

COMMISSARIO DI GOVERNO

EX LEGGE 116/2014

REGIONE TOSCANA

DIREZIONE DIFESA DEL SUOLO E PROTEZIONE CIVILE SETTORE GENIO CIVILE VALDARNO SUPERIORE

CASSE DI ESPANSIONE DI FIGLINE LOTTO PRULLI

ACCORDO DI PROGRAMMA D.M. N. 550 DEL 25/11/2015

PROGETTO DEFINITIVO

DIRIGENTE RESPONSABILE DEL CONTRATTO —

Ing. Leandro RADICCHI

TRESPONSABILE UNICO DEL PROCEDIMENTO

ADEMPIMENTI AMMINISTRATIVI

Dott.ssa Roberta Paola BIGIARINI Dott.ssa Ivana D'ANGELO

Dott.ssa Maddalena Turchi

Ing. Enzo DI CARLO

UFFICIO DI PROGETTAZIONE -

PROGETTISTI

Ing. Francesca BARZAGLI

Ing. Lorenzo BECHI

Ing. Fabio MARTELLI

Ing. Andrea NAVARRIA

Ing. Marie-Claire NTIBARIKURE

Geol. Andrea SALVADORI

Geol. Francesco VANNINI

COLLABORATORI ALLA **PROGETTAZIONE**

Geol. Andrea ADESSI Geom. Roberto BIGAZZI

Geom. Vincenzo DE MARCO

Geom. Marco LIUTI

Ing. Vincenzo VERZINO

COORDINATORE PER LA SICUREZZA

IN FASE DI PROGETTAZIONE Geom. Antonello MAZZOLIN

CODICE PROGETTO

PROGETTO FI D 1007

OGGETTO ELABORATO

OPERA OPPN3 VIABILITA' CHIESIMONE - MURO SEZ. B 127.30 -

FASCICOLO DEI CALCOLI DELLE STRUTTURE

FILE PD_E_PR_51F_R_R00PDF

ELAB. PD E PR 51F R R00

emissione	revisione	scala	data
R00			Settembre 2018

ELABORATO

E PR 51F

Firenze - Via San Gallo, 34/A - 50129 - Tel. 055/4622711

MURO SEZIONE B-B – TESTA MURO 127.30

Calcolo della spinta sul muro

Valori caratteristici e valori di calcolo

Effettuando il calcolo tramite gli Eurocodici è necessario fare la distinzione fra i parametri caratteristici ed i valodi di calcolo (o di progetto) sia delle azioni che delle resistenze.

I valori di calcolo si ottengono dai valori caratte istici mediante l'applicazione di opportuni coefficienti di sicurezza parziali γ. In particolare si distinguono combinazioni di carico di tipo AI-MI nelle quali vengono incrementati i carichi e lasciati inalterati i parametri di resistenza del terreno e combinazioni di carico di tipo AI-MI nelle quali vengono indotti i parametri di resistenza del terreno e incrementati i soli carichi variabili.

Metodo di Culmann

Il metodo di Culmann adotta le stesse ipot esi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea.

I passi del procedimento risolutivo sono i secuenti:

- si impone una superficie di rottura (ango lo di inclinazione p rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spint a e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (ReC) e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spint a S sulla parete.

Quest o processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima.

La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

Spinta in presenza di sisma

Per tener conto dell'increment o di sp inta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana). La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta & l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a

$$\varepsilon' = \varepsilon + \theta$$

$$\beta' = \beta + \theta$$

dove θ = arct g(k_0 /(1± k_0)) essendo k_0 il coefficiente sismico orizzont ale e k_0 il coefficiente sismico verticale, definit o in funzione di k_0 . In presenza di falda a monte, θ assume le seguent i espressioni:

Terreno a bassa permeabilità

$$\theta = arctg[(\gamma_{sat}/(\gamma_{sat}-\gamma_w))*(k_h/(1\pm k_v))]$$

Terreno a permeabilità elevata

$$\theta = \operatorname{arct} g[(\gamma/(\gamma_{\text{sat}} - \gamma_{\text{w}})) *(k_{\text{h}}/(1 \pm k_{\text{v}}))]$$

Dett a S la spinta calcolata in condizioni statiche l'increment o di spinta da applicare è espresso da

$$\Delta S = AS' - S$$

dove il coefficient e A vale

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2\beta\cos\theta}$$

In presenza di falda a monte, nel coefficiente A si tiene conto dell'influenza dei pesi di volume nel calcolo di θ .

A dottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1.

Tale incremento di spinta è applicato a metà altezza della parete di spinta nel caso di forma rettangolare del diagramma di incremento sismico, allo stesso punto di applicazione della spint a statica nel caso in cui la forma del diagramma di incremento sismico è uguale a quella del diagramma statico.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali e verticali che si destano per effetto del sisma. Tali forze vengono valutate come

$$F_{iH} = k_b W$$
 $F_{iV} = +k_v W$

dove Wè il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi e va applicata nel baricentro dei pesi.

Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta. Basta inserire nell'equazione risolutiva la forza d'inerzia del cuneo di spinta. La superficie di rottura nel caso di sisma risulta meno inclinata della corrispondente superficie in assenza di sisma.

Verifica a ribaltamento

La verifica a ribalt ament o consiste nel determinare il momento risultante di tutte le forze che tendono a fare ribaltare il muro (momento ribaltante M_2) ed il momento risultante di tutte le forze che tendono a stabilizzare il muro (momento stabilizzante M_2) rispetto allo spigolo a valle della fondazione e verificare che il rapporto M_2M_2 , sia maggiore di un determinato coefficiente di sicurezza η_2 .

Eseguendo il calcolo mediante gli eurocodici si puo impostare $\eta_2 = 1.0$.

Deve quindi essere verificat a la seguente diseguaglianza

$$M_s$$
 $\rightarrow= \eta_s$

Il momento ribaltante M_r è dato dalla component e orizzontale della spint a S_r dalle forze di inerzia del muro e del terreno gravant e sulla fondazione di monte (caso di presenza di sisma) per i rispettivi bracci. Nel momento stabilizzante interviene il peso del muro (applicato nel baricent ro) ed il peso del terreno gravante sulla fondazione di monte. Per quanto riguarda invece la componente verticale della spint a essa sarà stabilizzante se l'angolo d'attrito terra-muro δ è positivo, ribaltante se δ è negativo. δ è positivo quando è il terrapieno che scorre rispetto al terrapieno (questo può essere il caso di una spalla da ponte gravata da carichi notevoli). Se sono presenti dei tiranti essi contribuscono al momento stabilizzante.

Quest a verifica ha significato solo per fondazione superficiale e non per fondazione su pali.

Verifica a scorrimento

Per la verifica a scorrimento del muro lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il muro deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento sisult a soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere il muro F_r risulta maggiore di un determinato coefficiente di sicurezza η_s . Eseguendo il calcolo mediante gli Eurocodici si può impostare $\eta_s = 1.0$

$$F_r$$
 $\longrightarrow >= \eta_r$
 F_s

Le forze che intervengono nella F_s sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con ò, l'angolo d'attrito terreno-fondazione, con c_a l'adesione terreno-fondazione con B. la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tg \, \delta_f + c_a B_r$$

Nel caso di fondazione con dente, viene calcolat ala resistenza passiva sviluppatasi lungo il cuneo passante per lo spigolo inferiore del dente, inclinato dell'angolo p (rispetto all'orizzontale). Tale cuneo viene individuato attraverso un procedimento iterativo. In dipendenza della geometria della fondazione e del dente, dei parametri geotecnici del terreno e del carico risultante in fondazione, tale cuneo può avere forma triangolare o trapezoidale. Detta N la componente normale del carico agente sul piano di posa della fondazione, Q Taliquota di carico gravante sul cuneo passivo, S, la resistenza passiva, L. l'ampiezza del cuneo e indicando con ò l'angolo d'attri o terreno-fondazione, con c. l'adesione terreno-fondazione e con B, la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = (N-Q) tg \delta_r + S_p + c_a L_r$$

$$con L_r = B_r - L_c$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle del muro. In tal caso, però, il coefficiente di sicurezza deve essere camentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

Per quant o riguarda l'angolo d'attrit o terra-fondazione, δ_f , diversi autori su ggeriscono di assumere un valore di δ_f pari all'angolo d'attrit o del terreno di fondazione.

1/144 2/144

Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a η_0 . Cioè, detto Q_0 , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$\frac{Q_u}{R} >= \eta_q$$

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_e>=1.0 Si adotta per il calcolo del carico 1imite in fondazione il metodo di MEYERHOF.

L'espressione del carico ultimo è data dalla relazione:

$$Q_u = c N_c d_c i_c + q N_q d_q i_q + 0.5 \gamma B N_\gamma d_\gamma i_\gamma$$

In quest a espressione

- c coesione del terreno in fondazione;
- φ angolo di attrit o del terreno in fondazione;
- γ peso di volume del terreno in fondazione;
- B larghezza della fondazione;
- D profondità del piano di posa;
- pressione geostatica alla quota del piano di posa.

I vari fattori che compaiono nella formula sono dati da:

$$A = e^{\pi tg} \phi$$

 $N_q = A t g^2 (45^\circ + \phi/2)$

$$N_c = (N_q - 1) \operatorname{ctg} \phi$$

$$N_{\gamma} = (N_q - 1) t g (1.4\phi)$$

Indichiamo con K_P il coefficiente di spinta passiva espresso da:

$$K_p = tg^2(45^{\circ} + \phi/2)$$

I fattori d e i che compaiono nella formula sono rispettivamente i fattori di profondità ed i fattori di inclinazione del carico espressi dalle seguenti relazioni:

Fattori di profondit à

$$d_q = 1 + 0.2 - \sqrt{K_p}$$

$$d_{\alpha} = d_{\gamma} = 1$$

$$per \phi = 0$$

$$d_q = d_{\gamma} = 1 + 0.1 - \sqrt{K_p}$$
 per $\phi > 0$

Fattori di inclinazione

Indicando con θ l'angolo che la risultante dei carichi forma con la verticale (espresso in gradi) e con φ l'angolo d'attrito del terreno di posa abbiamo:

$$i_c = i_1 = (1 - \theta^{\circ}/90)^2$$

$$i_{\gamma} = (1 - \frac{\theta^{\circ}}{\theta^{\circ}})^2$$

$$i_{\gamma} = 0$$
 per $\phi = 0$

Verifica alla stabilità globale

La verifica alla stabilità globale del complesso muro+terreno deve fornire un coefficiente di sicurezza non inferiore a η_z

Eseguendo il calcolo mediante gli Eurocodici si può impostare $\eta_s>=1.0$

Viene usat a la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profib del muro o con i pail di fondazione. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimi à della sommità del muro. Il numero di strisce è pari a 50.

Si adotta per la verifica di stabilità globale il metodo di Bishop.

Il coefficiente di sicurezza nel metodo di Bishop si esprime secondo la seguente formula:

$$\Sigma_{i} \quad (\frac{c_{i}b_{i}+(W_{i}-ub_{i})tg\phi_{i}}{m})$$

$$\eta = \frac{\sum W_{singt}}{m}$$

dove il termine m è espresso da

$$m = (1 + \frac{tg\phi_t tg\alpha_i}{n}) \cos \theta$$

In questa espressione $n \ge il$ numero delle strisce considerate, $b_i = \alpha_i$ sono la larghezza e l'inclinazione della base della striscia \mathbf{i}_{esim} rispetto all'orizzontale, $W_i \ge il$ peso della striscia \mathbf{i}_{esim} , $c_i \in \mathfrak{q}$ sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed $u_i \ge 1$ a pressione neutra lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di η . Quindi essa viene risolta per successive approsimazioni assumendo un valore iniziale per η da inserire nell'espressione di m ed it erare finquando il valore calcolato coincide con il valore assumto.

Normativa

N.T.C. 2008 - Approccio 2

$ \begin{array}{lll} \gamma_{\text{CEav}} & \text{Coefficiente pazzia le fa} \\ \gamma_{\text{Osfav}} & \text{Coefficiente pazzia le sfa} \\ \gamma_{\text{Osfav}} & \text{Coefficiente pazzia le sfa} \\ \gamma_{\text{Ceav}} & \text{Coefficiente pazzia le di} \\ \gamma_{\text{cu}} & \text{Coefficiente pazzia le di} \\ \end{array} $	avorevole sulle azioni permanenti vorevole sulle azioni permanenti vorevole sulle azioni variabili rotevole sulle azioni variabili riduzione dell'angolo di attrio der riduzione della cossione dernata riduzione della cossione non drena riduzione della crisco ultimo riduzione della resistenza a compre riduzione della resistenza a compre	ta				
Coefficienti di parteci pazio						
Coefficienti parziali per le az		ioni:				
Carichi	Effetto		AI	A2	EQU	HYD
Permanenti	Favorevo le	$\gamma_{\rm Gfav}$	1,00	1,00	0,90	0,90
Permanenti	Sfavorevole	γ_{Gsfav}	1,30	1,00	1,10	1,30
Variabili	Favorevo le	$\gamma_{ m Qfav}$	0,00	0,00	0,00	0,00
Variab ili	Sfavorevole	γ_{Qsfav}	1,50	1,30	1,50	1,50
Coefficienti parziali per i par	ametri geotecnici del terre	no:				
Parametri	•		M1	M2	M2	M1
Tangente dell'angolo di attrit	0	Ytan o	1,00	1,25	1,25	1,00
Coesione efficace		γe	1,00	1,25	1.25	1,00
Resistenza non drenata		γ _{cu}	1,00	1,40	1.40	1,00
Resistenza a compressione un	niassiale	$\gamma_{ m qu}$	1,00	1,60	1.60	1,00
Peso dell'unità di volume		γγ	1,00	1,00	1,00	1,00
Coefficienti di parteci pazio						
Coefficienti parziali per le az		ioni:	4.7	42	FOLL	HVD
Carichi	Effetto		Al	A2	EQU	HYD
Permanenti	Favorevo le	$\gamma_{ m Gfav}$	1,00	1,00	1,00	0,90
Permanenti	Sfavorevole	γ_{Gsfav}	1,00	1,00	1,00	1,30
Variab ili	Favorevo le	$\gamma_{ m Qfav}$	0,00	0,00	0,00	0,00
Variabili	Sfavorevole	γ_{Qsfav}	1,00	1,00	1,00	1,50
Coefficienti parziali per i par	ametri geotecnici del terre	10:				
Parametri			M1	M2	M2	M1
Tangente dell'angolo di at trit	0	Ytan o	1,00	1,25	1.25	1.00
Coesione efficace		γ	1,00	1,25	1.25	1.00
Resistenza non drenata		γcu	1.00	1,40	1.40	1.00
Resistenza a compressione un	niacciale	γ _{qu}	1,00	1,60	1.60	1.00
Peso dell'unità di volume	mussure	γ_{γ}	1,00	1,00	1,00	1,00
FONDAZIONE SUPERFIO Coefficienti parzi ali γ _R per	<u>CIALE</u> La varifiche agli stati li mi	ta ultimi STD a GEO				
Verifica				Coefficienti parziali		
, c. y.cu			R1	R2	R3	
Capacità port ante della fonda	zione		1,00	1,00	1,40	
Scorriment o			1,00	1,00	1,10	
Resistenza del terreno a valle	e		1,00	1,00	1,40	
Stabilità globale			-,	1,10	-,	

Geometria muro e fondazione

Descrizione	Muro a mensola in c.a.
A ltezza del paramento	8,80 [m]
Spessore in sommità	0,80 [m]
Spessore all'attacco con la fondazione	0,80 [m]
Inclinazione paramento esterno	[°] 00,0
Inclinazione paramento interno	0,00 [°]
Lunghezza del muro	10,00 [m]
Spessore rivestiment o	0,10 [m]
Peso sp. rivestimento	2000,00 [kg/mc]
Fondazione	
Lunghezza mensola fondazione di valle	1,00 [m]
Lunghezza mensola fondazione di monte	4,20 [m]
Lunghezza totale fondazione	6,00 [m]
Inclinazione piano di posa della fondazione	0,00 [°]
Spessore fondazione	1,00 [m]
Spessore magrone	0,20 [m]
Altezza dello sperone di fondazione	1,50 [m]
Spessore dello sperone di fondazione	1,00 [m]

5/144 6/144 4588,0 [kg/cmq]

Materiali utilizzati per la struttura

Calcestruzzo

2500,0 [kg/mc] Peso specifico Classe di Resistenza C25/30 305,9 [kg/cmq] Resistenza caratteristica a compressione R_{ck}

Modulo elastico E 320665,55 [kg/cmq] Acciaio B450C Tipo

Geometria profilo terreno a monte del muro

Simbol ogia adottata e sistema di riferimento (Sistema di riferimento con origine intesta al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto X as cissa del punto espressa in [m] Y ordinata del punto espressa in [m] A inclinazione del tratto espressa in [°]

Tensione di snervamento Ga

30,00 0.00 0.00

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale A ltezza del rinterro rispetto all'attacco fondaz.val le-paramento 1,00 [m]

Falda

Quota della falda a monte del muro rispetto al piano di posa della fondazione 2,00 Quota della falda a valle del muro rispetto al piano di posa della fondazione 2,00

Descrizione terreni

Simbologia adottata

Indice del terreno Nr. Indica
Descrizione Descrizione terreno ereno
Pso di volume del terreno espresso in [kg/mc]
Pso di volume satum del terreno espresso in [kg/mc]
Angolo d'attino intemo espresso in [f*]
Angolo d'attino terra-muno espresso in [f*]
Coesione espressa in [kg/cmn]
Adelsone terra-muno espressa in [kg/kmn]

Descrizione **C**a 0,000 **⅓** 1900 1800 25.00 16.67 0,000 Rilevato Strato 1 - Ghiaia 2000 2000 35.00 23.33 0.000 0.000 21.33 Strato 2 - Sabbia 1900 2000 32.00 0,000 0.000

Stratigrafia

Simbol ogia a do ttata

Indice dello strato

Spessore de llo strato espresso in [m]
Inclinazione espressa in [°]
Costante di Winkler orrizzontale espressa in Kg/cm²/cm

Coefficiente di spinta

Terreno dello strato

Nr. Ks Terreno 0,00 0,00 0.00 1,90 Rilevat o 2,50 0,00 0,00 0,00 Strat o 1 - Ghiaia 15.00 0,00 8,89 0.00 Strat o 2 - Sabbia

7/144 8/144

Condizioni di carico

Simbologia e convenzioni di segno adottate
Carichi veticali positivi veso il basso.
Carichi orizontali positivi veso si basso.
Carichi orizontali positivi veso si nistra.
Momento positivo sensa antironate del carico concentrato espressa in [ng]
F. Componente vericande del carico concentrato espressa in [kg]
M. Momento espresso in [kgm]
X. Ascissa del punto inizia le del carico concentrato espressa in [m]
X. Ascissa del punto inizia le del carico concentrato espressa in [m]
Q. Intensitàdel carico per x-X. espressa in [m]
D/C Tipo carico: D-distribuito C=concentrato

Cond	lizione nº 1 (Carico	viaggiante)			
D	Profilo	$X_i = 0.00$	X _f =8,50	Q =2000,00	Q _f =2000,00
Cond	lizione n° 2 (Azion	a dall'aggue)			
COIL	IZIONE II 2 (AZION	e derracqua)			
D	Paramento	$X_{i} = -7.80$	$X_{f=-1,10}$	Q ⊨-7500,00	$\mathbf{O}_{r}=0.00$
D	Fondazion e	X = -1.80	$X_{i}=-0.80$	Q=8500,00	$\dot{\mathbf{Q}}_{i}=8500,00$

Descrizione combinazioni di carico

Cimbol	oaia	adottata

Id adottata

Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)
Coefficiente di partecipazione della condizione
Coefficiente di combinazione della condizione

