	0,0000	0,00	0,000
15	5,52	24,63	24,63	17644	13359	0,0000	0,00	0,000
16	5,91	24,63	24,63	17644	17500	0,0000	0,00	0,000
17	6,31	24,63	24,63	17644	22307	0.0308	132,83	0,069
18	6,70	24,63	24,63	17644	27825	0.0482	132,83	0,109
19	7,03	24,63	24,63	17644	32653	0.0640	132,83	0,144
20	7,37	16.59	16,59	16895	37147	0.1156	163,96	0,322
21	7,70	16,59	16,59	16895	41262	0,1335	163,96	0,372
<u>Verifica</u>	fessurazione fo	ondazion e						
N°	Y	$\mathbf{A}_{\mathbf{f}_{\mathbf{i}}}$	A_6	M_{pf}	M	€ m	S_{m}	w
1	-1,80	12,57	12,57	-25528	0	0,000,0	0,00	0,000
2	-1,70	12.57	12,57	-25528	-54	0,0000	0,00	0,000
3	-1,60	12,57	12,57	-25528	-213	0,0000	0,00	0,000
4	-1,50	12.57	12,57	-25528	-472	0,0000	0,00	0,000
5	-1,40	12.57	12,57	-25528	-825	0.0000	0,00	0,000
6	-1,30	12,57	12,57	-25528	-1268	0,0000	0,00	0,000
7	-1,20	12,57	12,57	-25528	- 1796	0,0000	0,00	0,000
8	-1,10	12,57	12,57	-25528	-2403	0,0000	0,00	0,000
9	-1,00	12,57	12,57	-25528	-3083	0,000	0,00	0,000
10	-0,90	16,59	16,59	-26019	-3833	0,0000	0,00	0,000
11	-0,80	16,59	16,59	-26019	-4647	0,0000	0,00	0,000
12	0,00	16,59	16,59	26019	37640	0,0931	163,96	0,260
13	0,32	16,59	16,59	26019	32756	0,0732	163,96	0,204
14	0,64	16,59	16,59	26019	27670	0,0534	163,96	0,149
15	0,96	16,59	12,57	25618	22554	0,0000	0,00	0,000
16	1,28	16,59	12,57	25618	17576	0,0000	0,00	0,000
17	1,60	12,57	12,57	25528	12904	0,000	0,00	0,000
18	1,92	12,57	12,57	25528	8706	0,0000	0,00	0,000
19	2,24	12,57	12,57	25528	5148	0,0000	0,00	0,000
20	2,56	12,57	12,57	25528	2400	0,0000	0,00	0,000
21	2,88	12,57	12,57	25528	628	0,0000	0,00	0,000
22	3,20	12,57	12,57	-25528	0	0000,0	0,00	0,000

139/144 140/144

Combinazione nº 39

COMMINIZATORE IT 39

Lordinata Vespresa in mje considerata positiva veso il basso conorigine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Sforzo normale positivo di compressione, espresso in kg paglio positivo di compressione, espresso in kg paglio positivo di compressione, espresso in kg

Nr.	Y	N	M	Т
1	0,00	0.00	0.00	0,00
2	0,39	788,24	79,55	373,04
2	0,79	1576,47	269,88	562,15
4	1,18	2364,71	498,50	567,40
5	1,58	3152,94	693,05	389,21
6 7	1,97	3941,18	781,16	27,31
	2,36	4729,41	690,44	-518,34
8	2,76	5517,65	348,45	- 1247,72
9	3,15	6305,88	-317,20	-2160,82
10	3,55	7094,12	- 1375,04	-3226,68
11	3,94	7882,35	-2867,32	-4351,93
12	4,34	8670,59	-4813,21	-5543,04
13	4,73	9458,82	-7246,36	-6811,68
14	5,12	10247,06	-10195,51	-8173,20
15	5,52	11035,29	-13703,77	-9648,91
16	5,91	11823,53	-17816,11	-11238,74
17	6,31	1261 1,76	-22577,54	-12942,75
18	6,70	13400,00	-28033,27	-14763,42
19	7,03	14066,67	-32795,52	-13787,81
20	7,37	14733,33	-37210,64	-12681,50
21	7,70	15400.00	-41236, 18	-11452,67