eso proprio r eso proprio t ointa terreno ombinazione eso proprio t eso proprio t eso proprio t ombinazione eso proprio t eso proprio t eso proprio t ombinazione eso proprio t ointa terreno	errap ieno	SFAV SFAV SFAV SFAV SFAV SFAV SFAV SFAV	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	7* \$\frac{1}{1}\text{.00}\$ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
eso proprio to intaterreno ombinazione eso proprio reso proprio reso proprio to intaterreno ombinazione eso proprio reseo p	errap ieno errap ieno	SFAV SFAV SFAV (STR) - Sisma Vert. positiv SFAV SFAV SFAV SFAV SELU) - Sisma Vert. negativo SFF FAV FAV SFAV SFAV SFAV SFAV SFAV SF	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
eso proprio to inta terreno ombinazio ne eso proprio re eso proprio to inta terreno ombinazione inta terreno ombinazione eso proprio to inta terreno ombinazione ombinazione eso proprio to inta terreno ombinazione eso proprio to inta terreno ombinazione	errap ieno	## SFAV SFAV	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
eso proprio t inta terreno ombinazione eso proprio r eso proprio t inta terreno ombinazione eso proprio t inta terreno ombinazione eso proprio t combinazione eso proprio r eso proprio	errap ieno en º 8 - Caso A1-M1 muro errap ieno en º 9 - Caso EQU (S muro errapieno en º 10 - Caso EQU (muro errapieno	SFAV SFAV SFAV (STR) - Sisma Vert. positiv SFAV SFAV SFAV SFAV SELU) - Sisma Vert. negativo SFF FAV FAV SFAV SFAV SFAV SFAV SFAV SF	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
eso proprio t inta terreno ombinazione eso proprio r eso proprio t ombinazione eso proprio r eso proprio t ombinazione eso proprio t eso proprio r eso proprio r	errap ieno en º 8 - Caso A1-M1 muro errap ieno en º 9 - Caso EOU (S muro errap ieno en º 10 - Caso EOU (muro errap ieno	SFAV SFAV SFAV (STR) - Sisma Vert. positiv SFAV SFAV SFAV SFAV SLU) - Sisma Vert. negativo SF FAV FAV SFAV SFAV FAV FAV FAV FAV FAV FAV FAV FAF FAV FAV	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
eso proprio t inta terreno ombinazione eso proprio r eso proprio t ombinazione eso proprio r eso proprio t ombinazione eso proprio t eso proprio r eso proprio r	errap ieno en º 8 - Caso A1-M1 muro errap ieno en º 9 - Caso EOU (S muro errap ieno en º 10 - Caso EOU (muro errap ieno	SFAV SFAV SFAV (STR) - Sisma Vert. positiv SFAV SFAV SFAV SFAV SLU) - Sisma Vert. negativo SF FAV FAV SFAV SFAV FAV FAV FAV FAV FAV FAV FAV FAF FAV FAV	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
eso proprio to inta terreno ombinazione: eso proprio re eso proprio re eso proprio to inta terreno ombinazione: eso proprio re eso proprio re eso proprio re inta terreno ombinazione: eso proprio re	errap ieno e nº 8 - Caso A1-M1 nuro errap ieno e nº 9 - Caso EQU (S nuro errapieno e nº 10 - Caso EQU (SFAV SFAV SFAV (STR) - Sisma Vert. positive SFAV SFAV SFAV SFAV SFAV SFAV SFAV SFAV	1,00 1,00 1,00 1,00 7 1,00 1,00 1,00 1,0	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	7,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
eso proprio to inta terreno ombinazione eso proprio re eso proprio re inta terreno ombinazione eso proprio re eso proprio to inta terreno ombinazione eso proprio to inta terreno	errap ieno e nº 8 - Caso A1-M1 muro errap ieno e nº 9 - Caso EQU (S muro errapieno	SFAV SFAV SFAV (STR) - Sisma Vert. positiv SF SFAV SFAV SFAV SFAV SFAV SFAV SFAV S	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	7,000 1,000
eso proprio to inta terreno ombinazione eso proprio re eso proprio re inta terreno ombinazione eso proprio re eso proprio to inta terreno ombinazione eso proprio to inta terreno	errap ieno e nº 8 - Caso A1-M1 muro errap ieno e nº 9 - Caso EQU (S muro errapieno	SFAV SFAV SFAV (STR) - Sisma Vert. positiv SFAV SFAV SFAV SFAV SFAV SFAV FAV FAV FAV FAV	1,00 1,00 1,00 1,00 7 1,00 1,00 1,00 1,0	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
eso proprio to inta terreno ombinazione eso proprio re eso proprio to inta terreno ombinazione eso proprio re e	errap ieno e nº 8 - Caso A1-M1 muro errap ieno e nº 9 - Caso EOU (S muro errapieno	SFAV SFAV SFAV (STR) - Sisma Vert. positiv SF SFAV SFAV SFAV SFAV SLU) - Sisma Vert. negativo SF FAV FAV FAV	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
eso proprio to inta terreno ombinazione eso proprio re eso proprio to inta terreno ombinazione eso proprio re e	errap ieno e nº 8 - Caso A1-M1 nuro errap ieno e nº 9 - Caso EQU (S	SFAV SFAV SFAV (STR) - Sisma Vert. positiv SFAV SFAV SFAV SFAV SLU) - Sisma Vert. negativo SFF FAV	1,00 1,00 1,00 7 1,00 1,00 1,00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1,00 1,00 1,00 1,00 1,00 1,00 1,00 7* \cdot \cdo
eso proprio to inta terreno ombinazione eso proprio to pinta terreno ombinazione ombinazione ombinazione	errap ieno errap ieno nuro errap ieno errap ieno errap ieno errap ieno errap ieno	SFAV SFAV SFAV (STR) - Sisma Vert. positiv SF SFAV SFAV SFAV SFAV SFAV SFAV SFAV S	1,00 1,00 1,00 1,00 1,00 1,00 1,00	1.00 1.00 1.00 1.00 1.00 1.00 1.00	1,00 1,00 1,00 7*** 1,00 1,00 1,00
eso proprio to inta terreno ombinazio ne eso proprio re eso proprio to inta terreno ointa terreno	errap ieno 2 n° 8 - Caso A1-M1 nuro errap ieno	SFAV SFAV SFAV (STR) - Sisma Vert. positiv S/F SFAV SFAV SFAV SFAV SFAV SFAV SFAV SFA	1,00 1,00 1,00 Y 1,00 1,00 1,00	1.00 1.00 1.00 1.00 1.00 1.00 1.00	1,00 1,00 1,00 7** 1,00 1,00
eso proprio to inta terreno ombinazio ne eso proprio re eso proprio to inta terreno ointa terreno	errap ieno 2 n° 8 - Caso A1-M1 nuro errap ieno	SFAV SFAV SFAV (STR) - Sisma Vert. positiv S/F SFAV SFAV SFAV	1,00 1,00 1,00 Y 1,00 1,00 1,00	1.00 1.00 1.00 1.00 Ψ 1.00 1.00	1,00 1,00 1,00 γ* \ 1,00 1,00
eso proprio to pinta terreno ombinazio ne eso proprio r eso proprio t	errapieno e n° 8 - Caso A1-M1 nuro errapieno	SFAV SFAV SFAV (STR) - Sisma Vert, positiv S/IF SFAV SFAV	1,00 1,00 1,00 70 70 1,00 1,00	1.00 1.00 1.00 1.00 Ψ 1.00 1.00	1,00 1,00 1,00 γ* \ 1,00 1,00
eso proprio t pinta terreno ombinazio ne eso proprio r	errap ieno e n° 8 - Caso A1-M1 nuro	SFA V SFA V SFA V (STR) - Sisma Vert, positiv S/F SFA V	1,00 1,00 1,00 1,00 Y 1,00	1.00 1.00 1.00 1.00	1,00 1,00 1,00 1,00 γ* Ψ 1,00
eso proprio t o inta terreno ombinazio ne	errap ieno e nº 8 - Caso A1-M1	SFAV SFAV SFAV (STR) - Sisma Vert, positiv S/F	1,00 1,00 1,00 1,00	1.00 1.00 1.00	1,00 1,00 1,00 1,00
eso proprio t o inta terreno	errapieno	SFA V SFA V SFA V (STR) - Sisma Vert. positiv	1,00 1,00 1,00	1.00 1.00 1.00	1,00 1,00 1,00
eso proprio t o inta terreno	errapieno	SFAV SFAV SFAV	1,00 1,00 1,00	1.00 1.00	1,00 1,00
eso proprio t	errap ieno	SFA V SFA V	1,00 1,00	1.00 1.00	1,00 1,00
eso proprio t	errap ieno	SFA V SFA V	1,00 1,00	1.00 1.00	1,00 1,00
eso proprio r	nuro	SFAV	1,00		
					· 'y * 7
		S/F	γ	Ψ	γ* 9
ombinazio ne	e n° 7 - Caso A1-M1	(STR) - Sisma Vert . ne gat i	vo		
o inta terreno		SFA V	1,00	1.00	1,00
eso proprio t		SFA V SFA V	1,00	1.00	1,00
eso proprio r		SFAV	1,00	1.00	1,00
		S/F	γ	Ψ	γ* \
ombinazio ne	e nº 6 - Caso A2-M2				
			-,		-,-,
o inta terreno		SFAV	1,10	1.00	1,10
eso proprio r eso proprio t		FAV	0,90	1.00	0,90
		S/F FAV	γ 0.90	Ψ 1.00	γ* ¥ 0.90
ombinazio ne	e nº 5 - Caso EQU (S			144	
o inta terreno		SFAV	1,30	1.00	1,30
eso proprio t		SFAV	1,30	1.00	1,30
eso proprio r	muro	S/F FAV	γ 1,00	1.00	γ* \ 1,00
ombinazio ne	e n° 4 - Caso A1-M1	(STR) S/F		Ψ	or ± Y
	0.4.60	(OTTP)			
inta terreno		SFAV	1,30	1.00	1,30
eso proprio t		FAV	1,00	1.00	1,00
eso proprio r	muro	SFA V	γ 1,30	1.00	1,30
ombinazio ne	e n° 3 - Caso A1-M1	(STR) S/F		Ψ	γ* \$
	00.00 41341	(OTTP)			
inta terreno		SFAV	1,30	1.00	1,30
eso proprio t		SFAV	1,30	1.00	1,30
eso proprio r	nuro	SFAV	1,30	1.00	1,30
OHIDHIAZIOTE	e n° 2 - Caso A1-M1	S/F	γ	Ψ	γ* \
	0.2 C A13//1	(CTTD)			
inta terreno	1	SFAV	1,30	1.00	1,30
eso proprio t		FAV	1,00	1.00	1,00
eso proprio r	nuro	FAV	1,00	1.00	1,00
		S/F	γ	Ψ	γ* '
eso proprio r eso proprio t	errap ieno	(STR) S/F FAV FAV	1,00	1.00 1.00	

9/144 10/144

Peso proprio muro	SFA V	1,00	1.00	1,00
Peso proprio terrap ieno	SFA V	1,00	1.00	1,00
Spintaterreno	SFA V	1,00	1.00	1,00
Combinazione nº 13 - Caso A1-M1(STR)				
Combinazione ii 13 - Caso A1-W1 (SFR)	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,30	1.00	1,30
Peso proprio terrap ieno	FAV	1,00	1.00	1,00
Sp inta terreno	SFA V	1,30	1.00	1,30
Carico viaggiante	SFA V	1.50	1.00	1.50
Combinazione nº 14 - Caso A1-M1(STR)				
Combinazione ii 14- Caso A1-W1 (SFR)	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrap ieno	SFA V	1,30	1.00	1,30
Sp inta terreno	SFA V	1,30	1.00	1,30
Carico viaggiante	SFA V	1.50	1.00	1.50
Combinazione nº 15 - Caso A1-M1(STR)				
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFA V	1,30 1.50	1.00	1,30
Carico viaggiante	SFA V	1.50	1.00	1.50
Combinazione nº 16 - Caso A1-M1(STR)				
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFA V	1,30	1.00	1,30
Peso proprio terrap ieno	SFA V	1,30	1.00	1,30
Sp inta terreno	SFA V	1,30	1.00	1,30
Carico viaggiante	SFA V	1.50	1.00	1.50
Combinazione nº 17 - Caso EQU (SLU)				
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	9 0,90	1.00	0,90
Peso proprio terrapieno	FAV	0,90	1.00	0,90
Spinta terreno	SFAV SFAV	1,10 1.50	1.00 1.00	1,10
Carico viaggiante	SFA V	1.30	1.00	1.50
Combinazione nº 18 - Caso A2-M2(GEO-S	TAB)			
`	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFA V	1,00	1.00	1,00
Peso proprio terrap ieno	SFA V	1,00	1.00	1,00
Spinta terreno	SFAV SFAV	1,00 1.30	1.00 1.00	1,00 1.30
Carico viaggiante	SFA V	1.50	1.00	1.50
Combinazione nº 19 - Caso A1-M1(STR) -	Sisma Vert. posit	ivo		
•	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFA V	1,00	1.00	1,00
Peso proprio terrap ieno	SFA V	1,00	1.00	1,00
Sp inta terreno Carico viaggiante	SFA V SFA V	1,00 1.00	1.00 1.00	1,00 1.00
Carico viaggrante	SI'A V	1.00	1.00	1.00
Combinazione nº 20 - Caso A1-M1(STR) -	Sisma Vert. negat	ivo		
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFA V	1,00	1.00	1,00
Peso proprio terrap ieno	SFAV SFAV	1,00 1,00	1.00	1,00 1,00
Sp inta terreno Carico viaggiante	SFA V	1.00	1.00	1.00
Combinazione nº 21 - Caso EQU (SLU) - Si	sma Vert. positiv	<u>) </u>		
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrap ieno Spinta terreno	FAV SFAV	1,00 1,00	1.00 1.00	1,00 1,00
Carico viaggiante	SFA V	1.00	1.00	1.00
Combinazione nº 22 - Caso EQU (SLU) - Si		o		
_	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV FAV	1,00	1.00	1,00 1,00
Peso proprio terrapieno Spinta terreno	SFA V	1,00 1,00	1.00 1.00	1,00
Carico viaggiante	SFAV	1.00	1.00	1.00
Combinazione nº 23 - Caso A2-M2(GEO-S		-	_	
	S/F	γ	Ψ	γ∗Ψ

Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno Carico viaggiante	SFA V SFA V	1,00 1.00	1.00 1.00	1,00 1.00
Carico viaggiante	St A V	1.00	1.00	1.00
Combinazione nº 24 - Caso A2-M2(GEO-S'		rt. negativo		
	S/F	γ .	Ψ	γ*Ψ
Peso proprio muro Peso proprio terrapieno	SFA V SFA V	1,00 1,00	1.00 1.00	1,00 1.00
Spinta terreno	SFAV	1,00	1.00	1,00
Carico viaggiante	SFAV	1.00	1.00	1.00
Combinazione nº 25 - Caso A1-M1(STR)				
Combinazione ii 23 - Caso A1-W1 (SFR)	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,30	1.00	1,30
Sp inta terreno Azione dell'acqua	SFA V SFA V	1,30 1,30	1.00 1.00	1,30 1.30
NZDIIC deli dequa	Siziv	1.50	1.00	1.50
Combinazione nº 26 - Caso A1-M1(STR)				
P	S/F FAV	γ	Ψ 1.00	γ*Ψ
Peso proprio muro Peso proprio terrap ieno	FAV	1,00 1,00	1.00	1,00 1,00
Spinta terreno	SFAV	1,30	1.00	1,30
Azione dell'acqua	SFAV	1.30	1.00	1.30
Combinations of 27 Cost A1 M1(STR)				
Combinazione nº 27 - Caso A1-M1(STR)	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,30	1.00	1,30
Peso proprio terrapieno	SFAV	1,30	1.00	1,30
Spinta terreno	SFAV	1,30	1.00	1,30
Azione dell'acqua	SFAV	1.30	1.00	1.30
Combinazione nº 28 - Caso A1-M1(STR)				
	S/F	γ	Ψ	$\gamma^*\Psi$
Peso proprio muro	SFA V FA V	1,30 1,00	1.00 1.00	1,30 1.00
Peso proprio terrapieno Spinta terreno	SFAV	1,30	1.00	1,00
Azione dell'acqua	SFAV	1.30	1.00	1.30
G 1: : AAA G FOYLGIN				
Combinazione nº 29 - Caso EQU (SLU)	S/F		Ψ	γ*Ψ
Peso proprio muro	FAV	γ 0,90	1.00	0.90
Peso proprio terrapieno	FAV	0,90	1.00	0,90
Spinta terreno	SFAV	1,10	1.00	1,10
Azione dell'acqua	SFAV	1.10	1.00	1.10
Combinazione nº 30 - Caso A2-M2(GEO-S'	ΓΑΒ)			
•	S/F	γ	Ψ	γ* Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno Spinta terreno	SFA V SFA V	1,00 1,00	1.00 1.00	1,00 1,00
Azione dell'acqua	SFAV	1.00	1.00	1.00
Combinazione nº 31 - Caso A1-M1(STR)	S/F		Ψ	γ∗Ψ
Peso proprio muro	SFAV	γ 1.30	1.00	1.30
Peso proprio terrap ieno	SFA V	1,30	1.00	1,30
Spinta terreno	SFAV	1,30	1.00	1,30
Azione dell'acqua Carico viaggiante	SFA V SFA V	1.30 1.50	1.00 1.00	1.30 1.50
Carico viaggiante	St A V	1.50	1.00	1.50
Combinazione nº 32 - Caso A1-M1(STR)				
P	S/F SFA V	y 1,30	Ψ 1.00	γ*Ψ 1.30
Peso proprio muro Peso proprio terrap ieno	FAV	1,30	1.00	1,00
Spinta terreno	SFAV	1,30	1.00	1,30
Azione dell'acqua	SFAV	1.30	1.00	1.30
Carico viaggiante	SFA V	1.50	1.00	1.50
Combinazione nº 33 - Caso A1-M1(STR)				
Carolli Millority	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	SFA V SFA V	1,30 1,30	1.00 1.00	1,30 1,30
Spinta terreno Azione dell'acqua	SFA V SFA V	1,30	1.00	1,30
	DE 2 1 4	1.50	1.00	1.50

11/144 12/144

Carico viaggiante	SFAV	1.50	1.00	1.50
Combinazione nº 34 - Caso A1-M1(STR)				
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFA V	1,30	1.00	1,30
Azione dell'acqua	SFA V	1.30	1.00	1.30
Carico viaggiante	SFA V	1.50	1.00	1.50
Combinazione nº 35 - Caso EQU (SLU)				
	S/F	γ	Ψ	γ∗Ψ
Peso proprio muro	FAV	0,90	1.00	0,90
Peso proprio terrapieno	FAV	0,90	1.00	0,90
Spinta terreno	SFA V	1,10	1.00	1,10
Azione dell'acqua	SFA V	1.10	1.00	1.10
Carico viaggiante	SFA V	1.50	1.00	1.50
Combinazione nº 36 - Caso A2-M2(GEO	-STAB)			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFA V	1.00	1.00	1.00
Peso proprio terrapieno	SFA V	1,00	1.00	1,00
Spintaterreno	SFA V	1.00	1.00	1.00
Azione dell'acqua	SFA V	1.00	1.00	1.00
Carico viaggiante	SFA V	1.30	1.00	1.30
Combinazione n° 37 - Quasi Permanente (SLE)			
	S/F	γ	Ψ	γ∗Ψ
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrap ieno		1.00	1.00	1.00
Spintaterreno		1.00	1.00	1.00
Azione dell'acqua	SFA V	1.00	1.00	1.00
•				
Combinazione nº 38 - Frequente (SLE)				
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro		1,00	1.00	1,00
Peso proprio terrapieno		1,00	1.00	1,00
Spintaterreno		1,00	1.00	1,00
Azione dell'acqua	SFA V	1.00	1.00	1.00
Carico viaggiante	SFA V	1.00	0.75	0.75
Combinazione nº 39 - Rara (SLE)				
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro		1,00	1.00	1,00
Peso proprio terrap ieno		1,00	1.00	1,00
Spinta terreno		1,00	1.00	1,00
Azione dell'acqua	SFA V	1.00	1.00	1.00
Carico viaggiante	SFA V	1.00	1.00	1.00

Impostazioni di analisi

Impostazioni verifiche SLU
Coefficienti parziali per resistenze di calcolo dei materiali
Coefficiente di sicurezza calcestruzzo a compressione 1.50
Coefficiente di sicurezza calcestruzzo a trazione 1.50
Coefficiente di sicurezza acciaio 1.15
Fattore riduzione da resistenza cubica a cilindrica 0.83
Fattore di riduzione per carichi di lungo periodo 0.85
Coefficiente di sicurezza per la sezione 1.00
Impostazioni verifiche SLE
Condizioni ambientali Ordinarie
Armatura ad aderenza migliorata
Verifica fessurazione
Sersibilità delle armature Poco sensibile
Valori limite delle aperture delle fessure $w_1 = 0.20$
$w_2 = 0.30$
$w_3 = 0.40$
Metodo di calcolo aperture delle fessure Circ. Min. 252 (15/10/1996)

Verifica delle tensioni Combinazione di carico

 $\begin{array}{lll} Rara \; \sigma_c < 0.60 \; f_{dc} & - \; \; \sigma_f < 0.80 \; f_{yk} \\ Quasi \; permanent \; e \; \sigma_c < 0.45 \; f_{dc} \end{array}$

Calcolo della portanza metodo di Meyerhof

Coefficiente correttivo su N γ per effetti cinematici (combinazioni sismiche SLU): 1,00 Coefficiente correttivo su N γ per effetti cinematici (combinazioni sismiche SLE): 1,00

Impostazioni avanzate

Terreno a monte a elevat a permeabilità

Diagramma correttivo per eccentricità negativa con aliquota di parzializzazione pari a 0.00

13/144

Stessa forma diagramma statico

Quadro riassuntivo coeff. di sicurezza calcolati

Simbol ogia adottat	а
---------------------	---

ida ado ttata Identificativo della combinazione Tipo combinazione Combinazione sismica Coeff. di sicurezza allo scomimento Coeff. di sicurezza al ribaltamento Coeff. di sicurezza a stabilità globale

STAB	Cocii. di siculcizza a statura	an groome				
C	Tipo	Sisma	CS _{sco}	CSrib	CSqlim	CS _{stab}
1	A1-M1 - [1]		1,30		3,63	
2	A1-M1 - [1]		1,67		3,54	
3	A1-M1 - [1]		1,54		3,48	
4	A1-M1 - [1]	==	1,43		3,64	
5	EQU - [1]			3,03		
6	STAB - [1]					1,52
7	A1-M1 - [2]	Orizzontale + Verticale negativo	1,34		3,60	
8	A1-M1 - [2]	Orizzontale + Verticale positivo	1,37		3,50	
9	EQU - [2]	Orizzontale + Verticale negativo		2,67		
10	EQU - [2]	Orizzontale + Verticale positivo		2,83		
11	STAB - [2]	Orizzontale + Verticale positivo				1,35
12	STAB - [2]	Orizzontale + Verticale negativo				1,31
13	A1-M1 - [3]		1,54		3,30	
14	A1-M1 - [3]		1,45		3,15	
15	A1-M1 - [3]		1,33		3,14	
16	A1-M1 - [3]		1,66		3,26	
17	EQU - [3]			2,62		
18	STAB - [3]					1,45
19	A1-M1 - [4]	Orizzontale + Verticale positivo	1,37		3,11	
20	A1-M1 - [4]	Orizzontale + Verticale negativo	1,35		3,19	
21	EQU - [4]	Orizzontale + Verticale positivo		2,54		
22	EQU - [4]	Orizzontale + Verticale negativo		2,41		
23	STAB - [4]	Orizzontale + Verticale positivo				1,32
24	STAB - [4]	Orizzontale + Verticale negativo				1,29
25	A1-M1 - [5]		5,12		3,33	
26	A1-M1 - [5]		4,68		3,57	
27	A1-M1 - [5]		5,92		2,74	
28	A1-M1 - [5]		5,48		2,89	
29	EQU - [5]			3,93		
30	STAB - [5]					1,55
31	A1-M1 - [6]		4,68		2,85	
32	A1-M1 - [6]		4,36		3,04	
33	A1-M1 - [6]	==	4,10		3,47	
34	A1-M1 - [6]		3,78		3,76	
35	EQU - [6]			3,30		
36	STAB - [6]	==				1,48
37	SLEQ - [1]		5,99		3,55	
38	SLEF - [1]	==	5,09		3,66	
39	SLER - [1]	==	4,86		3,69	

Analisi della spinta e verifiche

Sis temu di riferinento adottato per le coordinate :
Origine in testa di muro (spigolo di monte)
Assisse X (espresse in juli) positive vesto monte
Ordinate Y (sepresse in juli) positive vesto Balto
Le forze orizonatili sono mosificate positive se agenti da monte vesto valle
Le forze orizonatili sono considerate positive se agenti da monte vesto il basso

Calcolo riferito ad 1 metro di muro

Tipo di analisi

Calcolo della spinta	metodo di Culmann
Calcolo del carico limite	metodo di M ey erhof
Calcolo della stabilità globale	metodo di Bishop
Calcolo della spinta in condizioni di	Spinta attiva

Sisma

Combinazioni SLU

A cœlerazione al suolo a _g	1.43 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (S)	1.49
Coefficiente di amplificazione topografica (St)	1.00
Coefficiente riduzione (β _m)	0.24
Rapp orto intensità sismica verticale/orizzontale	0.50
Coefficiente di intensità sismica orizzontale (percento)	$k_h = (a_g/g^*\beta_m * St * S) = 5.21$
Coefficiente di intensità sismica verticale (percento)	$k_v=0.50 * k_h = 2.60$

Combinazioni SLE

A cœlerazione al suolo a ₂	0.61 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (S)	1.50
Coefficiente di amplificazione topografica (St)	1.00
Coefficiente riduzione (β _m)	0.18
Rapp orto intensità sismica verticale/or izzontale	0.50
Coefficiente di intensità sismica orizzontale (percento)	$k_h = (a_g/g^*\beta_m * St * S) = 1.68$
Coefficiente di intensità sismica verticale (percento)	$k_v = 0.50 * k_h = 0.84$

Forma diagramma incremento sismico

Partecipazione spint a passiva (percent o)	0,0	
Lunghezza del muro	10,00	[m]

Peso muro 36350,00 [kg] X=0,68 Y=-7,06 Baricent ro del muro

Superficie di spinta

Punto inferiore sup erficie di spinta	X = 4,20	Y = -11,30
Punto superiore superficie di spinta	X = 4,20	Y = 0.00
A ltezza della superficie di spinta	11,30	[m]
Inclinazione superficie di spinta(rispetto alla verticale)	0.00	[°]

COMBINAZIONE nº 1

Peso muro favorevole e Peso terrapieno favorevole				
Valore della spinta statica	41132,15	[kg]		
Componente orizzontale della spint a statica	38299,24	[kg]		
Componente verticale della spint a statica	15000,73	[kg]		
Punto d'applicazione del la spinta	X = 4,20	[m]	Y = -7,43	[m]
Inclinaz. della spintarispetto alla normale alla superficie	21,39	[°]		
Inclinazione linea di rottura in condizioni statiche	53,01	[°]		
Spinta falda	7962,50	[kg]		
Punto d'applicazione del la spinta della falda	X = 4,20	[m]	Y = -10,13	[m]
Sottosp inta falda	15600,00	[kg]		
Peso terrapieno gravante sulla fondazione a monte	70476,00	[kg]		
Baricent ro terrapieno gravant e sulla fondazione a monte	X = 2,10	[m]	Y = -4,42	[m]
Risultanti				
Risult ante dei carichi applicati in dir. orizzontale	46261,74	[kg]		
Risult ant e dei carichi applicati in dir. verticale	107786,73	[kg]		
Resistenza passiva dente di fondazione	-53301,17	[kg]		

Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricià rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Corientali rispetto della fondazione	107786,73 46261,74 0,01 6,00 117295,05 23,23 1544,33 201600 25	[kg] [kg] [m] [m] [kg] [°] [kgm]
Carico ultimo della fondazione	391690,35	[kg]

<u>Tensioni sul terreno</u> Lunghezza fondazione reagente 6,00 Tensione terreno allo spigolo di valle 1,8222 [kg/cmq] Tensione terreno allo spigolo di monte 1,7707 [kg/cmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori indinazione	$i_c = 0,76$	$i_q = 0.76$	$i_{l} = 0.40$
Fattori profondità	$d_c = 1, 12$	$d_q = 1,06$	$d_{y} = 1,06$
I coefficient i N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.			
	$N'_c = 30.14$	$N'_q = 18.62$	$N'_{\gamma} = 9.45$

COEFFICIEN TI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	1.30
Coefficiente di sicurezza a carico ultimo	3.6

Sollecitazioni paramento

Combinazione nº 1
L'ordinat Y(espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibre contro terra (a monte), espresso in kgm Sōrzo normale positivo di compressione, espresso in kg Taglio positivo es diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,37	733,33	6,65	54,37
3	0,73	1466,67	53,16	217,48
4	1,10	2200,00	179,42	489, 34
5	1,55	3093,33	498,76	967,28
6	1,99	3986,67	1059,74	1543,92
7	2,44	4880,00	1870,54	2093,17
8	2,89	5773,33	2945,12	2737,78
9	3,33	6666,67	4333,62	3498,82
10	3,78	7560,00	6088,06	4376,26
11	4,23	8453,33	8260,11	5365,19
12	4,67	9346,67	10904,31	6533,31
13	5,12	10240,00	14128,48	7925,21
14	5,57	11133,33	18002,98	9444,33
15	6,01	12026,67	22584,21	11089,70
16	6,46	12920,00	27928,57	1286 1,31
17	6,91	13813,33	34092,44	1475 9,16
18	7,35	14706,67	41132,21	16783,25
19	7,80	15600,00	49103,77	18929,30
20	8,30	16600,00	59220,20	21606,89
21	8,80	17600,00	70778,09	24687,48

Sollecitazioni fondazione di valle

Combinazione nº 1 L'accis a X(septesa ain m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	78,59	1571,76
3	0,20	314,32	3142,65
4	0,30	707, 10	4712,69
5	0,40	1256,83	6281,87
6	0,50	1963,44	7850,20
7	0,60	2826,84	9417,66
8	0,70	3846,95	10984,27
9	0,80	5023,67	12550,02
10	0,90	6356,92	14114,91
11	1,00	7846,62	15678,95

Sollecitazioni fondazione di monte

Combinazione nº 1

COMMIZZONE II 1 L.
Lascisa A(Spessa im i) è considerata positiva verso valle con origine in corrispondenz adell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in Igm Taglio positivos deriteto twoes Tallo, opersso in Igm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	-923,89	-4396,94
3	0,84	-3691,31	-8778,75
4	1,26	-8169,17	-12170,43
5	1,68	-13864,36	-14946,97
6	2,10	-20722,51	-17708,38

17/144 18/144

2,52 -28737,28 -20454,65 -23185,79 -25901,79 -28602,66 2,94 -37902,30 3,36 3,78 -48211.22 10 -59657,68 11 4,20 -72235,34 -31288,40

Armature e tensioni nei materiali del muro

Combinazione nº 1

Lordinata V(espressa in [mt]) è considerata positiva verso il basso con origine in testa al muro B boare dell'assezione espressa in [cmt] di alezza della sevicine espressa in [kgt] di alezza della sevicine espresso in [kgt] di alezza di alezza di alezza della sessibito dal els, espresso in [kgt] di alezza di alezza

Nr.	Y	B, H	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	A_{fi}	Nu	M_u	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,37	100, 80	8,04	8,04	978145	-8864	1333,83	25307		
3	0,73	100, 80	8,04	8,04	958137	-34730	653,28	25410		
4	1,10	100, 80	8,04	8,04	926549	-75566	421,16	25513		
5	1,55	100, 80	8,04	8,04	736358	-118728	238,05	25638		
6	1,99	100, 80	8,04	8,04	499550	-132790	125,31	25764		
7	2,44	100, 80	8,04	8,04	274011	-105030	56,15	25890		
8	2,89	100, 80	8,04	8,04	136175	-69466	23,59	26015		
9	3,33	100, 80	8,04	8,04	75414	-49022	11,31	26141		
10	3,78	100, 80	8,04	8,04	50235	-40454	6,64	26267		
11	4,23	100, 80	8,04	8,04	36680	-35842	4,34	26392		
12	4,67	100, 80	8,04	8,04	28268	-32979	3,02	26518		
13	5,12	100, 80	8,04	8,04	22474	-31007	2,19	26643		
14	5,57	100, 80	26,14	8,04	56330	-91087	5,06	30370		
15	6,01	100, 80	38,70	24,63	69426	-130370	5,77	34522		
16	6,46	100, 80	38,70	24,63	58790	-127084	4,55	34648		
17	6,91	100, 80	38,70	24,63	50447	-124506	3,65	34774		
18	7,35	100, 80	38,70	24,63	43780	-122446	2,98	34899		
19	7,80	100, 80	38,70	24,63	38369	- 12077 5	2,46	35025		
20	8,30	100, 80	38,70	24,63	33426	-119247	2,01	35166		
21	8,80	100, 80	30,66	16,59	23351	-93907	1,33	32853		

19/144 20/144

[kg/cmq]

[kg/cmq]

Armature e tensioni nei materiali della fondazione

Combinazione nº 1

Simbologia adottata
B base della sezione espressa in [cm]

base dellas ezione espressa în [cm] alezza della sezione espressa în [cm] area di armatura în corrispondenza del lenbo inferiore în [cmq] area di armatura în corrispondenza del lenbo superiore în [cmq] sărza nomalie ultime espresso în [kgi] no mento ultime espresso în [kgi] coefficiente sicurezza se zione Aliquota di tiglio assorbia del est, espresso în [kg] Aliquota di înglio assorbia della matura, espresso în [kg] Resis tanza al tuglio, espresso în [kg]

H A_{fs} N_u M_u CS VRcd

Fondazion e di valle

 $(L'ascissa\,\,X,espressa\,in\,\,[m],\grave{e}\,positiva\,verso\,\,monte\,con\,origine\,in\,corrispondenza\,dell'estre\,no\,\,libero\,della\,\,fondazione\,di\,valle)$

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0.10	100, 100	12.57	12.57	0	46091	586,44	30124		
3	0.20	100, 100	12.57	12.57	0	46091	146,64	30124		
4	0.30	100, 100	12.57	12.57	0	46091	65.18	30124		
5	0.40	100, 100	12.57	12.57	0	46091	36,67	30124		
6	0.50	100, 100	12.57	12.57	0	46091	23,47	30124		
7	0.60	100, 100	12.57	12.57	0	46091	16,30	30124		
8	0.70	100, 100	1257	25.13	0	91110	23,68	32019		
9	0.80	100, 100	25.13	25,13	0	91233	18,16	32019		
10	0.90	100, 100	25,13	31.42	ŏ	113613	17.87	32019		
11	1.00	100, 100	25.13	31.42	0	113613	14.48	32019		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libe ro della fondazione di monte)

Nr.	Y	B, H	Ars	An	Nu	Mu	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	37,70	12,57	0	0	1000,00	32019		
2	0,42	100, 100	37,70	12,57	0	-135272	146,42	32019		
3	0,84	100, 100	37,70	12,57	0	- 135272	36,65	32019		
4	1,26	100, 100	12,57	12,57	0	-46091	5,64	30124		
5	1,68	100, 100	25,13	25,13	0	-91233	6,58	30124		
6	2,10	100, 100	25,13	25,13	0	-91233	4,40	30124		
7	2,52	100, 100	25,13	25,13	0	-91233	3,17	126292	302998	126292
8	2,94	100, 100	25,13	25,13	0	-91233	2,41	126292	302998	126292
9	3,36	100, 100	31,42	31,42	0	-113697	2,36	126292	302998	126292
10	3,78	100, 100	31,42	31,42	0	-113697	1,91	126292	302998	126292
11	4,20	100, 100	37,70	31,42	0	-136009	1,88	252584	302998	252584

Verifica sperone di fondazione

Base sezione B= 100 cm Altezza sezione H=100 [cm]

T=46261,7 [kg]

A = 12.57 [cmq] A = 12.57 [cmq]
Sollecitazioni M=46284,9 [kgm] T=4
M oment o ultimo sezione M₀ = 46091,29 [kgm]

Coeff.sicurezza sezione = 1,00

COMBINAZIONE n° 2

Peso mu ro sfavore vole e Peso terrapieno sfavore vole

Valore della spinta statica Componente orizzontale della spint a statica Componente verticale della spinta attatica Punto d'applicazione della spinta Inclinaz, della spint a rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	41132,15 38299,24 15000,73 X = 4,20 21,39 53,01	[kg] [kg] [kg] [m] [°]	Y=-7,43	[m]
Spinta falda Punto d'applicazione della spinta della falda Sottospinta falda	7962,50 X = 4,20 15600,00	[kg] [m] [kg]	Y=-10,13	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte	91618,80 X = 2,10	[kg] [m]	Y=-4,42	[m]

Risultanti

Risult ant e dei carichi applicati in dir. orizzontale	46261,74	[kg]
Risult ant e dei carichi applicati in dir. verticale	139834,53	[kg]
Resistenza passiva dente di fondazione	-67438,72	[kg]
Sforzo normale sul piano di posa della fondazione	139834,53	[kg]
Sforzo tangenziale sul piano di posa della fondazione	46261,74	[kg]
Eccentricità rispetto al baricentro della fondazione	-0,08	[m]
Lunghezza fondazione reagente	6,00	[m]
Risult ant e in fondazione	147288,31	[kg]
Inclinazione della risultante (rispetto alla normale)	18,31	Ĩ°Ĩ
Moment o risp ett o al baricentro della fondazione	-11848,69	[kgm]
Carico ultimo della fondazione	495320,91	[kg]
Tensioni sul terreno		
Lunghezza fondazione reagente	6,00	[m]

Fattori per il calcolo della capacità portante

Tensione terreno allo spigolo di valle

Tensione terreno allo spigolo di monte

C oeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$						
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$						
Fattori indinazione	$i_c = 0,85$	$i_q = 0.85$	$i_7 = 0.61$						
Fatt ori profon dità	$d_c = 1, 12$	$d_q = 1,06$	$d_7 = 1,06$						
I coefficient i N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.									
	$N'_{c} = 33.89$	$N'_{q} = 20.94$	$N'_{\gamma} = 14.36$						

2,1331

2,5281

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.67 Coefficiente di sicurezza a carico ultimo 3.54

21/144 22/144

Sollecitazioni paramento

Combinazione nº 2
L'ordinat y (espressa in m) e considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Siozo normale positivo di compressione, espresso in kg Taglio positivo se diretto di montre verso valle, espresso in kg

				_
Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,37	953,33	6,65	54,37
3	0,73	1906,67	53,16	217,48
4	1,10	2860,00	179,42	489,34
5	1,55	4021,33	498,76	967,28
6	1,99	5182,67	1059,74	1543,92
7	2,44	6344,00	1870,54	2093,17
8	2,89	7505,33	2945,12	2737,78
9	3,33	8666,67	4333,62	3498,82
10	3,78	9828,00	6088,06	4376,26
11	4,23	10989,33	8260,11	5365,19
12	4,67	12150,67	10904,31	6533,31
13	5,12	13312,00	14128,48	7925,21
14	5,57	14473,33	18002,98	9444,33
15	6,01	15634,67	22584,21	11089,70
16	6,46	16796,00	27928,57	12861,31
17	6,91	17957,33	34092,44	14759,16
18	7,35	19118,67	41132,21	16783,25
19	7,80	20280,00	49103,77	18929,30
20	8,30	21580,00	59220,20	21606,89
21	8,80	22880,00	70778,09	24687,48

Sollecitazioni fondazione di valle

Combinazione nº 2. L'asciss Al(spiess ain m) è considerata positiva veso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in kgm Taglio pos iñvo se diretto veso Falto, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	90,51	1811,39
3	0,20	362,50	3629,36
4	0,30	816,61	5453,91
5	0,40	1453,50	7285,05
6	0,50	2273,84	9122,77
7	0,60	3278,27	10967,07
8	0,70	4467,47	12817,96
9	0,80	5842,08	14675,42
10	0,90	7402,77	16539,47
11	1,00	9150,20	18410,10

Sollecitazioni fondazione di monte

Combinazione nº 2

COMMIZZADE II a in è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo se tende le fibre inferiori, espresso in Igm Taglio positivo est ende col eritori veso Floso, peresso in Igm Taglio positivo e di eritori veso Floso, peresso in Igm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	-430,47	-2069,21
3	0,84	- 1754,40	-4254,54
4	1,26	-3855,77	-5288,49
5	1,68	-6150,58	-5658,55
6	2,10	-8625,21	-6144,74

7	2,52	-11328,42	-6747,04
8	2,94	-14308,98	-7465,45
9	3,36	-17615,65	-8299,98
10	3,78	-21297,22	-9250,63
11	4,20	-25402,44	-10317,40

23/144 24/144

Armature e tensioni nei materiali del muro

Combinazione n° 2

Lordinata Y(espressa in [m]) è consideratapositiva verso il basso con origine in testa al muro base de llascezione espressa in [cm]

H alezza della szcione espressa in [cm]

A₅ area di armatum in corrispondenza del lenbo di monte in [cmq]

N₄ sforzo normale ultime espresso in [kg]

M₄ mo mento ultime espresso in [kgm]

CS coefficiente sicurezza se zione

coefficiente sicurezza se zione Aliquota di taglio assorbito dal cls, espresso in [kg]

Aliquota di taglio assorbito dall'armatura, espresso in [kg] Resis tenza al taglio, espresso in [kg]

Nr.	Y	В, Н	A_{fs}	A_6	Nu	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,37	100, 80	8,04	8,04	979719	-6829	1027,68	25337		
3	0,73	100, 80	8,04	8,04	964206	-26884	505,70	25472		
4	1,10	100, 80	8,04	8,04	939414	-58935	328,47	25606		
5	1,55	100, 80	8,04	8,04	832335	-103233	206,98	25769		
6	1,99	100, 80	8,04	8,04	634193	- 129678	122,37	25932		
7	2,44	100, 80	8,04	8,04	436303	-128645	68,77	26096		
8	2,89	100, 80	8,04	8,04	261471	-102602	34,84	26259		
9	3,33	100, 80	8,04	8,04	142789	-71400	16,48	26422		
10	3,78	100, 80	8,04	8,04	83675	-51834	8,51	26585		
11	4,23	100, 80	8,04	8,04	56787	-42684	5,17	26749		
12	4,67	100, 80	8,04	8,04	41929	-37628	3,45	26912		
13	5,12	100, 80	8,04	8,04	32397	-34384	2,43	27075		
14	5,57	100, 80	26,14	8,04	78660	-97843	5,43	30840		
15	6,01	100, 80	38,70	24,63	95921	- 138557	6,14	35030		
16	6,46	100, 80	38,70	24,63	80453	- 133778	4,79	35193		
17	6,91	100, 80	38,70	24,63	68522	- 130091	3,82	35356		
18	7,35	100, 80	38,70	24,63	59117	-127185	3,09	35520		
19	7,80	100, 80	38,70	24,63	51564	- 124852	2,54	35683		
20	8,30	100, 80	38,70	24,63	44726	-122739	2,07	35866		
21	8,80	100, 80	30,66	16,59	31139	-96327	1,36	33596		

Armature e tensioni nei materiali della fondazione

Combinazione nº 2

Simbologia adottata
B base della sezione espressa in [cm]

altezza della sezione espressa in [cm] area di armatura in corrispondenza del le nbo inferiore in [cmq]

Ars N_u M_u CS VRcd area di armatuta in corrispondenza del embo miertore in [cmj] area di armatuta in corrispondenza del lenbo superiore in [cmj] sforzo normale ultimo espresso in [kgi] no mento ultimo espresso in [kgi] coefficiente sicurezza sezione Alapora di taglio insosibito dal cls, espresso in [kg]

VRsd

Aliquota di taglio assorbito dall'armatura, espresso in [kg] Re sis tenza al taglio, espresso in [kg]

Fondazion e di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estre no libero della fondazione di valle)

Nr.	Y	В, Н	A_{fs}	A_6	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12,57	12,57	0	46091	509,21	30124		
3	0,20	100, 100	12,57	12,57	0	46091	127,15	30124		
4	0,30	100, 100	12,57	12,57	0	46091	56,44	30124		
5	0,40	100, 100	12,57	12,57	0	46091	31,71	30124		
6	0,50	100, 100	12,57	12,57	0	46091	20,27	30124		
7	0,60	100, 100	12,57	12,57	0	46091	14,06	30124		
8	0,70	100, 100	12,57	25,13	0	91110	20,39	32019		
9	0,80	100, 100	25,13	25,13	0	91233	15,62	32019		
10	0,90	100, 100	25,13	31,42	0	113613	15,35	32019		
11	1,00	100, 100	25,13	31,42	0	113613	12,42	32019		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre no libero della fondazione di nonte)

Nr.	Y	B, H	Ars	An	Nu	M_{u}	CS	V_{Rd}	V_{Red}	V_{Rsd}
1	0,00	100, 100	37,70	12,57	0	0	1000,00	32019		
2	0,42	100, 100	37,70	12,57	0	-135272	314,24	32019		
3	0,84	100, 100	37,70	12,57	0	-135272	77,10	32019		
4	1,26	100, 100	12,57	12,57	0	-46091	11,95	30124		
5	1,68	100, 100	25,13	25,13	0	-91233	14,83	30124		
6	2,10	100, 100	25,13	25,13	0	-91233	10,58	30124		
7	2,52	100, 100	25,13	25,13	0	-91233	8,05	126292	302998	126292
8	2,94	100, 100	25,13	25,13	0	-91233	6,38	126292	302998	126292
9	3,36	100, 100	31,42	31,42	0	-113697	6,45	126292	302998	126292
10	3,78	100, 100	31,42	31,42	0	-113697	5,34	126292	302998	126292
11	4,20	100, 100	37,70	31,42	0	-136009	5,35	252584	302998	252584

Verifica sperone di fondazione

Base sezione B= 100 cm Altezza sezione H=100 [cm]

A₆=12,57 [cmq] A₆=12,57 [cmq] Sollecitazioni M=46284,9 [kgm]

T=46261,7 [kg]

Moment o ultimo sezione $M_u = 46091,29$ [kgm]

Coeff.sicurezza sezione = 1,00

COMBINAZIONE nº 3

Peso muro favorevole e Peso terrapieno sfavorevole

Valore della spinta statica Componente orizzontale della spint a statica Componente verticale della spinta a statica Punto d'applicazione del la spinta Inclinaz, della spinta rispetto alla normale alla superficie	41132,15 38299,24 15000,73 X = 4,20 21,39	[kg] [kg] [kg] [m] [°]	Y=-7,43	[m]
Inclinazione linea di rottura in condizioni statiche Spinta falda	21,39 53,01 7962,50	[°]		
Punto d'applicazione della spinta della falda Sottospinta falda	X = 4,20 15600,00	[m] [kg]	Y=-10,13	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte	91618,80 X = 2,10	[kg] [m]	Y = -4,42	[m]

Risultanti

25/144 26/144

Risult ant e dei carichi applicati in dir. orizzontale	46261,74	[kg]
Risult ant e dei carichi applicati in dir. verticale	128929,53	[kg]
Resistenza passiva dente di fondazione	-61835,91	[kg]
Sforzo normale sul piano di posa della fondazione	128929,53	[kg]
Sforzot angenziale sul piano di posa della fondazione	46261,74	[kg]
Eccentricità rispetto al baricentro della fondazione	-0,14	[m]
Lunghezza fondazione reagente	6,00	[m]
Risult ant e in fondazione	136978,00	[kg]
Inclinazione della risultante (rispetto alla normale)	19,74	[°]
Moment o risp ett o al baricentro del la fondazione	-17484,19	[kgm
Carico ultimo della fondazione	448767,60	[kg]

<u>Tensioni sul terreno</u> Lunghezza fondazione reagente 6,00 Tensione terreno allo spigolo di valle 1,8574 [kg/cmq] 2,4402 Tensione terreno allo spigolo di monte [kg/cmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori indinazione	$i_c = 0,82$	$i_q = 0.82$	$i_f = 0.54$
Fattori profondità	$d_c = 1, 12$	$d_q = 1,06$	$d_{V} = 1,06$
Tanadelalant Nilsanana annta dal fattani di fa		in alimentana miana di masa	in at in anima and an at a

 $N'_c = 32.65$ $N'_q = 20.18$ $N'_{\gamma} = 12.66$

COEFFICIENTI DI SICUREZZA

1.54 3.48 Coefficiente di sicurezza a scorrimento Coefficiente di sicurezza a carico ultimo

Sollecitazioni paramento

Combinazione nº 3

L'ordina Y (espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo estende le fibre contro terra (a monte), espresso in kgm Sōrzo normale positivo di compressione, espresso in kg Taglio positivo es diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,37	733,33	6,65	54,37
3	0,73	1466,67	53,16	217,48
4	1,10	2200,00	179,42	489, 34
5	1,55	3093,33	498,76	967,28
6	1,99	3986,67	1059,74	1543,92
7	2,44	4880,00	1870,54	2093,17
8	2,89	5773,33	2945,12	2737,78
9	3,33	6666,67	4333,62	3498,82
10	3,78	7560,00	6088,06	4376,26
11	4,23	8453,33	8260,11	5365,19
12	4,67	9346,67	10904,31	6533,31
13	5,12	10240,00	14128,48	7925,21
14	5,57	11133,33	18002,98	9444,33
15	6,01	12026,67	22584,21	11089,70
16	6,46	12920,00	27928,57	12861,31
17	6,91	13813,33	34092,44	14759,16
18	7,35	14706,67	41132,21	16783,25
19	7,80	15600,00	49103,77	18929,30
20	8,30	16600,00	59220,20	21606,89
21	8,80	17600,00	70778,09	24687,48

Sollecitazioni fondazione di valle

Combinazione nº 3 L'accis a Xicspessa ain m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr.	X	M	Т
1	0,00	0,00	0,00
2	0,10	80,53	1612,28
3	0,20	322,78	3234,27
4	0,30	727,71	4865,98
5	0,40	1296,30	6507,40
6	0,50	2029,51	8158,53
7	0,60	2928,33	9819,38
8	0,70	3993,71	11489,94
9	0,80	5226,64	13170,21
10	0,90	6628,08	14860,20
11	1,00	8199,00	16559,90

Sollecitazioni fondazione di monte

Combinazione nº 3

L'asciss a X(espress a in m) è considerata positiva verso valle con origine in corrispondenz a del l'estremo libero della fondazione di monte Momento positivo se tende le fibre inferiori, espresso in kgm Ta glio positivo se diretto verso l'alto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	-346,42	-1678,19
3	0,84	-1433,67	-3527,73
4	1,26	-3206,95	-4573,61
5	1,68	-5251,49	-5190,84
6	2,10	-7591,25	-5979,41

27/144 28/144

2,52 -10298,18 -6939,33 2,94 -13444,27 -8070,59 3,36 3,78 -17101,47 -21341,74 -9373,20 -10847,15 10 11 4,20 -26237,06 -12492,45

Armature e tensioni nei materiali del muro

Combinazione nº 3

Lordinata V(espressa in [mt]) è considerata positiva verso il basso con origine in testa al muro B boare dell'assezione espressa in [cmt] di alezza della sevicine espressa in [kgt] di alezza della sevicine espresso in [kgt] di alezza di alezza di alezza della sessibito dal els, espresso in [kgt] di alezza di alezza

NT	X 7	р п			N		CC	X 7	X 7	X 7
Nr.	Y	B, H	Ars	An	Nu	M _u	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,37	100, 80	8,04	8,04	978145	-8864	1333,83	25307		
3	0,73	100, 80	8,04	8,04	958137	-34730	653,28	25410		
4	1,10	100, 80	8,04	8,04	926549	-75566	421,16	25513		
5	1,55	100, 80	8,04	8,04	736358	-118728	238,05	25638		
6	1,99	100, 80	8,04	8,04	499550	-132790	125,31	25764		
7	2,44	100, 80	8,04	8,04	274011	-105030	56,15	25890		
8	2,89	100, 80	8,04	8,04	136175	-69466	23,59	26015		
9	3,33	100, 80	8,04	8,04	75414	-49022	11,31	26141		
10	3,78	100, 80	8,04	8,04	50235	-40454	6,64	26267		
11	4,23	100, 80	8,04	8,04	36680	-35842	4,34	26392		
12	4,67	100, 80	8,04	8,04	28268	-32979	3,02	26518		
13	5,12	100, 80	8,04	8,04	22474	-31007	2,19	26643		
14	5,57	100, 80	26,14	8,04	56330	-91087	5,06	30370		
15	6,01	100, 80	38,70	24,63	69426	-130370	5,77	34522		
16	6,46	100, 80	38,70	24,63	58790	-127084	4,55	34648		
17	6,91	100, 80	38,70	24,63	50447	-124506	3,65	34774		
18	7,35	100, 80	38,70	24,63	43780	-122446	2,98	34899		
19	7,80	100, 80	38,70	24,63	38369	- 12077 5	2,46	35025		
20	8,30	100, 80	38,70	24,63	33426	-119247	2,01	35166		
21	8,80	100, 80	30,66	16,59	23351	-93907	1,33	32853		

29/144 30/144

Armature e tensioni nei materiali della fondazione

Combinazio ne nº 3 Simbologia adottata B base della sezione espressa in [cm]

oase enasezone espressa ir [cm]
area di armatura in corrispondenza del lenbo inferiore in [cmq]
area di armatura in corrispondenza del lenbo superiore in [cmq]
area di armatura in corrispondenza del lenbo superiore in [cmq]
storzo normale ultimo espresso in [kgm]

H A_{fs} N_u M_u CS VRcd

no mento dumo espresso in [ggm] coefficiente sicurezza se zione Aliquota di taglio assobito dal ck, espresso in [kg] Aliquota di taglio assobito dall'armatura, espresso in [kg] Resis tanza al taglio, espresso in [kg]

Fondazion e di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estre no libero della fondazione di valle)

Nr.	Y	В, Н	A_{fs}	A_6	Nu	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	1257	12,57	0	46091	572,33	30124		
3	0.20	100, 100	1257	12.57	0	46091	142.79	30124		
4	0.30	100, 100	12.57	12.57	0	46091	63,34	30124		
5	0.40	100, 100	12.57	12.57	0	46091	35,56	30124		
6	0.50	100, 100	12.57	12.57	0	46091	22.71	30124		
7	0,60	100, 100	12.57	12.57	0	46091	15,74	30124		
8	0.70	100, 100	1257	25.13	Õ	91110	22,81	32019		
9	0.80	100, 100	25.13	25,13	Õ	91233	17.46	32019		
10	0,90	100, 100	25,13	31.42	ŏ	113613	17,14	32019		
11	1.00	100, 100	25.13	31.42	0	113613	13,86	32019		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libero della fondazione di monte)

Nr.	Y	B, H	Ars	An	Nu	$M_{\rm u}$	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 100	37,70	12,57	0	0	1000,00	32019		
2	0,42	100, 100	37,70	12,57	0	- 135272	390,48	32019		
3	0,84	100, 100	37,70	12,57	0	- 135272	94,35	32019		
4	1,26	100, 100	12,57	12,57	0	-46091	14,37	30124		
5	1,68	100, 100	25,13	25,13	0	-91233	17,37	30124		
6	2,10	100, 100	25,13	25,13	0	-91233	12,02	30124		
7	2,52	100, 100	25,13	25,13	0	-91233	8,86	126292	302998	126292
8	2,94	100, 100	25,13	25,13	0	-91233	6,79	126292	302998	126292
9	3,36	100, 100	31,42	31,42	0	-113697	6,65	126292	302998	126292
10	3,78	100, 100	31,42	31,42	0	-113697	5,33	126292	302998	126292
11	4,20	100, 100	37,70	31,42	0	-136009	5,18	252584	302998	252584

Verifica sperone di fondazione

Base sezione B= 100 cm Altezza sezione H=100 [cm]

T=46261,7 [kg]

A = 12.57 [cmq] A = 12.57 [cmq] Sollecitazioni M=46284,9 [kgm] T=4000 [kgm] Moment o ultimo sezione M₀ = 46091,29 [kgm]

Coeff.sicurezza sezione = 1,00

COMBINAZIONE n° 4

Peso mu ro sfavore vol e e Peso terrapieno favore vole

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spint a rispetto alla normale alla superficie Inclinaz. della spint a rispetto alla normale alla superficie	41132,15 38299,24 15000,73 X = 4,20 21,39 53,01	[kg] [kg] [kg] [m] [°] [°]	Y=-7,43	[m]
Spinta falda Punto d'applicazione del la spinta della falda Sottospinta falda	7962,50 X = 4,20 15600,00	[kg] [m] [kg]	Y=-10,13	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte	70476,00 X = 2,10	[kg] [m]	Y=-4,42	[m]

Risultanti

Risult ant e dei carichi applicati in dir. orizzontale	46261,74	[kg]
Risult ant e dei carichi applicati in dir. verticale	118691,73	[kg]
Resistenza passiva dente di fondazione	-58903,98	[kg]
Sforzo normale sul piano di posa della fondazione	118691,73	[kg]
Sforzo tangenzia le sul piano di posa della fondazione	46261,74	[kg]
Eccentricità rispetto al baricentro della fondazione	0,06	[m]
Lunghezza fondazione reagente	6,00	[m]
Risult ant e in fondazione	127388,68	[kg]
Inclinazione della risultante (rispetto alla normale)	21,29	[°]
Moment o risp ett o al baricentro della fondazione	7179,83	[kgm]
Carico ultimo della fondazione	431839,53	[kg]

<u>Tensioni sul terreno</u> Lunghezza fondazione reagente 6,00 2,0979 Tensione terreno allo spigolo di valle [kg/cmq] Tensione terreno allo spigolo di monte 1,8585 [kg/cmq]

Fattori per il calcolo della capacità portante

C oeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori indinazione	$i_c = 0,80$	$i_q = 0.80$	$i_7 = 0.49$
Fatt ori profon dità	$d_c = 1, 12$	$d_q = 1,06$	$d_{Y} = 1,06$
I coefficient i N' tengono conto dei fattori di	forma, profondità, inclinazione carico,	in clin azione piano di posa, inclin azi	one pendio.
	$N'_{c} = 31.71$	$N'_q = 19.60$	$N'_{\gamma} = 11.42$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.43 3.64 Coefficiente di sicurezza a carico ultimo

31/144 32/144

Sollecitazioni paramento

Combinazione nº 4
L'ordinata Y (espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Siozo normale positivo di compressione, espresso in kg
Taglio positivo es diretto di montro verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,37	953,33	6,65	54,37
3	0,73	1906,67	53,16	217,48
4	1,10	2860,00	179,42	489,34
5	1,55	4021,33	498,76	967,28
6	1,99	5182,67	1059,74	1543,92
7	2,44	6344,00	1870,54	2093,17
8	2,89	7505,33	2945,12	2737,78
9	3,33	8666,67	4333,62	3498,82
10	3,78	9828,00	6088,06	4376,26
11	4,23	10989,33	8260,11	5365,19
12	4,67	12150,67	10904,31	6533,31
13	5,12	1331 2,00	14128,48	7925,21
14	5,57	14473,33	18002,98	9444,33
15	6,01	15634,67	22584,21	11089,70
16	6,46	16796,00	27928,57	12861,31
17	6,91	17957,33	34092,44	14759,16
18	7,35	1911 8,67	41132,21	16783,25
19	7,80	20280,00	49103,77	18929,30
20	8,30	21580,00	59220,20	21606,89
21	8,80	22880,00	70778,09	24687,48

Sollecitazioni fondazione di valle

Combinazione nº 4. L'asciss a Xispness ain m) è considerata positiva vesso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in Igm Taglio pos iñvo se diretto vesso Falto, espresso in Igm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	88,58	1770,87
3	0,20	354,04	3537,74
4	0,30	795,99	5300,63
5	0,40	1414,03	7059,53
6	0,50	2207,76	8814,44
7	0,60	3176,79	10565,36
8	0,70	4320,70	12312,29
9	0,80	5639,11	14055,23
10	0,90	7131,62	15794,19
11	1,00	8797,82	17529,15

Sollecitazioni fondazione di monte

Combinazione nº 4
L'ascis a Xispress ain m) è considerata positiva veso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm Taglio pos invose diretto veso Talto, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	- 1007,94	-4787,97
3	0,84	-4012,04	-9505,57
4	1,26	-8817,99	-12885,31
5	1,68	-14763,45	-15414,69
6	2,10	-21756,48	-17873,70

7	2,52	-29767,51	-20262,36
8	2,94	-38767,01	-22580,65
9	3,36	-48725,41	-24828,58
10	3,78	-59613,16	-27006, 15
11	4,20	-71400,72	-29113,35

33/144 34/144

Armature e tensioni nei materiali del muro

Combinazione nº 4

Lordinata Y(espressa in [m]) è consideratapositiva verso il basso con origine in testa al muro base de llascezione espressa in [cm]

H alezza della szcione espressa in [cm]

A₅ area di armatum in corrispondenza del lenbo di monte in [cmq]

N₄ sforzo normale ultime espresso in [kg]

M₄ mo mento ultime espresso in [kgm]

CS coefficiente sicurezza se zione

coefficiente sicurezza se zione Aliquota di taglio assorbito dal cls, espresso in [kg]

Aliquota di taglio assorbito dall'armatura, espresso in [kg] Re sis tenza al taglio, espresso in [kg]

Nr.	Y	В, Н	A_{fs}	A_{fi}	Nu	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,37	100, 80	8,04	8,04	979719	-6829	1027,68	25337		
3	0,73	100, 80	8,04	8,04	964206	-26884	505,70	25472		
4	1,10	100, 80	8,04	8,04	939414	-58935	328,47	25606		
5	1,55	100, 80	8,04	8,04	832335	- 103233	206,98	25769		
6	1,99	100, 80	8,04	8,04	634193	- 129678	122,37	25932		
7	2,44	100, 80	8,04	8,04	436303	-128645	68,77	26096		
8	2,89	100, 80	8,04	8,04	261471	-102602	34,84	26259		
9	3,33	100, 80	8,04	8,04	142789	-71400	16,48	26422		
10	3,78	100, 80	8,04	8,04	83675	-51834	8,51	26585		
11	4,23	100, 80	8,04	8,04	56787	-42684	5,17	26749		
12	4,67	100, 80	8,04	8,04	41929	-37628	3,45	26912		
13	5,12	100, 80	8,04	8,04	32397	-34384	2,43	27075		
14	5,57	100, 80	26,14	8,04	78660	-97843	5,43	30840		
15	6,01	100, 80	38,70	24,63	95921	- 138557	6,14	35030		
16	6,46	100, 80	38,70	24,63	80453	- 133778	4,79	35193		
17	6,91	100, 80	38,70	24,63	68522	- 130091	3,82	35356		
18	7,35	100, 80	38,70	24,63	59117	-127185	3,09	35520		
19	7,80	100, 80	38,70	24,63	51564	-124852	2,54	35683		
20	8,30	100, 80	38,70	24,63	44726	- 122739	2,07	35866		
21	8.80	100, 80	30.66	16.59	31139	-96327	1.36	33596		

Armature e tensioni nei materiali della fondazione

Combinazione nº 4

Simbologia adottata
B base della sezione espressa in [cm]

bace de lla sezione espressa in [cm]
altezza del la sezione espressa in [cm]
area di armatua in corrispondenza del le nbo inferiore in [cmq]
area di armatua in corrispondenza del le nbo superiore in [cmq]
storzo nomale ultimo espresso in [kg]
no mento ultimo espresso in [kg]
no mento ultimo espresso in [kg]
Aliquat di tiggio assobito dal cls, espresso in [kg]
Aliquat di tiggio assobito dal mantura, espresso in [kg]
Resis tenza al taglio, espresso in [kg]

Fondazion e di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estre no libero della fondazione di valle)

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12,57	12,57	0	46091	520,36	30124		
3	0,20	100, 100	12,57	12,57	0	46091	130,19	30124		
4	0,30	100, 100	12,57	12,57	0	46091	57,90	30124		
5	0,40	100, 100	12,57	12,57	0	46091	32,60	30124		
6	0,50	100, 100	12,57	12,57	0	46091	20,88	30124		
7	0,60	100, 100	12,57	12,57	0	46091	14,51	30124		
8	0,70	100, 100	12,57	25,13	0	91110	21,09	32019		
9	0,80	100, 100	25,13	25,13	0	91233	16,18	32019		
10	0,90	100, 100	25,13	31,42	0	113613	15,93	32019		
11	1,00	100, 100	25,13	31,42	0	113613	12,91	32019		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre no libero della fondazione di nonte)

Nr.	Y	В, Н	Ars	An	Nu	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	37,70	12,57	0	0	1000,00	32019		
2	0,42	100, 100	37,70	12,57	0	-135272	134,21	32019		
3	0,84	100, 100	37,70	12,57	0	-135272	33,72	32019		
4	1,26	100, 100	12,57	12,57	0	-46091	5,23	30124		
5	1,68	100, 100	25,13	25,13	0	-91233	6,18	30124		
6	2,10	100, 100	25,13	25,13	0	-91233	4,19	30124		
7	2,52	100, 100	25,13	25,13	0	-91233	3,06	126292	302998	126292
8	2,94	100, 100	25,13	25,13	0	-91233	2,35	126292	302998	126292
9	3,36	100, 100	31,42	31,42	0	-113697	2,33	126292	302998	126292
10	3,78	100, 100	31,42	31,42	0	-113697	1,91	126292	302998	126292
11	4,20	100, 100	37,70	31,42	0	-136009	1,90	252584	302998	252584

Verifica sperone di fondazione

Base sezione B= 100 cm Altezza sezione H=100 [cm]

A₆=12,57 [cmq] A₆=12,57 [cmq] Sollecitazioni M=46284,9 [kgm]

T=46261,7 [kg]

Moment o ultimo sezione $M_u = 46091,29$ [kgm] Coeff.sicurezza sezione = 1,00

COMBINAZIONE nº 5

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	43052,31 41080,64 12879,53 X = 4,20 17,41 50,33	[kg] [kg] [kg] [m] [°]	Y=-7,43	[m]
Spinta falda Punto d'applicazione del la spinta della falda Sottospinta falda	6737,50 X = 4,20 13200,00	[kg] [m] [kg]	Y=-10,13	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte	$63428,40 \\ X = 2,10$	[kg] [m]	Y = -4,42	[m]
Risultanti Risult ante dei carichi applicati in dir. orizzontale	47818,14	[kg]		

35/144 36/144 3.03

Risult ant e dei carichi applicati in dir. verticale	97382,93	[kg]
Resistenza passiva dente di fondazione	-41009,57	[kg]
Moment o ribalt ante rispetto allo spigolo a valle	134521,51	[kgm]
Moment o st abilizzant e rispetto allo spigolo a valle	407368,46	[kgm]
Sforzo normale sul piano di posa della fondazione	97382,93	[kg]
Sforzo t angenzia le sul piano di posa della fondazione	47818,14	[kg]
Eccentricità rispetto al baricentro della fondazione	0,20	[m]
Lunghezza fondazione reagente	6,00	[m]
Risult ant e in fondazione	108489,68	[kg]
Inclinazione della risultante (rispetto alla normale)	26,15	[°]
Moment o risp ett o al baricentro del la fondazione	19301,85	[kgm]

COEFFICIEN TI DISICUREZZA Coefficiente di sicurezza a ribaltament o

Stabilità globale muro + terreno

Combinazione nº 6

Le accise X sono anacterate positive verso mone

Le accise X sono anacterate positive verso flato
Origine in testa at muro (spigolo contro term)

prodella statis cas persos in [kg]

α pagolo flat la base della striscia e forizzontate espresso in [*] (positivo antionario)

α angolo flatino del termon lungo la base della striscia
c coesione del termon lungo la base della striscia espressa in [kg/cmq]

b lagelezza della striscia espressa in [kg/cmq]

u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -2,78 Y[m] = 1.85

Raggio del cerchio R[m]= 14,89

Xi[m]=-14,13 Xs[m]= 12,00 A scissa a valle del cerchio A scissa a monte del cerchio Larghezza del la striscia dx[m] = 1.05Coefficiente di sicurezza C= 1.52 Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α (°)	Wsinα	b/cos a	ф	c	u
1	3773.32	74.99	3644.52	4.04	24.97	0.000	0.000
2	9821.87	62.87	8741.06	2.29	27.22	0.000	0.000
3	13333.57	54.95	10915.59	1.82	26.56	0.000	0.000
4	1601 1.68	48.42	11976.35	1.57	26.56	0.000	0.022
5	18243.22	42.65	12359.88	1.42	26.56	0.000	0.129
6	20084.46	37.38	12193.90	1.32	26.56	0.000	0.217
7	21614.44	32.47	11602.80	1.24	26.56	0.000	0.290
8	23677.20	27.81	11045.77	1.18	26.56	0.000	0.351
9	2488 8.97	23.34	9862.06	1.14	26.56	0.000	0.401
10	25366.19	19.03	8268.91	1.11	26.56	0.000	0.441
11	2603 0.39	14.82	6656.76	1.08	26.56	0.000	0.473
12	29181.39	10.69	5412.70	1.06	26.56	0.000	0.497
13	1629 0.09	6.62	1877.32	1.05	26.56	0.000	0.513
14	11004.32	2.58	495.23	1.05	26.56	0.000	0.521
15	1091 9.91	-1.45	-275.57	1.05	26.56	0.000	0.522
16	10787.54	-5.48	-1029.94	1.05	26.56	0.000	0.516
17	1049 9.15	-9.54	-1739.87	1.06	26.56	0.000	0.502
18	1005 0.25	-13.65	-2371.46	1.08	26.56	0.000	0.481
19	9433.50	-17.83	-2888.63	1.10	26.56	0.000	0.451
20	8638.07	-22,12	-3251.95	1.13	26.56	0.000	0.413
21	7648.51	-26.53	-3416.86	1.17	26.56	0.000	0.366
22	6442.99	-31.13	-3331.17	1.22	26.56	0.000	0.308
23	4990.16	-35.97	-2930.90	1.29	26.56	0.000	0.239
24	3243.33	-41.12	-2133.11	1.39	26.56	0.000	0.155
25	1128.76	-46.73	-821.88	1.52	26.56	0.000	0.054

 $\Sigma W = 343103,28 \text{ [kg]}$ Σ Wisin α i= 90861,52 [kg] $\Sigma \text{Wtan} \phi = 171529, 57 \text{ [kg]}$ Σt anotitanφ= 3.62

COMBINAZIONE nº 7

Valore della spinta statica	31640,12	[kg]		
Componente orizzontale della spinta statica	29460,95	[kg]		
Componente verticale della spint a statica	11539,03	[kg]		
Punto d'applicazione del la spinta	X = 4,20	[m]	Y = -7,43	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	21,39	[°]		
Inclinazione linea di rottura in condizioni statiche	53,01	[°]		
Incremento sismico della spinta	3812,31	[kg]		
Punto d'applicazione dell'increment o sismico di spinta	X = 4,20	[m]	Y = -7,43	[m]
Inclinazione linea di rottura in condizioni sismiche	49,69	[°]		

37/144 38/144

Spinta falda Punto d'applicazione del la spinta della falda Sottospinta falda	6125,00 X = 4,20 12000,00	[kg] [m] [kg]	Y=-10,13	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte Inerzia del muro Inerzia verticale del muro Inerzia verticale del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte	70476,00 X = 2,10 1892,49 -946,25 3669,20 -1834,60	[kg] [m] [kg] [kg] [kg]	Y=-4,42	[m]
Risultanti Risult ante dei carichi applicati in dir. orizzontale Risult ante dei carichi applicati in dir. verticale Resistenza passiva dente di fondazione Sforzo normale sul piano di posa della fondazione Sforzo t angenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione Risult ante in fondazione Risult ante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	44778,61 106534,51 -54327,87 106534,51 44778,61 0,21 6,00 115562,65 22,80 22385,62 382992,88	[kg] [km] [kg] [kg] [kg] [kg]		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	6,00 2,1487 1,4025	[m] [kg/cmq] [kg/cmq]		

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori indinazione	$i_c = 0,77$	$i_q = 0.77$	$i_{f} = 0.44$
Fattori profondità	$d_c = 1, 12$	$d_q = 1,06$	$d_{f} = 1,06$
I coefficient i N' tengono conto dei fattori di	forma, profondità, inclinazione carico,	in clinazione piano di posa, inclinazi	one pendio.
	$N'_c = 30.76$	$N'_{q} = 19.01$	$N'_{\gamma} = 10.21$

COEFFICIEN TI DI SICUREZZA

1.34 3.60 Coefficiente di sicurezza a scorrimento Coefficiente di sicurezza a carico ultimo

Sollecitazioni paramento

Combinazione nº 7.
L'ordinat y (espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo estende le fibre contro terra (a monte), espresso in kgm Sōrzo normale positivo di compressione, espresso in kg Taglio positivo es diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,37	733,33	13,19	88,85
3	0,73	1466,67	77,55	279,05
4	1,10	2200,00	230,22	570,60
5	1,55	3093,33	589,39	1062,55
6	1,99	3986,67	1194,54	1646,49
7	2,44	4880,00	2053,30	2204,90
8	2,89	5773,33	3178,68	2852,19
9	3,33	6666,67	4617,41	3607,98
10	3,78	7560,00	6417,96	4472,27
11	4,23	8453,33	8628,51	5440,46
12	4,67	9346,67	11299,86	6575,65
13	5,12	10240,00	14532,53	7919,41
14	5,57	11133,33	18392,08	9381,74
15	6,01	12026,67	22931,07	10961,73
16	6,46	12920,00	28202,08	12659,38
17	6,91	13813,33	34257,64	14474,69
18	7,35	14706,67	41150,31	16407,65
19	7,80	15600,00	48932,19	18454,27
20	8,30	16600,00	58775,39	2097 5,39
21	8,80	17600,00	69961,61	2381 9,22

Sollecitazioni fondazione di valle

Combinazione nº 7
L'ascis a X(sepresa ai m m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr.	X	M	Т
1	0,00	0,00	0,00
2	0,10	94,73	1892,45
3	0,20	378,08	3772,46
4	0,30	848,80	5640,04
5	0,40	1505,67	7495,18
6	0,50	2347,43	9337,89
7	0,60	3372,83	11168,16
8	0,70	4580,64	12985,99
9	0,80	5969,62	14791,38
10	0,90	7538,51	16584,34
11	1,00	9286,07	18364,87