Sollecitazioni fondazione di valle

Combinazione nº 39

Commizzature II 39 : Lascissa Alegares ain mi è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento possitivo set tende le fibre inferiori, espresso in Igm Taglio pos irivo ed uritori veso Tallo, opersos in Ig

Nr.	X	М	T
1	0,00	0,00	0,00
2	0,10	- 54,12	- 1073,70
3	0,20	-212,99	-2094,80
4	0,30	-471,33	-3063,31
5	0,40	-823,89	-3979,21
6	0,50	-1265,42	-4842,52
7	0,60	- 1790,65	-5653,23
8	0,70	-2394,31	-6411,34
9	0,80	-3071,16	-7116,85
10	0,90	-3815,93	-7769,76
11	1,00	-4623,36	-8370,08

Sollecitazioni fondazione di monte

Combinazione n° 39
L'asciss a X(espress ain m) è considerata positiva veso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo se lende le fibre inferiori, espresso in kgm Taglio positivose diretto veso Taglio, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,32	638,37	3900,05
3	0,64	2438,58	7261,49
4	0.96	5228,28	10084,33
5	1,28	8835,10	12368,56
6	1.60	13086,70	14114,17
7	1,92	17810,72	15321,18
8	2,24	22834,81	15989,59
9	2,56	27986.60	16119.38
10	2,88	33093,76	15710,56
11	3.20	37983.08	14743 14

Armature e tensioni nei materiali del muro

Combinazione nº 39

Lordinata Y (espressa in [ni]) è consideratapositiva verso il basso con origine in testa al muro B base de ll'assezione espressa in [nri] H alterza della sezione espressa in [nri] Ar, area di armatuna in corrispondenza del kenbo di monte in [nri] area di armatuna in corrispondenza del lenbo di valle in [cmi] G, tersione nel calcestruzzo espressa in [ng/cmi]

tens ione ten datesmizzo sepressa in [kg/cmq] tens ione tangenziale nel calcestruzzo sepressa in [kg/cmq] tens ione nell'a matura disposta sul lembo di monte in [kg/cmq] tens ione nell'a matura disposta sul lembo di valle in [kg/cmq]

Nr.	Y	В, Н	A_{fs}	A_{fi}	σ _c	τ	σs	σii
1	0,00	100, 80	8,04	8,04	0,00	0,00	0,00	0,00
2 3	0,39	100, 80	8,04	8,04	0,17	0,06	-0,52	-2,35
3	0,79	100, 80	8,04	8,04	0,43	0,09	0,40	-6,04
4	1,18	100, 80	8,04	8,04	0,77	0,09	2,88	-10,56
5	1,58	100, 80	8,04	8,04	1,07	0,06	4,80	-14,60
6	1,97	100, 80	8,04	8,04	1,21	0,00	3,36	-16,73
7	2,36	100, 80	8,04	8,04	1,18	-0,08	-0,64	-16,56
8	2,76	100, 80	8,04	8,04	0,98	-0,20	-6,03	-14,05
9	3,15	100, 80	8,04	8,04	1,04	-0,34	-15,13	-7,83
10	3,55	100, 80	8,04	8,04	2,14	-0,51	-29,61	5,24
11	3,94	100, 80	8,04	8,04	5,10	-0,68	-64,57	102,17
12	4,34	100, 80	12,06	12,06	8,40	-0.87	-100,77	252,01
13	4,73	100, 80	12,06	12,06	12,99	- 1,07	-148,61	498,84
14	5,12	100, 80	24,63	24,63	13,43	-1,28	-160,42	413,79
15	5,52	100, 80	24,63	24,63	17,92	-1,51	-210,62	603,30
16	5,91	100, 80	24,63	24,63	23,14	-1,76	-268,71	828,69
17	6,31	100, 80	24,63	24,63	29,16	-2,03	-335,36	1092,43
18	6,70	100, 80	24,63	24,63	36,03	-2,32	-411,23	1397,05
19	7,03	100, 80	24,63	24,63	42,01	-2,16	-477,27	1663,53
20	7,37	100, 80	16,59	16,59	57,58	- 1,99	-619,41	2799,75
21	7,70	100, 80	16,59	16,59	63,74	-1,80	-683,76	3128,23