Sollecitazioni fondazione di monte

Combinazione nº 7

COMMIZZONE II / Lacks a X(Spess ain m) è considerata positiva verso valle con origine in corrispondenz adell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivos de diretto usevo Tallo, opersso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	-787,72	-3714,49
3	0,84	-3089,46	-7209,60
4	1,26	-6686,32	-9510,33
5	1,68	-10999,42	-10991,68
6	2,10	-15888,62	-12253,65

39/144 40/144

2,52 -21261,77 -13296,24 2,94 -27026,75 -14119,46 -14723,29 -15107,75 3,36 3,78 -33091,40 -39363,60 10 11 4,20 -45751,20 -15272,82

Armature e tensioni nei materiali del muro

Combinazione nº 7

Lordinata V(espressa in [mt]) è considerata positiva verso il basso con origine in testa al muro B boare dell'assezione espressa in [cmt] di alezza della sevicine espressa in [cmt] di alezza della sevicine espressa in [cmt] di area di armatuta in corrispondenza del embo di monte in [cmt] area di armatuta in corrispondenza del embo di valle in [cmt] si sevicine presso in [kgt] di armatuta di alezione di armatuta in corrispondenza del embo di valle in [cmt] si sevicine monte di film espresso in [kgt] di armatuta di armatuta

Nr.	Y	В, Н	A_{fs}	A_6	N_u	M_u	CS	V_{Rd}	V_{Rot}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,37	100, 80	8,04	8,04	971482	-17477	1324,75	25307		
3	0,73	100, 80	8,04	8,04	946300	-50033	645,20	25410		
4	1,10	100, 80	8,04	8,04	884529	-92561	402,06	25513		
5	1,55	100, 80	8,04	8,04	666064	-126908	215,32	25638		
6	1,99	100, 80	8,04	8,04	426100	-127674	106,88	25764		
7	2,44	100, 80	8,04	8,04	220860	-92929	45,26	25890		
8	2,89	100, 80	8,04	8,04	111083	-61160	19,24	26015		
9	3,33	100, 80	8,04	8,04	66302	-45922	9,95	26141		
10	3,78	100, 80	8,04	8,04	45925	-38988	6,07	26267		
11	4,23	100, 80	8,04	8,04	34331	-35042	4,06	26392		
12	4,67	100, 80	8,04	8,04	26891	-32511	2,88	26518		
13	5,12	100, 80	8,04	8,04	21652	-30728	2,11	26643		
14	5,57	100, 80	26,14	8,04	54871	-90645	4,93	30370		
15	6,01	100, 80	38,70	24,63	68172	-129983	5,67	34522		
16	6,46	100, 80	38,70	24,63	58126	- 126879	4,50	34648		
17	6,91	100, 80	38,70	24,63	50169	-124420	3,63	34774		
18	7,35	100, 80	38,70	24,63	43759	-122440	2,98	34899		
19	7,80	100, 80	38,70	24,63	38519	- 12082 1	2,47	35025		
20	8,30	100, 80	38,70	24,63	33703	-119333	2,03	35166		
21	8,80	100, 80	30,66	16,59	23647	-93999	1,34	32853		

41/144 42/144

Armature e tensioni nei materiali della fondazione

Combinazione nº 7
Simbologia adottata
B base della sezione espressa in [cm]

base de lla sezione espressa in [cm] alezza della sezione espressa in [cm] area di armatura in corrispondenza del lenbo inferiore in [cmq] area di armatura in corrispondenza del lenbo superiore in [cmq] sibrzo nomale ultimo espresso in [kg] momento ultimo espresso in [kgm] coefficiente sicurezza sezione. Aliquota di tiggio assorbio dal els., espresso in [kg] Aliquota di riggio assorbio dall'armatura, espresso in [kg] Resistanza al trajlo, espresso in [kg]

Fondazion e di valle

 $(L'ascissa\,\,X,espressa\,in\,\,[m],\grave{e}\,positiva\,verso\,\,monte\,con\,origine\,in\,corrispondenza\,dell'estre\,no\,\,libero\,della\,\,fondazione\,di\,valle)$

Nr.	Y	В, Н	A_{fs}	A_6	Nu	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12.57	12,57	0	46091	486,57	30124		
3	0,20	100, 100	1257	12,57	0	46091	121,91	30124		
4	0,30	100, 100	1257	12,57	0	46091	54,30	30124		
5	0,40	100, 100	1257	12,57	0	46091	30,61	30124		
6	0.50	100, 100	12.57	12.57	0	46091	19,63	30124		
7	0.60	100, 100	12.57	12.57	0	46091	13,67	30124		
8	0.70	100, 100	12.57	25.13	0	91110	19,89	32019		
9	0.80	100, 100	25.13	25,13	0	91233	15,28	32019		
10	0.90	100, 100	25.13	31,42	Õ	113613	15,07	32019		
11	1.00	100, 100	25,13	31.42	0	113613	12.23	32019		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libero della fondazione di monte)

Nr.	Y	В, Н	Ars	An	Nu	$M_{\rm u}$	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 100	37,70	12,57	0	0	1000,00	32019		
2	0,42	100, 100	37,70	12,57	0	-135272	171,73	32019		
3	0,84	100, 100	37,70	12,57	0	- 135272	43,79	32019		
4	1,26	100, 100	12,57	12,57	0	-46091	6,89	30124		
5	1,68	100, 100	25,13	25,13	0	-91233	8,29	30124		
6	2,10	100, 100	25,13	25,13	0	-91233	5,74	30124		
7	2,52	100, 100	25,13	25,13	0	-91233	4,29	126292	302998	126292
8	2,94	100, 100	25,13	25,13	0	-91233	3,38	126292	302998	126292
9	3,36	100, 100	31,42	31,42	0	-113697	3,44	126292	302998	126292
10	3,78	100, 100	31,42	31,42	0	-113697	2,89	126292	302998	126292
11	4,20	100, 100	37,70	31,42	0	-136009	2,97	252584	302998	252584

Verifica sperone di fondazione

Base sezione B= 100 cm Altezza sezione H=100 [cm]

T=44778,6 [kg]

A=12.57 [cmq] A:=12.57 [cmq] Sollecitazioni M=44801,0 [kgm] T=44 Moment o ultimo sezione M₀ = 46091,29 [kgm] Coeff. sicurezza sezione = 1,03

COMBINAZIONE nº 8

Valore del la spinta statica Componente orizzontale della spinta statica	31640,12 29460,95	[kg] [kg]		
Componente verticale della spint a statica	11539.03	[kg]		
Punto d'applicazione della spinta	X = 4.20	[m]	Y = -7.43	[m]
Inclinaz, della spintarispetto alla normale alla superficie	21,39	ľ°i		. ,
Inclinazione linea di rottura in condizioni statiche	53,01	[°]		
Incremento sismico della spinta	5441,59	[kg]		
Punto d'applicazione dell'increment o sismico di spinta	X = 4.20	[m]	Y = -7,43	[m]
Inclinazione linea di rottura in condizioni sismiche	49,82	[°]		
Spinta falda	6125,00	[kg]	V 10.12	fau.l
Punto d'applicazione della spinta della falda	X = 4,20	[m]	Y = -10,13	[m]
Sottosp inta falda	12000,00	[kg]		
Peso terrapieno gravante sulla fondazione a monte	70476,00	[kg]		

Baricent ro terrapieno gravant e sulla fondazione a mor Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte	nte	X = 2,10 1892,49 946,25 3669,20 1834,60	[m] [kg] [kg] [kg]	Y = -4,42	[m]
Risultanti Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva dente di fondazione Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione		46295,68 112690,40 -57203,30 112690,40 46295,68 0,19 6,00 121829,46 22,33 21869,35 394656,81	[월] [월] [월] [월] [월] [월] [월]		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte		6,00 2,24 <i>2</i> 7 1,51 <i>3</i> 7	[m] [kg/cmq] [kg/cmq]		
Fattori per il calcolo della capacità portante Coeff. capacità portante Fattori forma Fattori indinazione Fattori profondita I coefficient i N° t engono conto dei fattori di forma, pr	$\begin{aligned} N_c &= 35.49 \\ s_c &= 1.00 \\ i_c &= 0.78 \\ d_c &= 1,12 \end{aligned}$ of ond it is, in clinazione cariconomica, in clinazi	$\begin{array}{c} N_q=23\\ s_q=1\\ i_q=0\\ d_q=1\\ \text{co, inclinazione piano d}\\ N_q=19 \end{array}$,00 ,78 ,06 i posa, inclina	nzione pendio.	$N_{\gamma} = 22.02$ $s_{\gamma} = 1,00$ $i_{\gamma} = 0.46$ $d_{\gamma} = 1,06$ $N'_{\gamma} = 10.63$

COEFFICIENTI DI SICUREZZA Coefficiente di sicurezza a scorrimento 1.37 Coefficiente di sicurezza a carico ultimo 3.50

43/144 44/144

Sollecitazioni paramento

Combinazione nº 8
L'ordinat y (espresa in m) è considenta positiva verso il basso conorigine in testa al muro Monento positivo setende le fibrecontroterra (a morte), espresso in kgm Sūrzo normale positivo di compressione, espresso in kg
Taglio positivo se diretto di annutive veso valle, espresso in kg

Nr. M 0,00 0,00 0,00 0,00 733,33 13,45 90,97 0,37 0.73 1466.67 79,61 287.51 1,10 2200.00 237,20 589.64 3093,33 608,79 1100,18 1,55 1,99 3986,67 1235,77 1706,56 2,44 4880,00 2126.08 2286.34 5773,33 3293,26 2958.71 3,33 3744,11 4786,02 6666,67 3,78 7560,00 6654,83 4642,54 11 4,23 8453,33 8949,89 5649,20 11724,12 12 13 9346,67 6829,85 4,67 10240,00 15082,23 8227,76 5,12 5,57 11133,33 19092,52 9749,20 11393,20 13159,78 15 6.01 12026,67 23809,76 12920,00 29288,70 16 6,46 6,91 13813.33 35584.08 15048,92 18 7,35 14706,67 42750,65 17060,64

15600,00

16600,00

17600,00

Sollecitazioni fondazione di valle

19

20

Combinazione nº 8
L'asciss a X(spress ain m) è considerata positiva vesso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in kgm
Taglio pas iño se diretto vesso Falto, espresso in kg

50842,67

61078,42

72706,95

19190,75

21809,73

24754,45

7,80

8,30

8,80

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	99,43	1986,59
3	0,20	396,91	3961,03
4	0,30	891,23	5923,31
5	0,40	1581,17	7873,45
6	0,50	2465,52	9811,44
7	0,60	3543,05	11737,28
8	0,70	4812,57	13650,97
9	0,80	6272,84	15552,51
10	0,90	7922,67	17441,90
11	1,00	9760,82	19319,14

Sollecitazioni fondazione di monte

Combinazione nº 8

Continuizzotte II o considerata positiva verso valle on origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in Igm Taglio posi fivos defento twee o fallo, opersos in Ig.

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	-689,99	-3249,97
3	0,84	-2699,97	-6285,61
4	1,26	-5813,16	-8131,94
5	1,68	-9452,79	-9163,95
6	2,10	-13480,87	-9981,64

7	2,52	-17807,36	-10585,01
8	2,94	-22342,27	-10974,05
9	3,36	-26995,56	-11148,78
10	3,78	-31677,24	-11109, 19
11	4,20	-36297,28	-10855,28

45/144 46/144

Armature e tensioni nei materiali del muro

Combinazione nº 8

Lordinata Y(espressa in [m]) è consideratapositiva verso il basso con origine in testa al muro Base dell'ascione espressa in [cm]

H altezza della sezione espressa in [cm]

A1 altezza della sezione espressa in [cm]

A2 area di armatun in corrispondenza del lenbo di montein [cm]

N4 sibrzo normale ultimo espresso in [kg]

M4 no mento ultimo espresso in [kgm]

CS coefficiente siamerza sezione

coefficiente sicurezza se zione Aliquota di taglio assorbito dal cls, espresso in [kg]

Aliquota di taglio assorbito dall'armatura, espresso in [kg] Re sis tenza al taglio, espresso in [kg]

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	ō	1000,00	25203		
2	0,37	100, 80	8,04	8,04	971221	-17815	1324,39	25307		
3	0,73	100, 80	8,04	8,04	945309	-51314	644,53	25410		
4	1,10	100, 80	8,04	8,04	875977	-94446	398,17	25513		
5	1,55	100, 80	8,04	8,04	651925	-128304	210,75	25638		
6	1,99	100, 80	8,04	8,04	405588	-125723	101,74	25764		
7	2,44	100, 80	8,04	8,04	204181	-88956	41,84	25890		
8	2,89	100, 80	8,04	8,04	101503	-57900	17,58	26015		
9	3,33	100, 80	8,04	8,04	61862	-44411	9,28	26141		
10	3,78	100, 80	8,04	8,04	43261	-38081	5,72	26267		
11	4,23	100, 80	8,04	8,04	32514	-34424	3,85	26392		
12	4,67	100, 80	8,04	8,04	25556	-32056	2,73	26518		
13	5,12	100, 80	8,04	8,04	20625	-30379	2,01	26643		
14	5,57	100, 80	26,14	8,04	52426	-89906	4,71	30370		
15	6,01	100, 80	38,70	24,63	65191	- 129062	5,42	34522		
16	6,46	100, 80	38,70	24,63	55629	-126108	4,31	34648		
17	6,91	100, 80	38,70	24,63	48044	- 123764	3,48	34774		
18	7,35	100, 80	38,70	24,63	41926	-121873	2,85	34899		
19	7,80	100, 80	38,70	24,63	36920	-120327	2,37	35025		
20	8,30	100, 80	38,70	24,63	32316	-118904	1,95	35166		
21	8,80	100, 80	30,66	16,59	22681	-93699	1,29	32853		

Armature e tensioni nei materiali della fondazione

Combinazione nº 8

Simbologia adottata
B base della sezione espressa in [cm]

bate de llasezione espressa in [cm]
altezza della sezione espressa in [cm]
area di armatua in corrispondenza del enbo interiore in [cmq]
area di armatua in corrispondenza del enbo superiore in [cmq]
sforzo normale ultimo espresso in [kg]
no mento ultimo espresso in [kgm]
coefficiente sicurezza sezione
Aliquata di Igio isosobito dal els, espresso in [kg]

Ars N_u M_u CS VRcd VRsd

Aliquota di taglio assorbito dall'armatura, espresso in [kg] Re sis tenza al taglio, espresso in [kg]

Fondazion e di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estre no libero della fondazione di valle)

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12,57	12,57	0	46091	463,55	30124		
3	0,20	100, 100	12,57	12,57	0	46091	116,12	30124		
4	0,30	100, 100	12,57	12,57	0	46091	51,72	30124		
5	0,40	100, 100	12,57	12,57	0	46091	29,15	30124		
6	0,50	100, 100	12,57	12,57	0	46091	18,69	30124		
7	0,60	100, 100	12,57	12,57	0	46091	13,01	30124		
8	0,70	100, 100	12,57	25,13	0	91110	18,93	32019		
9	0,80	100, 100	25,13	25,13	0	91233	14,54	32019		
10	0,90	100, 100	25,13	31,42	0	113613	14,34	32019		
11	1,00	100, 100	25,13	31,42	0	113613	11,64	32019		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre no libero della fondazione di nonte)

Nr.	Y	В, Н	Ars	An	Nu	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	37,70	12,57	0	0	1000,00	32019		
2	0,42	100, 100	37,70	12,57	0	-135272	196,05	32019		
3	0,84	100, 100	37,70	12,57	0	-135272	50,10	32019		
4	1,26	100, 100	12,57	12,57	0	-46091	7,93	30124		
5	1,68	100, 100	25,13	25,13	0	-91233	9,65	30124		
6	2,10	100, 100	25,13	25,13	0	-91233	6,77	30124		
7	2,52	100, 100	25,13	25,13	0	-91233	5,12	126292	302998	126292
8	2,94	100, 100	25,13	25,13	0	-91233	4,08	126292	302998	126292
9	3,36	100, 100	31,42	31,42	0	-113697	4,21	126292	302998	126292
10	3,78	100, 100	31,42	31,42	0	-113697	3,59	126292	302998	126292
11	4,20	100, 100	37,70	31,42	0	-136009	3,75	252584	302998	252584

Verifica sperone di fondazione

Base sezione B= 100 cm Altezza sezione H=100 [cm]

A₆=12,57 [cmq] A₆=12,57 [cmq] Sollecitazioni M=46318,8 [kgm]

T=46295,7 [kg]

Moment o ultimo sezione $M_u = 46091,29$ [kgm]

Coeff.sicurezza sezione = 1,00

COMBINAZIONE n° 9

[m]
[m]
[m]

47/144 48/144

Baricent ro terrapieno gravant e sulla fondazione a monte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte	X = 2,10 1892,49 -946,25 3669,20 -1834,60	[m] [kg] [kg] [kg] [kg]	Y=-4,42	[m]
Risultanti Risult ant e dei carichi applicati in dir. orizzontale Risult ant e dei carichi applicati in dir. verticale Resistenza passiva dente di fondazione Moment o ribalt ante rispetto allo spigolo a valle Moment o stabilizzant e rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo t angenzi ale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risult ant e in fondazione Inclinazione della risultante (rispetto alla normale) Moment o rispetto al baricentro della fondazione	53185,30 106590,26 -46273,87 166796,24 444514,06 106590,26 53185,30 0,39 6,00 119122,46 26,52 42052,97	[kg] [kg] [kg] [kg] [m] [m] [m] [kg]		
COEFFICIEN TI DISICUREZZA Coefficiente di sicurezza ar ibaltament o	2.67			
COMBINAZIONE n° 10 Valor e della spinta statica	39138,46	[kg]		
Componente orizzontale della spint a statica Componente verticale della spint a statica Punto d'applicazione della spinta Inclinaz. della spint a rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	37346,04 11708,67 X = 4,20 17,41 50,33	[kg] [kg] [m] [°] [°]	Y=-7,43	[m]
Incremento sismico della spinta Punto d'applicazione dell'increment o sismico di spinta Inclinazione linea di rottura in condizioni sismiche	6282,47 X = 4,20 46,77	[kg] [m] [°]	Y=-7,43	[m]
Spinta falda Punto d'applicazione del la spinta dell a falda Sottospinta falda	6125,00 X = 4,20 12000,00	[kg] [m] [kg]	Y=-10,13	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte	70476,00 X = 2,10 1892,49 946,25 3669,20 1834,60	[kg] [m] [kg] [kg] [kg] [kg]	Y=-4,42	[m]
Risultanti Risult ante dei carichi applicati in dir. orizzontale Risult ante dei carichi applicati in dir. verticale Resistenza passiva dente di fondazione Moment oribalt ante rispetto allo spigolo a valle Moment ost abilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risult ante in fondazione Inclinazione della risultante (rispetto alla normale) Moment o rispetto al baricentro della fondazione	55108,70 112754,98 48717.05 161840,95 457636,87 112754,98 55108,70 0,38 6,00 125501,61 26,05 42469,02	[kg] [kg] [kg] [kg] [m] [m] [m] [m] [kg]		
COEFFICIEN TI DISICUREZZA Coefficiente di sicurezza ar ibaltament o	2.83			

Stabilità globale muro + terreno

Combinazione n° 11

Le accise X xono onsiderat positive veso mme

Le online V cono considerat positive veso finto
Origine in testa al muno (spigolo contro tem)

peso della sticcia espresso in [kg]

u meglo fin la base della striccia forizzontale espresso in [r] (positivo antiomio)
amgolo diarto del arriccia hugo la stase della striscia espresso in [m]
implezzo dela striccia espresso in [m]
pressione del control del arriccia espresso in [m]
pressione nettra lungo la base della striscia espressa in [kg/cm]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -3,71 Y[m] = 4,63

Raggio del cerchio R[m]= 17,79

A scissa a valle del cerchio Xi[m]=-16,44 Xs[m]= 13,48 A scissa a monte del cerchio Larghezza del la striscia dx[m] = 1,20Coefficiente di sicurezza C= 1.35 Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α (°)	Wsinα	b/cosα	ф	c	u
1	3471.09	69.30	3247.01	3.39	23.98	0.000	0.000
2	9595.39	60.12	8319.76	2.40	28.16	0.000	0.000
3	13814.38	53.04	11038.50	1.99	26.56	0.000	0.000
4	1708 6.17	47.01	12497.26	1.75	26.56	0.000	0.000
5	1985 0.38	41.60	13179.37	1.60	26.56	0.000	0.085
6	22185.96	36.62	13234.26	1.49	26.56	0.000	0.183
7	24143.12	31.95	12774.96	1.41	26.56	0.000	0.265
8	26201.08	27.50	12099.10	1.35	26.56	0.000	0.333
9	28405.52	23.23	11204.23	1.30	26.56	0.000	0.390
10	2892 1.05	19.09	9460.35	1.27	26.56	0.000	0.436
11	29799.85	15.06	7741.63	1.24	26.56	0.000	0.473
12	33121.09	11.10	6374.84	1.22	26.56	0.000	0.501
13	1291 2.69	7.19	1616.12	1.21	26.56	0.000	0.520
14	1271 8.15	3.32	735.70	1.20	26.56	0.000	0.531
15	12787.57	-0.54	-121.02	1.20	26.56	0.000	0.534
16	12663.76	-4.40	-972.26	1.20	26.56	0.000	0.529
17	12345.00	-8.28	-1778.75	1.21	26.56	0.000	0.516
18	11826.80	-12.20	-2500.19	1.22	26.56	0.000	0.494
19	11101.52	-16.18	-3094.20	1.25	26.56	0.000	0.464
20	10157.82	-20.25	-3515.04	1.28	26.56	0.000	0.424
21	8979.63	-24.42	-3711.95	1.31	26.56	0.000	0.375
22	7544.58	-28.73	-3626.81	1.36	26.56	0.000	0.315
23	5821.29	-33.24	-3190.53	1.43	26.56	0.000	0.243
24	3764.84	-37.99	-2317.14	1.52	26.56	0.000	0.157
25	1308.07	-43.07	-893.29	1.64	26.56	0.000	0.055

 $\Sigma W_i = 380526,82 \text{ [kg]}$ Σ Wisin α i= 97801,90 [kg] $\Sigma \text{Wtan} \phi = 190371, 21 \text{ [kg]}$ Σt anotanφ= 3.17

49/144 50/144

Stabilità globale muro + terreno

Combinazione n° 12

Le secise Xonor considerate positive verso mone

Le ordinate Y. cono considerate positive verso falto

Origine in testa al muro (spigolo contro terra)

De odellastis dia espresso in [kg]

applo falta la base della striscia e forizzontale espresso in [*] (positivo antionario)

applo dattrio del terreno lungo la base della striscia

c cossione del terreno lungo la base della striscia espressa in [kg/cmq]

b laphezza della striscia espressa in [kg/cmq]