141/144 142/144

Armature e tensioni nei materiali della fondazione

Combinazione nº 39

Simbologia adottata
B base della sezione espressa in [cm]

base de lla sezione espressa in [cm]
area di armatura in corrispondenza del tenbo inferiore in [cmq]
area di armatura in corrispondenza del lenbo superiore in [cmq]
area di armatura in corrispondenza del lenbo superiore in [cmq]
tens ione de alcestruzzo espressa in [kg/cmq]
tens ione tangenziale nel calcestruzzo espressa in [kg/cmq]
tens ione nell'armatura disposta in corrispondenza del lembo inferiore in [kg/cmq]
tens ione nell'armatura disposta in corrispondenza del lembo superiore in [kg/cmq]

Fondazion e di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estre no libero della fondazione di valle)

Nr.	X	В, Н	A_{fs}	A_{fi}	σc	τ	σ_{ii}	σ_{ts}
1	0,00	100, 100	12,57	12,57	0,00	0,00	0,00	0,00
2	0,10	100, 100	12,57	12,57	0,06	-0,13	-0,67	4,80
3	0,20	100, 100	12,57	12,57	0,26	-0,26	-2,63	18,89
4	0,30	100, 100	12,57	12,57	0,56	-0,38	-5,83	41,81
5	0,40	100, 100	12,57	12,57	0,99	-0,49	-10,19	73,08
6	0,50	100, 100	12,57	12,57	1,52	-0,60	-15,64	112,25
7	0,60	100, 100	12,57	12,57	2,15	-0,70	-22,14	158,84
8	0,70	100, 100	12,57	12,57	2,87	-0,79	-29,60	212,39
9	0,80	100, 100	12,57	12,57	3,68	-0,88	-37,97	272,43
10	0,90	100, 100	16,59	16,59	3,99	-0,96	-43,07	257,90
11	1.00	100, 100	1659	16.59	4.83	- 1.04	-52.18	312,47

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libero della fondazione di monte)

Nr.	X	В, Н	A_{fs}	A_{fi}	σc	τ	σ si	G fs
1	0,00	100, 100	1257	12,57	0,00	0,00	0,00	0,00
2	0,32	100, 100	12.57	12,57	0,77	0,48	56,63	-7,89
3	0,64	100, 100	12,57	12,57	2,92	0,90	216,31	-30,15
4	0,96	100, 100	1257	12,57	6,27	1,25	463,77	-64,64
5	1,28	100, 100	12,57	12,57	10,59	1,53	783,71	-109,23
6	1,60	100, 100	1257	12,57	15.68	1,75	1160,85	-161,79
7	1.92	100, 100	1659	12.57	20.80	1.90	1578,08	-212,49
8	2,24	100, 100	1659	12,57	26.66	1,98	2023,23	-272,43
9	2,56	100, 100	1659	16.59	29.23	2,00	1891,47	-315,89
10	2,88	100, 100	16,59	16,59	34,57	1,95	2236,64	-373,53
11	3.20	100 100	1659	16.59	39.68	1.83	2567.08	-42872

Verifiche a fessurazione

Combinazione nº 39

Commitazione il 37 consideratapositiva verso il baso con origine in testa al muio A_n area di armatura in corrispondenza del lenho di monte in [cmg] $M_{g'}$ Momento di prima Essuazione ospressi in [kgm] Momento di prima Essuazione ospressi in [kgm]