μ pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -3,71 Y[m] = 4,63

Raggio del cerchio R[m]= 17,79

A scissa a valle del cerchio Xi[m]= -16,44 Xs[m]= 13,48 A scissa a monte del cerchio Larghezza della striscia dx[m] = 1,20Coefficiente di sicurezza C= 1.31 Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α (°)	Wsinα	b/cosα	ф	c	u
1	3471.09	69.30	3247.01	3.39	23.98	0.000	0.000
2	9595.39	60.12	8319.76	2.40	28.16	0.000	0.000
3	13814.38	53.04	11038.50	1.99	26.56	0.000	0.000
4	17086.17	47.01	12497.26	1.75	26.56	0.000	0.000
5	1985 0.38	41.60	13179.37	1.60	26.56	0.000	0.085
6	22185.96	36.62	13234.26	1.49	26.56	0.000	0.183
7	24143.12	31.95	12774.96	1.41	26.56	0.000	0.265
8	26201.08	27.50	12099.10	1.35	26.56	0.000	0.333
9	28405.52	23.23	11204.23	1.30	26.56	0.000	0.390
10	2892 1.05	19.09	9460.35	1.27	26.56	0.000	0.436
11	29799.85	15.06	7741.63	1.24	26.56	0.000	0.473
12	33121.09	11.10	6374.84	1.22	26.56	0.000	0.501
13	1291 2.69	7.19	1616.12	1.21	26.56	0.000	0.520
14	1271 8.15	3.32	735.70	1.20	26.56	0.000	0.531
15	12787.57	-0.54	-121.02	1.20	26.56	0.000	0.534
16	12663.76	-4.40	-972.26	1.20	26.56	0.000	0.529
17	12345.00	-8.28	-1778.75	1.21	26.56	0.000	0.516
18	11826.80	-12.20	-2500.19	1.22	26.56	0.000	0.494
19	11101.52	-16.18	-3094.20	1.25	26.56	0.000	0.464
20	10157.82	-20.25	-3515.04	1.28	26.56	0.000	0.424
21	8979.63	-24.42	-3711.95	1.31	26.56	0.000	0.375
22	7544.58	-28.73	-3626.81	1.36	26.56	0.000	0.315
23	5821.29	-33.24	-3190.53	1.43	26.56	0.000	0.243
24	3764.84	-37.99	-2317.14	1.52	26.56	0.000	0.157
25	1308.07	-43.07	-893.29	1.64	26.56	0.000	0.055

 $\Sigma W = 380526,82 \text{ [kg]}$ Σ Wisin α i= 97801,90 [kg] Σ Wtan ϕ = 190371,21 [kg] Σt anotitanφ= 3.17

COMBINAZIONE nº 13 Peso mu ro favorevole e Peso terrapieno sfavorevole

Valore del la spinta statica Componente orizzontale del la spint a statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz, della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	46896,54 43710,07 16991,60 X = 4,20 21,24 55,57	[kg] [kg] [kg] [m] [°] [°]	Y=-6,89	[m]
Spinta falda Punto d'applicazione del la spinta della falda	7962,50 X = 4,20	[kg] [m]	Y=-10,13	[m]

Sottospinta falda		15600,00	[kg]		
Peso terrapieno gravante sulla fondazione a mo Baricent ro terrapieno gravante sulla fondazion		104218,80 X = 2,10	[kg] [m]	Y=-4,42	[m]
Risultanti					
Risult ant e dei carichi applicati in dir. orizzonta	ale	51672,57	[kg]		
Risult ant e dei carichi applicati in dir. verticale		143520,40	[kg]		
Resistenza passiva dente di fondazione		-70258,50	[kg]		
Sforzo normale sul piano di posa della fondazi	ione	143520,40	[kg]		
Sforzo tangenziale sul piano di posa della fond		51672,57	[kg]		
Eccentricità rispetto al baricentro della fondazi	ione	0,01	[m]		
Lunghezza fondazione reagente		6,00	[m]		
Risult ant e in fondazione		152539,05	[kg]		
Inclinazione della risultante (rispetto alla norm		19,80	[°]		
Moment o risp ett o al baricentro della fondazion	ne	1971,23	[kgm]		
Carico ultimo della fondazione		473451,13	[kg]		
Tensioni sul terreno					
Lunghezza fondazione reagente		6,00	[m]		
Tensione terreno allo spigolo di valle		2,4249	[kg/cmq]		
Tensione terreno allo spigolo di monte		2,3592	[kg/cmq]		
Fattori per il calcolo della capacità portante					
C oeff. capacità portante	$N_c = 35.49$	$N_{q} = 23$	3.18	N	$N_{\gamma} = 22.02$
Fattori forma	$s_c = 1,00$	$s_q = 1$	1,00		$s_{\gamma} = 1,00$
Fattori indinazione	$i_c = 0,83$	$i_0 = 0$	0.83		$i_{c} = 0.55$
Fattori profondità	$d_c = 1, 12$	$d_a = 1$	1,06		$d_v = 1.06$
I coefficient i N' tengono conto dei fattori di fo	rma, profondità, inclinazione car	ico, inclinazione piano o	di posa, inclina	zione pendio.	
-	$N'_{c} = 32.83$	$N'_{a} = 20$	129	. N	$I'_{y} = 12.90$

1.54 3.30

51/144 52/144

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento Coefficiente di sicurezza a carico ultimo

Sollecitazioni paramento

Combinazione nº 13
L'ordinata Y(espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Siozo normale positivo di compressione, espresso in kg Taglio positivo se diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	Т
1	0,00	0,00	0,00	0,00
2	0,37	733,33	76,20	433,83
3	0,73	1466,67	331,49	976,88
4	1,10	2200,00	805,90	1628,94
5	1,55	3093,33	1737,70	2570,06
6	1,99	3986,67	3117,08	3588,93
7	2,44	4880,00	4914,09	4454,52
8	2,89	5773,33	7110,56	5399,86
9	3,33	6666,67	9755,29	6461,62
10	3,78	7560,00	12900,27	7639,79
11	4,23	8453,33	16597,20	8929,44
12	4,67	9346,67	20902,98	10417,35
13	5,12	10240,00	25938,57	12152,25
14	5,57	11133,33	31777,81	14014,66
15	6,01	12026,67	38477,13	16003,30
16	6,46	12920,00	46092,89	18118,19
17	6,91	13813,33	54681,50	20359,32
18	7,35	14706,67	64299,34	22726,69
19	7,80	15600,00	75002,30	25216,01
20	8,30	16600,00	88358,15	28277,87
21	8,80	17600,00	1033 47,60	31742,73

Sollecitazioni fondazione di valle

Combinazione nº 13
L'asciss a X(spress ain m) è considerata positiva veso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in kgm
Taglio pas iñvo se diretto veso Falto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	108,72	2174,31
3	0,20	434,83	4347,53
4	0,30	978,19	6519,65
5	0,40	1738,72	8690,68
6	0,50	2716,29	10860,61
7	0,60	3910,81	13029,45
8	0,70	5322,15	15197,19
9	0,80	6950,21	17363,84
10	0,90	8794,88	19529,39
11	1,00	10856,05	21693,85

Sollecitazioni fondazione di monte

Combinazione nº 13
L'asciss a Xispiess ain m) è considerata positiva veso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm Taglio pos invose diretto veso Talto, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	-669,19	-3183,38
3	0,84	-2671,33	-6347,44
4	1,26	-5871,58	-8517,18
5	1,68	-9775,06	-10067,61
6	2,10	-14325,66	-11598,71

7	2,52	-19515.28	-13110,50
8	2.94	-25335,78	-14602.97
9	-,		
10	3,36	-31779,07	-16076, 12
	3,78	-38837,02	-17529,96
11	4,20	-46501,53	-18964,48

53/144 54/144

Armature e tensioni nei materiali del muro

Combinazione nº 13

Combinazione n° 120
Lordinata (Sepressa in [m]) è considerata positiva verso il basso con origine in testa al muro B
bace de lla sezione espressa in [cm]
da le deciza della sezione espressa in [cm]
Ara area di armatuna in corrispondenza del lenbo di monte in [cm]
Aga area di armatuna in corrispondenza del lenbo di valle in [cm]
Na sistemo nomite ultimo espresso in [kg]
morneto ultimo espresso in [kg]

coefficiente sicurezza se zione Aliquota di taglio assorbito dal cls, espresso in [kg]

Aliquota di taglio assorbito dall'armatura, espresso in [kg] Resis tenza al taglio, espresso in [kg]

Nr.	Y	В, Н	A_{fs}	$\mathbf{A}_{\mathbf{fi}}$	Nu	M_u	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,37	100, 80	8,04	8,04	886546	-92117	1208,93	25307		
3	0,73	100, 80	8,04	8,04	588721	-133060	401,40	25410		
4	1,10	100, 80	8,04	8,04	300253	- 109988	136,48	25513		
5	1,55	100, 80	8,04	8,04	105476	-59252	34,10	25638		
6	1,99	100, 80	8,04	8,04	52900	-41361	13,27	25764		
7	2,44	100, 80	8,04	8,04	35038	-35283	7,18	25890		
8	2,89	100, 80	8,04	8,04	26208	-32278	4,54	26015		
9	3,33	100, 80	8,04	8,04	20801	-30438	3,12	26141		
10	3,78	100, 80	8,04	8,04	17100	-29179	2,26	26267		
11	4,23	100, 80	8,04	8,04	14392	-28258	1,70	26392		
12	4,67	100, 80	8,04	8,04	12320	-27552	1,32	26518		
13	5,12	100, 80	8,04	8,04	10653	-26985	1,04	26643		
14	5,57	100, 80	26,14	8,04	29017	-82824	2,61	30370		
15	6,01	100, 80	38,70	24,63	37684	-120563	3,13	34522		
16	6,46	100, 80	38,70	24,63	33425	-119247	2,59	34648		
17	6,91	100, 80	38,70	24,63	29844	-118140	2,16	34774		
18	7,35	100, 80	38,70	24,63	26807	-117202	1,82	34899		
19	7,80	100, 80	38,70	24,63	24210	-116400	1,55	35025		
20	8,30	100, 80	38,70	24,63	21724	-115631	1,31	35166		
21	8.80	100, 80	30.66	16.59	15581	-91493	0.89	32853		

Armature e tensioni nei materiali della fondazione

Combinazione nº 13

Simbologia adottata
B base della sezione espressa in [cm]

bate de llasezione espressa in [cm]
altezza della sezione espressa in [cm]
area di armatua in corrispondenza del enbo interiore in [cmq]
area di armatua in corrispondenza del enbo superiore in [cmq]
sforzo normale ultimo espresso in [kg]
no mento ultimo espresso in [kgm]
coefficiente sicurezza sezione
Aliquata di Igio isosobito dal els, espresso in [kg]

Ars N_u M_u CS VRcd

Aliquota di taglio assorbito dall'armatura, espresso in [kg] Re sis tenza al taglio, espresso in [kg]

Fondazion e di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estre no libero della fondazione di valle)

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12,57	12,57	0	46091	423,93	30124		
3	0,20	100, 100	12,57	12,57	0	46091	106,00	30124		
4	0,30	100, 100	12,57	12,57	0	46091	47,12	30124		
5	0,40	100, 100	12,57	12,57	0	46091	26,51	30124		
6	0,50	100, 100	12,57	12,57	0	46091	16,97	30124		
7	0,60	100, 100	12,57	12,57	0	46091	11,79	30124		
8	0,70	100, 100	12,57	25,13	0	91110	17,12	32019		
9	0,80	100, 100	25,13	25,13	0	91233	13,13	32019		
10	0,90	100, 100	25,13	31,42	0	113613	12,92	32019		
11	1,00	100, 100	25,13	31,42	0	113613	10,47	32019		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in comspondenza dell'estre no libe ro della fondazione di monte)

Nr.	Y	B, H	Ars	An	Nu	$M_{\rm u}$	CS	V_{Rd}	V_{Red}	V_{Rsd}
1	0,00	100, 100	37,70	12,57	0	0	1000,00	32019		
2	0,42	100, 100	37,70	12,57	0	-135272	202,14	32019		
3	0,84	100, 100	37,70	12,57	0	-135272	50,64	32019		
4	1,26	100, 100	12,57	12,57	0	-46091	7,85	30124		
5	1,68	100, 100	25,13	25,13	0	-91233	9,33	30124		
6	2,10	100, 100	25,13	25,13	0	-91233	6,37	30124		
7	2,52	100, 100	25,13	25,13	0	-91233	4,67	126292	302998	126292
8	2,94	100, 100	25,13	25,13	0	-91233	3,60	126292	302998	126292
9	3,36	100, 100	31,42	31,42	0	-113697	3,58	126292	302998	126292
10	3,78	100, 100	31,42	31,42	0	-113697	2,93	126292	302998	126292
11	4,20	100, 100	37,70	31,42	0	-136009	2,92	252584	302998	252584

Verifica sperone di fondazione

Base sezione B= 100 cm Altezza sezione H=100 [cm]

A₆=12,57 [cmq] A₆=12,57 [cmq] Sollecitazioni M=51698,4 [kgm]

T=51672,6 [kg]

Moment o ultimo sezione $M_u = 46091,29$ [kgm]

Coeff.sicurezza sezione = 0,89

COMBINAZIONE n° 14

Peso mu ro sfavore vol e e Peso terrapieno favore vole

Valore della spinta statica	46896,54	[kg]		
Componente orizzontale della spint a statica	43710,07	[kg]		
Componente verticale della spint a statica	16991,60	[kg]		
Punto d'applicazione del la spinta	X = 4,20	[m]	Y = -6.89	[m]
Inclinaz, della spinta rispetto alla normale alla superficie	21,24	[°]		
Inclinazione linea di rottura in condizioni statiche	55,57	[°j		
Spinta falda	7962,50	[kg]		
Punto d'applicazione del la spinta della falda	X = 4,20	[m]	Y = -10,13	[m]
Sottospinta falda	15600,00	[kg]		
Peso terrapieno gravante sulla fondazione a monte	83076,00	[kg]		
Baricent ro terrapieno gravant e sulla fondazione a monte	X = 2,10	[m]	Y = -4,42	[m]

Risultanti

55/144 56/144

Risult ant e dei carichi applicati in dir. orizzontale	51672,57	[kg]
Risult ant e dei carichi applicati in dir. verticale	133282,60	[kg]
Resistenza passiva dente di fondazione	-67326,56	[kg]
Sforzo normale sul piano di posa della fondazione	133282,60	[kg]
Sforzo t angenzia le sul piano di posa della fondazione	51672,57	[kg]
Eccentricità rispetto al baricentro della fondazione	0,20	[m]
Lunghezza fondazione reagente	6,00	[m]
Risult ant e in fondazione	142948,62	[kg]
Inclinazione del la risultante (rispetto alla normale)	21,19	[°]
Moment o risp ett o al baricentro della fondazione	26635,25	[kgm]
Carico ultimo della fondazione	419731,23	[kg]

Tensioni sul terreno

6,00 Lunghezza fondazione reagente Tensione terreno allo spigolo di valle 2,6653 [kg/cmq] 1,7775 Tensione terreno allo spigolo di monte [kg/cmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori indinazione	$i_c = 0,80$	$i_q = 0.80$	$i_f = 0.51$
Fattori profon dità	$d_c = 1, 12$	$d_q = 1,06$	$d_f = 1,06$

I coefficient i N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio. $N'_{c} = 32.00$ $N'_{q} = 19.78$

COEFFICIENTI DI SICUREZZA

1.45 3.15 Coefficiente di sicurezza a scorrimento Coefficiente di sicurezza a carico ultimo

Sollecitazioni paramento

Combinazione nº 14

Lordina Y (espressa in m)è considenta positiva verso il basso con origine in testa al muro Momento positivo settende le fibrecontroterra (a monte), espresso in kgm Sōrzo normale positivo di compressione, espresso in kg Taglio positivos deritota di montre verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,37	953,33	76,20	433,83
3	0,73	1906,67	331,49	976,88
4	1,10	2860,00	805,90	1628,94
5	1,55	4021,33	1737,70	2570,06
6	1,99	5182,67	3117,08	3588,93
7	2,44	6344,00	4914,09	4454,52
8	2,89	7505,33	71 10 ,56	5399,86
9	3,33	8666,67	9755,29	6461,62
10	3,78	9828,00	12900,27	7639,79
11	4,23	10989,33	16597,20	8929,44
12	4,67	12150,67	20902,98	10417,35
13	5,12	1331 2,00	25938,57	12152,25
14	5,57	14473,33	31777,81	14014,66
15	6,01	15634,67	38477,13	16003,30
16	6,46	16796,00	46092,89	18118,19
17	6,91	17957,33	54681,50	2035 9,32
18	7,35	1911 8,67	64299,34	22726,69
19	7,80	2028 0,00	75002,30	25216,01
20	8,30	21580,00	88358,15	28277,87
21	8,80	22880,00	1033 47, 60	31742,73

Sollecitazioni fondazione di valle

Combinazione nº 14
L'ascis a X(septesa ain m) e considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr.	X	M	Т
1	0,00	0,00	0,00
2	0,10	116,77	2332,90
3	0,20	466,09	4651,00
4	0,30	1046,48	6954,30
5	0,40	1856,45	9242,81
6	0,50	2894,54	11516,52
7	0,60	4159,26	13775,43
8	0,70	5649,14	16019,55
9	0,80	7362,68	18248,86
10	0,90	9298,42	20463,38
11	1,00	11454,86	22663,11

Sollecitazioni fondazione di monte

Combinazione nº 14

L'asciss a X(espress a in m) è considerata positiva verso valle con origine in corrispondenz a del l'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kgm Ta glio positivo se diretto verso l'alto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	-1330,70	-6293,15
3	0,84	-5249,70	-12325,28
4	1,26	-11482,61	-16828,88
5	1,68	-19287,02	-20291,46
6	2,10	-28490,89	-23493,01

57/144 58/144

7	2,52	-38984,60	-26433,53
8	2,94	-50658,52	-29113,03
9	3,36	-63403,01	-31531,51
10	3,78	-77108,44	-33688,96
11	4,20	-91665, 19	-35585,38

Armature e tensioni nei materiali del muro

Combinazione n° 14

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

An area di armatua in corrispondenza del enho di monte in [cmq]

Na sorzo normale ultime espresso in [kg]

M, mo mento ultimo espresso in [kg]

CS coefficiente sicurezza esione

VRcd Aliquota di lagli o assorbito dall'armatura, espresso in [kg]

VRd Resis enza al laglio, espresso in [kg]

NT	37	р п			NT.		CC	X 7	X 7	X 7
Nr.	Y	В, Н	Ars	An	Nu	M _u	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,37	100, 80	8,04	8,04	927648	-74144	973,06	25337		
3	0,73	100, 80	8,04	8,04	705276	- 122618	369,90	25472		
4	1,10	100, 80	8,04	8,04	465407	-131144	162,73	25606		
5	1,55	100, 80	8,04	8,04	207920	-89846	51,70	25769		
6	1,99	100, 80	8,04	8,04	89448	-53798	17,26	25932		
7	2,44	100, 80	8,04	8,04	53786	-41662	8,48	26096		
8	2,89	100, 80	8,04	8,04	38477	-36453	5,13	26259		
9	3,33	100, 80	8,04	8,04	29746	-33482	3,43	26422		
10	3,78	100, 80	8,04	8,04	24025	-31535	2,44	26585		
11	4,23	100, 80	8,04	8,04	19966	-30154	1,82	26749		
12	4,67	100, 80	8,04	8,04	16927	-29120	1,39	26912		
13	5,12	100, 80	8,04	8,04	14525	-28303	1,09	27075		
14	5,57	100, 80	26,14	8,04	39114	-85878	2,70	30840		
15	6,01	100, 80	38,70	24,63	50612	- 124557	3,24	35030		
16	6,46	100, 80	38,70	24,63	44725	- 122738	2,66	35193		
17	6,91	100, 80	38,70	24,63	39808	-121219	2,22	35356		
18	7,35	100, 80	38,70	24,63	35662	-119938	1,87	35520		
19	7,80	100, 80	38,70	24,63	32136	-118848	1,58	35683		
20	8,30	100, 80	38,70	24,63	28773	-117809	1,33	35866		
21	8,80	100, 80	30,66	16,59	20601	-93052	0,90	33596		

59/144 60/144

Armature e tensioni nei materiali della fondazione

Combinazio ne nº 14
Simbologia adottata
B base della sezione espressa in [cm]

bate della sezione espressa in [cm] ateza della sezione espressa in [cm] area di armatura in corrispondenza del lenbo inferiore in [cmq] area di armatura in corrispondenza del lenbo superiore in [cmq] sibrzo nomale ultimo espresso in [kgi] no mento ultimo espresso in [kgi] coefficiente sicurezza se zione Aliquota di tiglio assorbio del els. espresso in [kg] Aliquota di tiglio assorbio della matura, espresso in [kg] Resis tanza al tuglio, espresso in [kg]

H
Afs
Afs
N
u
CS
VRcd
VRsd
VRd

Fondazion e di valle

 $(L'ascissa\,\,X,espressa\,in\,\,[m],\grave{e}\,positiva\,verso\,\,monte\,con\,origine\,in\,corrispondenza\,dell'estre\,no\,\,libero\,della\,\,fondazione\,di\,valle)$

Nr.	Y	B, H	A_{fs}	A_6	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	1257	12,57	0	46091	394,72	30124		
3	0,20	100, 100	12.57	12,57	0	46091	98,89	30124		
4	0,30	100, 100	12,57	12,57	0	46091	44,04	30124		
5	0,40	100, 100	12,57	12,57	0	46091	24,83	30124		
6	0,50	100, 100	1257	12,57	0	46091	15,92	30124		
7	0,60	100, 100	12.57	12,57	0	46091	11,08	30124		
8	0,70	100, 100	12.57	25,13	0	91110	16,13	32019		
9	0.80	100, 100	25.13	25.13	0	91233	12.39	32019		
10	0,90	100, 100	25,13	31,42	0	113613	12,22	32019		
11	1,00	100, 100	25,13	31,42	0	113613	9,92	32019		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libero della fondazione di monte)

Nr.	Y	В, Н	Ars	An	Nu	$M_{\rm u}$	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 100	37,70	12,57	0	0	1000,00	32019		
2	0,42	100, 100	37,70	12,57	0	-135272	101,66	32019		
3	0,84	100, 100	37,70	12,57	0	- 135272	25,77	32019		
4	1,26	100, 100	12,57	12,57	0	-46091	4,01	30124		
5	1,68	100, 100	25,13	25,13	0	-91233	4,73	30124		
6	2,10	100, 100	25,13	25,13	0	-91233	3,20	30124		
7	2,52	100, 100	25,13	25,13	0	-91233	2,34	126292	302998	126292
8	2,94	100, 100	25,13	25,13	0	-91233	1,80	126292	302998	126292
9	3,36	100, 100	31,42	31,42	0	-113697	1,79	126292	302998	126292
10	3,78	100, 100	31,42	31,42	0	-113697	1,47	126292	302998	126292
11	4,20	100, 100	37,70	31,42	0	-136009	1,48	252584	302998	252584

Verifica sperone di fondazione

Base sezione B= 100 cm Altezza sezione H=100 [cm]

T=51672,6 [kg]

An=12,57 [cmq] An=12,57 [cmq] Sollecitazioni M=51698.4 [kgm] T=51 Moment o ultimo sezione M_w = 46091,29 [kgm]

Coeff.sicurezza sezione = 0,89

COMBINAZIONE n° 15

Peso mu ro favorevole e Peso terrapieno favorevole

Valore della spinta statica	46896,54	[kg]		
Componente orizzontale della spinta statica	43710,07	[kg]		
Componente verticale della spinta statica	16991,60	[kg]		
Punto d'applicazione della spinta	X = 4,20	[m]	Y = -6.89	[m]
Inclinaz. della spintarispetto alla normale alla superficie	21,24	[°]		
Inclinazione linea di rottura in condizioni statiche	55,57	[°]		
Spinta falda	7962,50	[kg]		
Spinta falda Punto d'applicazione del la spinta della falda	7962,50 X = 4,20	[kg] [m]	Y=-10,13	[m]
			Y=-10,13	[m]
Punto d'applicazione della spinta della falda Sottospinta falda	X = 4,20 15600,00	[m] [kg]	Y=-10,13	[m]
Punto d'applicazione del la spinta della falda	X = 4,20	[m]	Y = -10.13 Y = -4.42	[m]