 $\begin{array}{c} A_{fs} \\ A_{fi} \\ M_{pf} \\ M \end{array}$

Momento agente nel la sezione espressa in [kgm]

deformazione media espressa in [%]
Distanza media tra le fessure espressa in [mm]
Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Y	$\mathbf{A}_{\mathbf{f}_{\mathbf{S}}}$	A_6	$\mathbf{M}_{\mathbf{pf}}$	M	€m	S_{m}	w
1	0,00	8,04	8,04	- 16102	0	0,000,0	0.00	0,000
2	0,39	8,04	8,04	-16102	-80	0,0000	0,00	0,000
3	0,79	8,04	8,04	-16102	-270	0,0000	0,00	0,000
4	1,18	8,04	8,04	-16102	-499	0,0000	0,00	0,000
5	1,58	8,04	8,04	-16102	-693	0,0000	0,00	0,000
6	1,97	8,04	8,04	-16102	-781	0,0000	0,00	0,000
7	2,36	8,04	8,04	-16102	-690	0,0000	0,00	0,000
8	2,76	8,04	8,04	- 16102	-348	0,000,0	0.00	0,000
9	3,15	8,04	8,04	16102	317	0,000,0	0.00	0,000
10	3,55	8,04	8,04	16102	1375	0,000	0,00	0,000
11	3,94	8,04	8,04	16102	2867	0,0000	0.00	0,000
12	4,34	12,06	12,06	16475	4813	0,0000	0,00	0,000

13	4,73	12,06	12,06	16475	7246	0,0000	0,00	0,000
14	5,12	24,63	24,63	17644	10196	0,0000	0,00	0,000
15	5,52	24,63	24,63	17644	13704	0,0000	0,00	0,000
16	5,91	24,63	24,63	17644	17816	0,0237	132,83	0,053
17	6,31	24,63	24,63	17644	22578	0,0312	132,83	0,070
18	6,70	24,63	24,63	17644	28033	0,0489	132,83	0,111
19	7.03	24,63	24,63	17644	32796	0.0645	132,83	0,146
20	7,37	16.59	16,59	16895	37211	0.1159	163,96	0,323
21	7,70	16,59	16,59	16895	41236	0,1334	163,96	0,372
Verifice	a fessurazione fa	ndazion e						
N°	Y	$\mathbf{A}_{\mathbf{f}_{0}}$	A_6	M_{pf}	M	εm	S_{m}	w
1	-1,80	12,57	12,57	-25528	0	0,0000	0,00	0,000
2	-1,70	12,57	12,57	-25528	-54	0,0000	0,00	0,000
3	-1,60	12,57	12,57	-25528	-213	0,0000	0,00	0,000
4	-1,50	12,57	12,57	-25528	-471	0,0000	0,00	0,000
5	-1,40	12.57	12,57	-25528	-824	00000	0,00	0.000
6	-1,30	12.57	12,57	-25528	- 1265	0.0000	0,00	0.000
7	-1,20	12.57	12,57	-25528	- 1791	0.0000	0,00	0.000
8	-1,10	12.57	12,57	-25528	-2394	0.0000	0,00	0.000
9	-1,00	12.57	12,57	-25528	-3071	0.0000	0,00	0.000
10	-0.90	16.59	16,59	-26019	-3816	0.0000	0.00	0.000
11	-0.80	16.59	16,59	-26019	-4623	0.0000	0.00	0.000
12	0,00	16.59	16,59	26019	37983	0.0945	163,96	0,263
13	0,32	16.59	16,59	26019	33094	0.0747	163,96	0,208
14	0,64	16.59	16,59	26019	27987	0.0540	163,96	0,151
15	0,96	16.59	12,57	25618	22835	0.0000	0,00	0,000
16	1,28	16.59	12,57	25618	17811	0.0000	0,00	0,000
17	1,60	12.57	12,57	25528	13087	0,000,0	0,00	0,000
18	1,92	12.57	12,57	25528	8835	0.0000	0.00	0.000
19	2,24	12.57	12,57	25528	5228	0,000,0	0,00	0,000
20	2,56	12.57	12,57	25528	2439	0,000	0.00	0.000
21	2,88	12.57	12,57	25528	638	0,000,0	0,00	0,000
22	3,20	12,57	12,57	-25528	0	0,000,0	0,00	0,000
	5,20		12,07	20020	· ·	0,0000	5,00	0,000

143/144 144/144