Risultanti

Risult ant e dei carichi applicati in dir. orizzontale	51672,57	[kg]
Risult ante dei carichi applicati in dir. verticale	122377,60	[kg]
Resistenza passiva dente di fondazione	-61723,75	[kg]
Sforzo normale sul piano di posa del la fondazione	122377,60	[kg]
Sforzo tangenziale sul piano di posa della fondazione	51672,57	[kg]
Eccentricità rispetto al baricentro della fondazione	0,17	[m]
Lunghezza fondazione reagente	6,00	[m]
Risult ant e in fondazione	132839,50	[kg]
Inclinazione della risultante (rispetto alla normale)	22,89	[°]
Moment o risp ett o al baricentro della fondazione	20999,75	[kgm]
Carico ultimo della fondazione	384664,02	[kg]

<u>Tensioni sul terreno</u> Lunghezza fondazione reagente 6,00 Tensione terreno allo spigolo di valle 2,3896 [kg/cmq] Tensione terreno allo spigolo di monte 1,6896 [kg/cmq]

Fattori per il calcolo della capacità portante

C oeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$					
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$					
Fattori indinazione	$i_c = 0,77$	$i_q = 0.77$	$i_7 = 0.43$					
Fatt ori profon dità	$d_c = 1, 12$	$d_q = 1,06$	$d_7 = 1,06$					
I coefficient i N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.								
	$N'_c = 30.63$	$N'_{q} = 18.93$	$N'_{\gamma} = 10.05$					

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento 1.33 3.14 Coefficiente di sicurezza a carico ultimo

61/144 62/144

Sollecitazioni paramento

Combinazione nº 15
L'ordinata Y(espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Siozo normale positivo di compressione, espresso in kg Taglio positivo se diretto di montreveno valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,37	733,33	76,20	433,83
3	0,73	1466,67	331,49	976,88
4	1,10	2200,00	805,90	1628,94
5	1,55	3093,33	1737,70	2570,06
6	1,99	3986,67	3117,08	3588,93
7	2,44	4880,00	4914,09	4454,52
8	2,89	5773,33	7110,56	5399,86
9	3,33	6666,67	9755,29	6461,62
10	3,78	7560,00	12900,27	7639,79
11	4,23	8453,33	16597,20	8929,44
12	4,67	9346,67	20902,98	10417,35
13	5,12	10240,00	25938,57	12152,25
14	5,57	11133,33	31777,81	14014,66
15	6,01	12026,67	38477,13	16003,30
16	6,46	12920,00	46092,89	18118,19
17	6,91	13813,33	54681,50	20359,32
18	7,35	14706,67	64299,34	22726,69
19	7,80	15600,00	75002,30	2521 6,01
20	8,30	16600,00	88358,15	28277,87
21	8,80	17600,00	1033 47,60	31742,73

Sollecitazioni fondazione di valle

Combinazione nº 15
L'asciss a X(spress ain m) è considerata positiva veso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm
Taglio pas iñvo se diretto veso Falso, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0.10	106,79	2133,79
3	0,20	426,37	4255,91
4	0,30	957,58	6366,37
5	0,40	1699,25	8465,16
6	0,50	2650,22	10552,28
7	0,60	3809,32	12627,74
8	0,70	5175,38	14691,53
9	0,80	6747,24	16743,65
10	0,90	8523,72	18784,11
11	1.00	10503.67	20812 90

Sollecitazioni fondazione di monte

Combinazione nº 15
L'asciss a Xispiess ain m) è considerata positiva veso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm Taglio pos invose diretto veso Talto, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	- 1246,65	-5902,13
3	0,84	-4928,98	-11598,47
4	1,26	-10833,80	-16114,00
5	1,68	-18387,93	-19823,74
6	2,10	-27456,93	-23327,68

7	2,52	-37954,37	-26625,83
8	2,94	-49793,81	-29718, 17
9	3,36	-62888,82	-32604,72
10	3,78	-77152,96	-35285,47
11	4,20	-92499,81	-37760,43

63/144 64/144

Armature e tensioni nei materiali del muro

Combinazione nº 15

Lordinata Y(espessa in [m]) è consideratapositiva vesso il basso con origine in testa al muro Base dell'ascione espressa in [cm]

H altezza della sezione espressa in [cm]

A1, area di armatuni in corrispondenza del lenbo di montein [cm]

A2, area di armatuni in corrispondenza del lenbo di valle in [cm]

N4, sorzo normale ultimo espresso in [kgm]

M4, no mento ultimo espresso in [kgm]

CS coefficiente siamezza se sione

coefficiente sicurezza se zione Aliquota di taglio assorbito dal cls, espresso in [kg]

Aliquota di taglio assorbito dall'armatura, espresso in [kg] Resis tenza al taglio, espresso in [kg]

Nr.	Y	В, Н	A_{fs}	$\mathbf{A}_{\mathbf{fi}}$	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,37	100, 80	8,04	8,04	886546	-92117	1208,93	25307		
3	0,73	100, 80	8,04	8,04	588721	-133060	401,40	25410		
4	1,10	100, 80	8,04	8,04	300253	- 109988	136,48	25513		
5	1,55	100, 80	8,04	8,04	105476	-59252	34,10	25638		
6	1,99	100, 80	8,04	8,04	52900	-41361	13,27	25764		
7	2,44	100, 80	8,04	8,04	35038	-35283	7,18	25890		
8	2,89	100, 80	8,04	8,04	26208	-32278	4,54	26015		
9	3,33	100, 80	8,04	8,04	20801	-30438	3,12	26141		
10	3,78	100, 80	8,04	8,04	17100	-29179	2,26	26267		
11	4,23	100, 80	8,04	8,04	14392	-28258	1,70	26392		
12	4,67	100, 80	8,04	8,04	12320	-27552	1,32	26518		
13	5,12	100, 80	8,04	8,04	10653	-26985	1,04	26643		
14	5,57	100, 80	26,14	8,04	29017	-82824	2,61	30370		
15	6,01	100, 80	38,70	24,63	37684	-120563	3,13	34522		
16	6,46	100, 80	38,70	24,63	33425	-119247	2,59	34648		
17	6,91	100, 80	38,70	24,63	29844	-118140	2,16	34774		
18	7,35	100, 80	38,70	24,63	26807	-117202	1,82	34899		
19	7,80	100, 80	38,70	24,63	24210	-116400	1,55	35025		
20	8,30	100, 80	38,70	24,63	21724	-115631	1,31	35166		
21	8,80	100, 80	30,66	16,59	15581	-91493	0,89	32853		

Armature e tensioni nei materiali della fondazione

Combinazione nº 15

Simbologia adottata
B base della sezione espressa in [cm]

altezza della sezione espressa in [cm] area di armatura in corrispondenza del le nbo inferiore in [cmq]

area di armatuta in corrispondenza del embo merore in [cmt] area di armatuta in corrispondenza del lembo superiore in [cmt] sforzo normale ultimo espresso in [kga] no mento ultimo espresso in [kga] coefficiente sicurezza se zione.
Aliquota di taglio insosibito dal els, espresso in [kg]

Ars N_u M_u CS VRcd VRsd

Aliquota di taglio assorbito dall'armatura, espresso in [kg] Re sis tenza al taglio, espresso in [kg]

Fondazion e di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estre no libero della fondazione di valle)

Nr.	Y	В, Н	A_{fs}	A_6	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12,57	12,57	0	46091	431,62	30124		
3	0,20	100, 100	12,57	12,57	0	46091	108,10	30124		
4	0,30	100, 100	12,57	12,57	0	46091	48,13	30124		
5	0,40	100, 100	12,57	12,57	0	46091	27,12	30124		
6	0,50	100, 100	12,57	12,57	0	46091	17,39	30124		
7	0,60	100, 100	12,57	12,57	0	46091	12,10	30124		
8	0,70	100, 100	12,57	25,13	0	91110	17,60	32019		
9	0,80	100, 100	25,13	25,13	0	91233	13,52	32019		
10	0,90	100, 100	25,13	31,42	0	113613	13,33	32019		
11	1,00	100, 100	25,13	31,42	0	113613	10,82	32019		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in comspondenza dell'estre no libe ro della fondazione di nonte)

Nr.	Y	B, H	Ars	An	Nu	M_u	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 100	37,70	12,57	0	0	1000,00	32019		
2	0,42	100, 100	37,70	12,57	0	-135272	108,51	32019		
3	0,84	100, 100	37,70	12,57	0	-135272	27,44	32019		
4	1,26	100, 100	12,57	12,57	0	-46091	4,25	30124		
5	1,68	100, 100	25,13	25,13	0	-91233	4,96	30124		
6	2,10	100, 100	25,13	25,13	0	-91233	3,32	30124		
7	2,52	100, 100	25,13	25,13	0	-91233	2,40	126292	302998	126292
8	2,94	100, 100	25,13	25,13	0	-91233	1,83	126292	302998	126292
9	3,36	100, 100	31,42	31,42	0	-113697	1,81	126292	302998	126292
10	3,78	100, 100	31,42	31,42	0	-113697	1,47	126292	302998	126292
11	4,20	100, 100	37,70	31,42	0	-136009	1,47	252584	302998	252584

Verifica sperone di fondazione

Base sezione B= 100 cm Altezza sezione H=100 [cm]

A₆=12,57 [cmq] A₆=12,57 [cmq] Sollecitazioni M=51698,4 [kgm]

T=51672,6 [kg]

Moment o ultimo sezione $M_u = 46091,29$ [kgm]

Coeff.sicurezza sezione = 0,89

COMBINAZIONE n° 16

Peso mu ro sfavore vol e e Peso terrapieno sfavore vole

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta astatica Punto d'applicazione della spinta Inclinaz, della spinta rispetto alla normale alla superficie Inclinazione I inea di rottura in condizioni statiche	46896,54 43710,07 16991,60 X = 4,20 21,24 55,57	[kg] [kg] [kg] [m] [°]	Y=-6,89	[m]
Spinta falda Punto d'applicazione del la spinta della falda Sottospinta falda	7962,50 X = 4,20 15600,00	[kg] [m] [kg]	Y=-10,13	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte	104218,80 X = 2,10	[kg] [m]	Y = -4,42	[m]

Risultanti

65/144 66/144

Risult ant e dei carichi applicati in dir. orizzontale	51672,57	[kg]
Risult ant e dei carichi applicati in dir. verticale	154425,40	[kg]
Resistenza passiva dente di fondazione	-75861,30	[kg]
Sforzo normale sul piano di posa della fondazione	154425,40	[kg]
Sforzo t angenziale sul piano di posa della fondazione	51672,57	[kg]
Eccentricità rispetto al baricentro della fondazione	0,05	[m]
Lunghezza fondazione reagente	6,00	[m]
Risult ant e in fondazione	162841,21	[kg]
Inclinazione della risultante (rispetto alla normale)	18,50	[°]
Moment o risp ett o al baricentro del la fondazione	7606,73	[kgm]
Carico ultimo della fondazione	502900,61	[kg]

<u>Tensioni sul terreno</u> Lunghezza fondazione reagente 6,00 2,7005 2,4470 Tensione terreno allo spigolo di valle [kg/cmq] Tensione terreno allo spigolo di monte [kg/cmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori indinazione	$i_c = 0.85$	$i_q = 0.85$	$i_{f} = 0.62$
Fattori profondità	$d_c = 1, 12$	$d_q = 1,06$	$d_f = 1,06$

I coefficient i N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio. $N'_{q} = 20.97$ $N'_c = 33.94$

COEFFICIENTI DI SICUREZZA

1.66 3.26 Coefficiente di sicurezza a scorrimento Coefficiente di sicurezza a carico ultimo

Sollecitazioni paramento

Combinazione nº 16
L'ordinat y (espressa in m) è conside na positiva verso il basso con origine in testa al muro Momento positivo settende le fibrecontro terra (a monte), espresso in kgm Sōrzo normale positivo di compressione, espresso in kg Taglio positivo ed offento di montre verso valle, espresso in kg

Nr.	Y	N	M	т
1	0.00	0.00	0,00	0,00
2	0,37	953,33	76,20	433,83
3	0,73	1906,67	331,49	976,88
4	1,10	2860,00	805,90	1628,94
5	1,55	4021,33	1737,70	2570,06
6	1,99	5182,67	3117,08	3588,93
7	2,44	6344,00	4914,09	4454,52
8	2,89	7505,33	7110,56	5399,86
9	3,33	8666,67	9755,29	6461,62
10	3,78	9828,00	12900,27	7639,79
11	4,23	10989,33	16597,20	8929,44
12	4,67	12150,67	20902,98	10417,35
13	5,12	13312,00	25938,57	12152,25
14	5,57	14473,33	31777,81	14014,66
15	6,01	15634,67	38477,13	16003,30
16	6,46	16796,00	46092,89	18118,19
17	6,91	17957,33	54681,50	20359,32
18	7,35	1911 8,67	64299,34	22726,69
19	7,80	2028 0,00	75002,30	25216,01
20	8,30	21580,00	88358,15	28277,87
21	8,80	22880,00	1033 47, 60	31742,73

Sollecitazioni fondazione di valle

Combinazione nº 16
L'ascis a X(septesa ain m) e considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr.	X	M	Т
1	0,00	0,00	0,00
2	0,10	118,71	2373,42
3	0,20	474,54	4742,62
4	0,30	1067,09	7107,59
5	0,40	1895,92	9468,33
6	0,50	2960,62	11824,85
7	0,60	4260,75	14177,15
8	0,70	5795,90	16525,21
9	0,80	7565,65	18869,05
10	0,90	9569,57	21208,67
11	1,00	11807,24	23544,06

Sollecitazioni fondazione di monte

Combinazione nº 16

L'asciss a X(espress a in m) è considerata positiva verso valle con origine in corrispondenz a del l'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kgm Ta glio positivo se diretto verso l'alto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	-753,23	-3574,40
3	0,84	-2992,06	-7074,25
4	1,26	-6520,39	-9232,06
5	1,68	-10674, 15	-10535,32
6	2,10	-15359,63	-11764,04

67/144 68/144

7	2,52	-20545,51	-12918,2
8	2,94	-26200,49	-13997,8
9	3,36	-32293,25	-15002,9
10	3,78	-38792,50	-15933,4
11	4,20	-45666,91	-16789,4

Armature e tensioni nei materiali del muro

Combinazione nº 16

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro B base della sezione espressa in [cm]
H altezza della sezione espressa in [cm]
Ari, area di armatua in corrispondenza del enho di monte in [cmq]
N_e sorzo normale ultime espresso in [kg]
M_e mo mento ultimo espresso in [kg]
CS coefficiente sicurezza esione
VRcd Aliquota di tagli o assorbito dall'armatura, espresso in [kg]
VRsd Aliquota di tagli o assorbito dall'armatura, espresso in [kg]
VRd Resis enza al taglio, espresso in [kg]

Nr.	Y	В, Н			N	м	CS	17	X 7	X 7
	0.00		A _{fs} 8,04	A _{fi} 8,04	N _u 0	M _u 0	1000,00	V _{Rd}	V_{Red}	V_{Rsd}
1		100, 80						25203		
2	0,37	100, 80	8,04	8,04	927648	-74144	973,06	25337		
3	0,73	100, 80	8,04	8,04	705276	- 122618	369,90	25472		
4	1,10	100, 80	8,04	8,04	465407	-131144	162,73	25606		
5	1,55	100, 80	8,04	8,04	207920	-89846	51,70	25769		
6	1,99	100, 80	8,04	8,04	89448	-53798	17,26	25932		
7	2,44	100, 80	8,04	8,04	53786	-41662	8,48	26096		
8	2,89	100, 80	8,04	8,04	38477	-36453	5,13	26259		
9	3,33	100, 80	8,04	8,04	29746	-33482	3,43	26422		
10	3,78	100, 80	8,04	8,04	24025	-31535	2,44	26585		
11	4,23	100, 80	8,04	8,04	19966	-30154	1,82	26749		
12	4,67	100, 80	8,04	8,04	16927	-29120	1,39	26912		
13	5,12	100, 80	8,04	8,04	14525	-28303	1,09	27075		
14	5,57	100, 80	26,14	8,04	39114	-85878	2,70	30840		
15	6,01	100, 80	38,70	24,63	50612	- 124557	3,24	35030		
16	6,46	100, 80	38,70	24,63	44725	- 122738	2,66	35193		
17	6,91	100, 80	38,70	24,63	39808	-121219	2,22	35356		
18	7,35	100, 80	38,70	24,63	35662	-119938	1,87	35520		
19	7,80	100, 80	38,70	24,63	32136	-118848	1,58	35683		
20	8,30	100, 80	38,70	24,63	28773	-117809	1,33	35866		
21	8,80	100, 80	30,66	16,59	20601	-93052	0,90	33596		

69/144 70/144

Combinazione nº 16 Simbologia adottata B base della sezione espressa in [cm]

bate della sezione espressa in [cm] ateza della sezione espressa in [cm] area di armatura in corrispondenza del lenbo inferiore in [cmq] area di armatura in corrispondenza del lenbo superiore in [cmq] sibrzo nomale ultimo espresso in [kgi] no mento ultimo espresso in [kgi] coefficiente sicurezza se zione Aliquota di tiglio assorbio del els. espresso in [kg] Aliquota di tiglio assorbio della matura, espresso in [kg] Resis tanza al tuglio, espresso in [kg]

Fondazion e di valle

 $(L'ascissa\,\,X,espressa\,in\,\,[m],\grave{e}\,positiva\,verso\,\,monte\,con\,origine\,in\,corrispondenza\,dell'estre\,no\,\,libero\,della\,\,fondazione\,di\,valle)$

Nr.	Y	В, Н	A_{fs}	A_6	Nu	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	1257	12,57	0	46091	388,28	30124		
3	0,20	100, 100	1257	12,57	0	46091	97,13	30124		
4	0,30	100, 100	1257	12,57	0	46091	43,19	30124		
5	0,40	100, 100	1257	12,57	0	46091	24,31	30124		
6	0,50	100, 100	12.57	12,57	0	46091	15,57	30124		
7	0,60	100, 100	12.57	12.57	0	46091	10.82	30124		
8	0,70	100, 100	1257	25,13	0	91110	15,72	32019		
9	0,80	100, 100	25.13	25.13	0	91233	12.06	32019		
10	0,90	100, 100	25,13	31,42	0	113613	11,87	32019		
11	1,00	100, 100	25,13	31,42	0	113613	9,62	32019		

Fondazione di monte

(L'asciss a X, espressa in [m], è positiva verso valle con origine in conispondenza dell'estre mo libe ro della fondazione di monte)

Nr.	Y	B, H	Ars	An	Nu	Mu	CS	V_{Rd}	V_{Red}	V_{Rsd}
1	0,00	100, 100	37,70	12,57	0	0	1000,00	32019		
2	0,42	100, 100	37,70	12,57	0	-135272	179,59	32019		
3	0,84	100, 100	37,70	12,57	0	-135272	45,21	32019		
4	1,26	100, 100	12,57	12,57	0	-46091	7,07	30124		
5	1,68	100, 100	25,13	25,13	0	-91233	8,55	30124		
6	2,10	100, 100	25,13	25,13	0	-91233	5,94	30124		
7	2,52	100, 100	25,13	25,13	0	-91233	4,44	126292	302998	126292
8	2,94	100, 100	25,13	25,13	0	-91233	3,48	126292	302998	126292
9	3,36	100, 100	31,42	31,42	0	-113697	3,52	126292	302998	126292
10	3,78	100, 100	31,42	31,42	0	-113697	2,93	126292	302998	126292
11	4,20	100, 100	37,70	31,42	0	-136009	2,98	252584	302998	252584

Verifica sperone di fondazione

Base sezione B= 100 cm Altezza sezione H=100 [cm]

T=51672,6 [kg]

A = 12,57 [cmq] A = 12,57 [cmq] Sollecitazioni M=51698,4 [kgm] T=5 M oment o ultimo sezione M₀ = 46091,29 [kgm]

Coeff.sicurezza sezione = 0,89

COMBINAZIONE nº 17

Valore della spinta statica Componente orizzontale della spint a statica Componente verticale della spint a statica Punto d'applicazione della spinta Inclinaz. della spint a rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	49497,67 47265,40 14696,95 X = 4,20 17,27 53,96	[kg] [kg] [kg] [m] [°]	Y=-6,81	[m]
Spinta falda Punto d'applicazione della spinta della falda Sottospinta falda	6737,50 X = 4,20 13200,00	[kg] [m] [kg]	Y=-10,13	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravant e sulla fondazione a monte	76028,40 X = 2,10	[kg] [m]	Y=-4,42	[m]
Risultanti Risult ante dei carichi applicati in dir. orizzontale	54002,90	[kg]		

Risult ante dei carichi applicati in dir. verticale	111800,35	[kg]
Resistenza passiva dente di fondazione	-48438,42	[kg]
Moment o ribalt ante rispetto allo spigolo a valle	178662,40	[kgm]
Moment o stabilizzant e rispetto allo spigolo a valle	467412,98	[kgm]
Sforzo normale sul piano di posa del la fondazione	111800,35	[kg]
Sforzo tangenziale sul piano di posa della fondazione	54002,90	[kg]
Eccentricità rispetto al baricentro della fondazione	0,42	[m]
Lunghezza fondazione reagente	6,00	[m]
Risult ant e in fond azione	124159,71	[kg]
Inclinazione della risultante (rispetto alla normale)	25,78	[°]
Moment o risp etto al baricentro della fondazione	46650,48	[kgm]

COEFFICIENTI DISICUREZZA Coefficiente di sicurezza a ribaltament o

2.62

71/144 72/144

Stabilità globale muro + terreno

Combinazione n° 18

Le secise Xonor considerate positive verso mone

Le secise Xonor considerate positive verso flato

Origine in esta al muno (spigolo contro terra)

De sociellastis das espresso in [82]

α angolo fa la base de la striscia e forizzontale espresso in [7] (positivo antionario)

angolo fattrio del terreno lungo la base della striscia

c cossione del terreno lungo la base della striscia espressa in [8g/cmq]

b lamplezza della striscia espressa in [8g/cmq]

μ pressione neutra lungo la base della striscia espressa in [8g/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -2,78 Y[m] = 0.93

Raggio del cerchio R[m]= 14,08

A scissa a valle del cerchio Xi[m]= -13,84 Xs[m]= 11,27 A scissa a monte del cerchio Larghezza della striscia dx[m] = 1,00Coefficiente di sicurezza C= 1.45

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α (°)	Wsinα	b/cos ox	ф	c	u
1	4079.24	77.02	3975.01	4.47	25.42	0.000	0.000
2	1029 1.03	63.39	9200.59	2,24	26.62	0.000	0.000
3	1420 8.61	55.23	11671.82	1.76	26.56	0.000	0.000
4	1872 1.35	48.56	14033.39	1.52	26.56	0.000	0.058
5	20794.70	42.68	14097.84	1.37	26.56	0.000	0.161
6	22494.87	37.33	13641.26	1.26	26.56	0.000	0.246
7	23903.29	32.34	12786.69	1.19	26.56	0.000	0.316
8	26423.15	27.61	12246.71	1.13	26.56	0.000	0.374
9	2662 1.79	23.08	10437.19	1.09	26.56	0.000	0.422
10	2735 9.99	18.70	8772.66	1.06	26.56	0.000	0.460
11	2795 9.88	14.43	6968.47	1.04	26.56	0.000	0.490
12	30188.67	10.24	5368.45	1.02	26.56	0.000	0.512
13	1145 5.00	6.11	1219.19	1.01	26.56	0.000	0.526
14	10724.93	2.01	375.78	1.01	26.56	0.000	0.533
15	1071 6.11	-2.08	-389.60	1.01	26.56	0.000	0.533
16	1057 0.04	-6.19	-1138.94	1.01	26.56	0.000	0.526
17	1027 6.93	-10.32	-1841.10	1.02	26.56	0.000	0.512
18	9832.04	-14.51	-2463.42	1.04	26.56	0.000	0.489
19	9227.74	-18.78	-2970.94	1.06	26.56	0.000	0.459
20	8452.85	-23.16	-3325.13	1.09	26.56	0.000	0.421
21	7491.40	-27.70	-3482.03	1.13	26.56	0.000	0.373
22	6320.60	-32.43	-3389.45	1.19	26.56	0.000	0.315
23	4907.30	-37.43	-2982.35	1.26	26.56	0.000	0.244
24	3201.12	-42,79	-2174.44	1.37	26.56	0.000	0.159
25	1119.78	-48.67	-840.86	1.52	26.56	0.000	0.056

 $\Sigma W = 357342,41 \text{ [kg]}$ Σ Wisin α i= 99796,78 [kg] Σ Wtan ϕ = 178546,06 [kg] Σt anotitanφ= 3.77

COMBINAZIONE nº 19

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spint a rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	35459,44 33046,21 12857,69 X = 4,20 21,26 55,26	[kg] [kg] [kg] [m] [°] [°]	Y=-6,95	[m]
Incremento sismico della spinta Punto d'applicazione dell'increment o sismico di spinta Inclinazione linea di rottura in condizioni sismiche	5589,81 X = 4,20 52,07	[kg] [m] [°]	Y=-6,95	[m]

Spinta falda Punto d'applicazione del la spinta della falda Sottospinta falda		6125,00 X = 4,20 12000,00	[kg] [m] [kg]	Y=-10,13	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte		78876,00 X = 2,10 1892,49 946,25 4106,53 2053,27	[kg] [m] [kg] [kg] [kg]	Y = -4,42	[m]
Risultanti Risul ant e dei carichi applicati in dir. orizzontale Risult ant e dei carichi applicati in dir. orizzontale Resistenza passiva dente di fondazione Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risult ant e in fondazione Inclinazione della risultante (rispetto alla normale) Moment o rispetto al baricentro della fondazione Carico ultimo della fondazione		50460,84 122670,08 -63309,50 122670,08 50460,84 0,32 6,00 132643,30 22,36 39620,83 381127,39	[kg] [kg] [kg] [m] [m] [kg] [v] [kgn] [kg]		
<u>Tensioni sul terreno</u> Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte		6,00 2,7048 1,3842	[m] [kg/cmq] [kg/cmq]		
Fattori per il calcolo della capacità portante C oeff. capacità portante Fattori forma Fattori indinazione Fattori profon dità I coefficient i N' tengono conto dei fattori di forma, profon	N_c = 35.49 s = 1,00 i_c = 0,79 d_c = 1,12 $dit\lambda$, inclinazione carico, in N'_c = 31.27	$\begin{array}{c} N_q = 23 \\ s_q = 1 \\ i_q = 0 \\ d_q = 1 \end{array}$ clinazione piano d $N'_q = 19$,00 ,79 ,06 i posa, inclina	zione pendio.	$i_{\gamma} = 22.02$ $s_{\gamma} = 1,00$ $i_{\gamma} = 0,46$ $d_{\gamma} = 1,06$

COEFFICIENTI DI SICUREZZA

1.37 3.11 Coefficiente di sicurezza a scorrimento Coefficiente di sicurezza a carico ultimo

73/144 74/144

Combinazione nº 19
L'ordinata Y(espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Siozo normale positivo di compressione, espresso in kg Taglio positivo se diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,37	733,33	71,92	409,96
3	0,73	1466,67	313,58	925,83
4	1,10	2200,00	763,79	1547,41
5	1,55	3093,33	1650,08	2447,01
6	1,99	3986,67	2964,71	3424,75
7	2,44	4880,00	4683,56	4270,07
8	2,89	5773,33	6793,17	5194,78
9	3,33	6666,67	9341,05	6232,43
10	3,78	7560,00	12377,63	7383,01
11	4,23	8453,33	15953,06	8641,75
12	4,67	9346,67	20122,25	10090,35
13	5,12	10240,00	25000,84	11775,57
14	5,57	11133,33	30660,02	13584,44
15	6,01	12026,67	37154,51	15515,79
16	6,46	12920,00	44539,02	17569,60
17	6,91	13813,33	52868,26	19745,88
18	7,35	14706,67	62196,91	22044,64
19	7,80	15600,00	72579,21	24461,70
20	8,30	16600,00	85530,72	27401,80
21	8.80	17600.00	100035,55	30667,58

Sollecitazioni fondazione di valle

Combinazione nº 19
L'asciss a X(spress ain m) è considerata positiva veso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in kgm
Taglio pas iñvo se diretto veso Falto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	122,38	2443,84
3	0,20	488,03	4865,67
4	0,30	1094,78	7265,49
5	0,40	1940,40	9643,30
6	0,50	3022,70	11999,10
7	0,60	4339,49	14332,88
8	0,70	5888,55	16644,66
9	0,80	7667,68	18934,42
10	0,90	9674,70	21202,17
11	1,00	11907,38	23447,91

Sollecitazioni fondazione di monte

Combinazione nº 19
L'asciss a Xispiess ain m) è considerata positiva veso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm Taglio pos invose diretto veso Talto, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	-968,46	-4547,01
3	0,84	-3765,13	-8705,74
4	1,26	-8100,17	-11501,18
5	1,68	-13323,76	-13308,34
6	2,10	-19224,81	-14727,21

7	2,52	-25640,25	-15757,80
8	2,94	-32407,00	-16400, 10
9	3,36	-39361,98	-16654, 12
10	3,78	-46342,11	-16519,86
11	4,20	-53184,31	-15997,32

75/144 76/144

Combinazione nº 19
Lordinata Y(espressa in [m]) è consideratapositiva vesso il basso con origine in testa al muro Base dell'ascione espressa in [m] e la lezza della sezione espressa in [m] H alezza della sezione espressa in [m] Ar, area di armatuni in corrispondenza del lenbo di montein [cm] An area di armatuni in corrispondenza del lenbo di valle in [cm] N, sorzo normale ultimo espresso in [kgm] M, no mento ultimo espresso in [kgm] CS coefficiente siamezza se sione

coefficiente sicurezza se zione Aliquota di taglio assorbito dal cls, espresso in [kg]

Aliquota di taglio assorbito dall'armatura, espresso in [kg] Re sis tenza al taglio, espresso in [kg]

Nr.	Y	B, H	A_{fs}	$\mathbf{A}_{\mathbf{fi}}$	Nu	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,37	100, 80	8,04	8,04	902769	-88542	1231,05	25307		
3	0,73	100, 80	8,04	8,04	613882	-131252	418,56	25410		
4	1,10	100, 80	8,04	8,04	334691	-116197	152,13	25513		
5	1,55	100, 80	8,04	8,04	120946	-64516	39,10	25638		
6	1,99	100, 80	8,04	8,04	57912	-43067	14,53	25764		
7	2,44	100, 80	8,04	8,04	37710	-36192	7,73	25890		
8	2,89	100, 80	8,04	8,04	27931	-32864	4,84	26015		
9	3,33	100, 80	8,04	8,04	22020	-30853	3,30	26141		
10	3,78	100, 80	8,04	8,04	18011	-29489	2,38	26267		
11	4,23	100, 80	8,04	8,04	15101	-28499	1,79	26392		
12	4,67	100, 80	8,04	8,04	12888	-27746	1,38	26518		
13	5,12	100, 80	8,04	8,04	11117	-27143	1,09	26643		
14	5,57	100, 80	26,14	8,04	30206	-83183	2,71	30370		
15	6,01	100, 80	38,70	24,63	39174	-121023	3,26	34522		
16	6,46	100, 80	38,70	24,63	34706	-119643	2,69	34648		
17	6,91	100, 80	38,70	24,63	30957	-118484	2,24	34774		
18	7,35	100, 80	38,70	24,63	27784	-117504	1,89	34899		
19	7,80	100, 80	38,70	24,63	25076	-116667	1,61	35025		
20	8,30	100, 80	38,70	24,63	22488	-115867	1,35	35166		
21	8,80	100, 80	30,66	16,59	16127	-91662	0,92	32853		

Armature e tensioni nei materiali della fondazione

Combinazione nº 19

Simbologia adottata
B base della sezione espressa in [cm]

bate de llasezione espressa in [cm]
altezza della sezione espressa in [cm]
area di armatua in corrispondenza del enbo interiore in [cmq]
area di armatua in corrispondenza del enbo superiore in [cmq]
sforzo normale ultimo espresso in [kg]
no mento ultimo espresso in [kgm]
coefficiente sicurezza sezione
Aliquata di [gib ossobito dal els, espresso in [kg]]

Ars N_u M_u CS VRcd VRsd

Aliquota di taglio assorbito dall'armatura, espresso in [kg] Re sis tenza al taglio, espresso in [kg]

Fondazion e di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estre no libero della fondazione di valle)

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12,57	12,57	0	46091	376,64	30124		
3	0,20	100, 100	12,57	12,57	0	46091	94,44	30124		
4	0,30	100, 100	12,57	12,57	0	46091	42,10	30124		
5	0,40	100, 100	12,57	12,57	0	46091	23,75	30124		
6	0,50	100, 100	12,57	12,57	0	46091	15,25	30124		
7	0,60	100, 100	12,57	12,57	0	46091	10,62	30124		
8	0,70	100, 100	12,57	25,13	0	91110	15,47	32019		
9	0,80	100, 100	25,13	25,13	0	91233	11,90	32019		
10	0,90	100, 100	25,13	31,42	0	113613	11,74	32019		
11	1,00	100, 100	25,13	31,42	0	113613	9,54	32019		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre no libero della fondazione di nonte)

Nr.	Y	В, Н	Ars	An	Nu	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	37,70	12,57	0	0	1000,00	32019		
2	0,42	100, 100	37,70	12,57	0	-135272	139,68	32019		
3	0,84	100, 100	37,70	12,57	0	-135272	35,93	32019		
4	1,26	100, 100	12,57	12,57	0	-46091	5,69	30124		
5	1,68	100, 100	25,13	25,13	0	-91233	6,85	30124		
6	2,10	100, 100	25,13	25,13	0	-91233	4,75	30124		
7	2,52	100, 100	25,13	25,13	0	-91233	3,56	126292	302998	126292
8	2,94	100, 100	25,13	25,13	0	-91233	2,82	126292	302998	126292
9	3,36	100, 100	31,42	31,42	0	-113697	2,89	126292	302998	126292
10	3,78	100, 100	31,42	31,42	0	-113697	2,45	126292	302998	126292
11	4,20	100, 100	37,70	31,42	0	-136009	2,56	252584	302998	252584

Verifica sperone di fondazione

Base sezione B= 100 cm Altezza sezione H=100 [cm]

A₆=12,57 [cmq] A₆=12,57 [cmq] Sollecitazioni M=50486,1 [kgm]

T=50460,8 [kg] Moment o ultimo sezione $M_u = 46091,29$ [kgm]

Coeff.sicurezza sezione = 0,91

COMBINAZIONE n° 20

Valore della spinta statica Componente orizzontale della spint a statica	35459,44 33046.21	[kg] [kg]		
Componente verticale della spint a statica	12857,69	[kg]		
Punto d'applicazione del la spinta	X = 4,20	[m]	Y = -6.95	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	21,26	[°]		
Inclinazione linea di rottura in condizioni statiche	55,26	[°]		
Incremento sismico della spinta	3760,67	[kg]		
Punto d'applicazione del l'increment o sismico di spinta	X = 4,20	[m]	Y = -6.95	[m]
Inclinazione linea di rottura in condizioni sismiche	51,94	[°]		
Spinta falda	6125,00	[kg]		
Punto d'applicazione del la spinta della falda	X = 4,20	[m]	Y = -10,13	[m]
Sottospinta falda	12000,00	[kg]		
Peso terrapieno gravante sulla fondazione a monte	78876,00	[kg]		

77/144 78/144

Baricent ro terrapieno gravant e sulla fondazione a moi Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte	nte	X = 2,10 1892,49 -946,25 4106,53 -2053,27	[m] [kg] [kg]	Y=-4,42	[m]
Risultanti Risul ante dei carichi applicati in dir. orizzontale Risul ante dei carichi applicati in dir. verticale Resistenza passiva dente di fondazione Sforzo normale sul piano di posa della fondazione Sforzo ta ngenzia les ul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione		48756,19 116007.81 -60142,66 116007.81 48756,19 0.34 6.00 125837,11 22,80 39473,31 370250,50	[kg] [kg] [kg] [kg] [m] [m] [kg] [kg] [kg]		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte		6,00 2,59 14 1,27 56	[m] [kg/cmq] [kg/cmq]		
Fattori per il calcolo della capacità portante Coeff. capacità portante Fattori forma Fattori indinazione Fattori profondità I coefficient i N' tengono conto dei fattori di forma, pr	$\begin{aligned} N_c &= 35.49 \\ s_c &= 1.00 \\ i_c &= 0.78 \\ d_c &= 1.12 \end{aligned}$ of ondità, incilinazione carico, $N'_c &= 30.95$	$\begin{array}{c} N_q = 23 \\ s_q = 1 \\ i_q = 0 \\ d_q = 1 \end{array}$ in clinazione piano d $N'_q = 19 \label{eq:Nq}$,00 ,78 ,06 li posa, inclina	zione pendio.	$N_{\gamma} = 22.02$ $s_{\gamma} = 1.00$ $i_{\gamma} = 0.45$ $d_{\gamma} = 1.06$ $N'_{\gamma} = 10.45$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	1.35
Coefficiente di sicurezza a carico ultimo	3.19

Sollecitazioni paramento

Combinazione nº 20
L'ordinat y (espressa in m) è conside na positiva verso il basso con origine in testa al muro Momento positivo settende le fibrecontroterra (a monte), espresso in kgm Sōrzo normale positivo di compressione, espresso in kg Taglio positivo es diretto di montreveso valle, espresso in kg

Nr.	Y	N	M	Т
1	0,00	0.00	0,00	0,00
2	0,37	733,33	69,32	395,05
3	0,73	1466,67	302, 13	891,75
4	1,10	2200,00	735,68	1489,94
5	1,55	3093,33	1588,89	2355,32
6	1,99	3986,67	2854,10	3295,71
7	2,44	4880,00	4508,14	4109,00
8	2,89	5773,33	6538,11	4998,48
9	3,33	6666,67	8989,60	5996,38
10	3,78	7560,00	11911,02	7102,68
11	4,23	8453,33	15350,52	8312,80
12	4,67	9346,67	19360,79	9705,16
13	5,12	10240,00	24052,84	11324,66
14	5,57	11133,33	29495,01	13062,84
15	6,01	12026,67	35739,82	1491 8,59
16	6,46	12920,00	42839,78	16891,89
17	6,91	13813,33	50847,41	18982,75
18	7,35	14706,67	59815,22	21191,18
19	7,80	15600,00	69795,23	23513,16
20	8,30	16600,00	82244,92	26342,44
21	8,80	17600,00	96191,69	29494,36

Sollecitazioni fondazione di valle

Combinazione nº 20
L'ascis a X(septesa ain m) e considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr. 0.00 0.00 0,00 0,10 116,70 2330,39 0,20 465,35 4638,84 0.30 1043,74 6925,37 1849,69 9189,97 0,40 2881,00 11432,64 0,50 0,60 4135,49 13653,38 0.70 5610,95 15852,19 7305,19 18029,07 0.80 9216,03 20184,02 10 0,90 1,00 11341,27 22317,04 11

Sollecitazioni fondazione di monte

Combinazione nº 20

COMMIZZONE II 20 .

L'acies a (Nepses aim n'è considerata positiva verso valle con origine in corrispondenz adell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivos de diretto uevo a fluido, opersso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	- 1064,33	-5003,77
3	0,84	-4149,01	-9620,69
4	1,26	-8964,81	-12875,78
5	1,68	-14862,51	-15144,03
6	2,10	-21631,64	-17025,44

79/144 80/144

2,52 -29109,72 -18520,02 2,94 -37134,29 -19627,75 -20348,65 -20682,71 3,36 3,78 -45542,88 -54173,00 10 11 4,20 -62862,20 -20629,93

Armature e tensioni nei materiali del muro

Combinazione nº 20

Lordinata V(espressa in [mi]) è considerata positiva verso il basso con origine in testa al muro B boare dell'assezione espressa in [cmi] a laceza della sevicine espressa in [cmi] al laceza della sevicine espressa in [cmi] a laceza della sevicine espressa in [cmi] a laceza della sevicine espressa in [cmi] a laceza della sevicine espressa in [kmi] a laceza della sevicine espressa in [kmi] sevicine espres

Nr.	Y	В, Н	A_{fs}	An	Nu	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,37	100, 80	8,04	8,04	912949	-86299	1244,93	25307		
3	0,73	100, 80	8,04	8,04	630793	- 12994 1	430,09	25410		
4	1,10	100, 80	8,04	8,04	356920	-119354	162,24	25513		
5	1,55	100, 80	8,04	8,04	134006	-68832	43,32	25638		
6	1,99	100, 80	8,04	8,04	62190	-44522	15,60	25764		
7	2,44	100, 80	8,04	8,04	40033	-36983	8,20	25890		
8	2,89	100, 80	8,04	8,04	29488	-33394	5,11	26015		
9	3,33	100, 80	8,04	8,04	23171	-31245	3,48	26141		
10	3,78	100, 80	8,04	8,04	18911	-29795	2,50	26267		
11	4,23	100, 80	8,04	8,04	15831	-28747	1,87	26392		
12	4,67	100, 80	8,04	8,04	13494	-27952	1,44	26518		
13	5,12	100, 80	8,04	8,04	11630	-27318	1,14	26643		
14	5,57	100, 80	26,14	8,04	31553	-83591	2,83	30370		
15	6,01	100, 80	38,70	24,63	40905	-121558	3,40	34522		
16	6,46	100, 80	38,70	24,63	36224	-120112	2,80	34648		
17	6,91	100, 80	38,70	24,63	32301	-118899	2,34	34774		
18	7,35	100, 80	38,70	24,63	28981	-117874	1,97	34899		
19	7,80	100, 80	38,70	24,63	26151	-116999	1,68	35025		
20	8,30	100, 80	38,70	24,63	23446	-116164	1,41	35166		
21	8,80	100, 80	30,66	16,59	16810	-91874	0,96	32853		

81/144 82/144

Combinazione n° 20
Simbologia adutata
B base de lla sezione espressa in [cm]
H alecza della sezione espressa in [cm]
An area di armatun in corrispondenza del lenbo inferiore in [cm]
An area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in socione dal consenso in [kg]
VRSd Aliquota di tiggli o sosofrito dal l'armatura, espresso in [kg]
VRd Resistenza al taglio, espresso in [kg]

Fondazion e di valle

 $(L'ascissa\,\,X,espressa\,in\,\,[m],\grave{e}\,positiva\,verso\,\,monte\,con\,origine\,in\,corrispondenza\,dell'estre\,no\,\,libero\,della\,\,fondazione\,di\,valle)$

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0.10	100, 100	12.57	12.57	0	46091	394,95	30124		
3	0.20	100, 100	12.57	12.57	0	46091	99,05	30124		
4	0,30	100, 100	1257	12,57	0	46091	44,16	30124		
5	0,40	100, 100	1257	12,57	0	46091	24,92	30124		
6	0.50	100, 100	12.57	12.57	0	46091	16.00	30124		
7	0,60	100, 100	12.57	12.57	0	46091	11.15	30124		
8	0.70	100, 100	1257	25.13	0	91110	16,24	32019		
9	0.80	100, 100	25.13	25.13	0	91233	12.49	32019		
10	0,90	100, 100	25.13	31,42	Õ	113613	12,33	32019		
11	1,00	100, 100	25,13	31,42	0	113613	10,02	32019		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libero della fondazione di monte)

Nr.	Y	B, H	Ars	An	Nu	M_u	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 100	37,70	12,57	0	0	1000,00	32019		
2	0,42	100, 100	37,70	12,57	0	-135272	127,10	32019		
3	0,84	100, 100	37,70	12,57	0	-135272	32,60	32019		
4	1,26	100, 100	12,57	12,57	0	-46091	5,14	30124		
5	1,68	100, 100	25,13	25,13	0	-91233	6,14	30124		
6	2,10	100, 100	25,13	25,13	0	-91233	4,22	30124		
7	2,52	100, 100	25,13	25,13	0	-91233	3,13	126292	302998	126292
8	2,94	100, 100	25,13	25,13	0	-91233	2,46	126292	302998	126292
9	3,36	100, 100	31,42	31,42	0	-113697	2,50	126292	302998	126292
10	3,78	100, 100	31,42	31,42	0	-113697	2,10	126292	302998	126292
11	4,20	100, 100	37,70	31,42	0	-136009	2,16	252584	302998	252584

Verifica sperone di fondazione Base sezione B= 100 cm Altezza sezione H=100 [cm]

T=48756,2 [kg]

M_s=12.57 [cmq] A_s=12.57 [cmq] Sollecitazioni M=48780,6 [kgm] T=4 Momento ultimo sezione M_s = 46091,29 [kgm]

Coeff.sicurezza sezione = 0,94

COMBINAZIONE n° 21

Valore del la spinta statica	43362,04	[kg]		
Componente orizzontale della spint a statica	41399,25	[kg]		
Componente verticale della spint a statica	12898,42	[kg]		
Punto d'applicazione della spinta	X = 4,20	[m]	Y = -6,97	[m]
Inclinaz, della spintarispetto alla normale alla superficie	17,31	[°]		
Inclinazione linea di rottura in condizioni statiche	52,90	[°]		
Incremento sismico della spinta	6351,21	[kg]		
Punto d'applicazione dell'increment o sismico di spinta	X = 4.20	[m]	Y = -6.97	[m]
Inclinazione linea di rottura in condizioni sismiche	49,27	[°]		
Spinta falda	6125.00	[kg]		
Punto d'applicazione della spinta della falda	X = 420	[m]	Y = -10.13	[m]
Sottospinta falda	12000,00	[kg]	-,-	. ,
	,	1-61		
Peso terrapieno gravante sulla fondazione a monte	78876,00	[kg]		
1 0				

Baricent ro terrapieno gravant e sulla fondazione a monte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte	X = 2,10 1892,49 946,25 4106,53 2053,27	[m] [kg] [kg] [kg] [kg]	Y=-4,42	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva dente di fondazione Moment oribaltante rispetto allo spigolo a valle Moment ostabilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Scorzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione raegente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione	59668,21 122573,16 -54061,37 196208,65 498446,73 122573,16 59668,21 0,53 6,00 136324,88 25,96 65481,39	[kg] [kg] [kgm] [kgm] [kg] [m] [m] [kg] [sgm]		
COEFFICIEN TI DISICUREZZA Coefficiente di sicurezza a ribali ament o	2.54			
COMBINAZIONE n° 22				
Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione del la spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	43362,04 41399,25 12898,42 X = 4,20 17,31 52,90	[kg] [kg] [kg] [m] [°] [°]	Y=-6,97	[m]
Incremento sismico della spinta Punto d'applicazione del fincremento sismico di spinta Inclinazione linea di rottura in condizioni sismiche	4114,70 X = 4,20 49,08	[kg] [m] [°]	Y = -6,97	[m]
Spinta falda Punto d'applicazione del la spinta della falda Sottospinta falda	6125,00 X = 4,20 12000,00	[kg] [m] [kg]	Y=-10,13	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte Inezzia del muro Inezzia verticale del muro Inezzia verticale del terrapieno fondazione di monte Inezzia verticale del terrapieno fondazione di monte	78876,00 X = 2,10 1892,49 -946,25 4106,53 -2053,27	[kg] [m] [kg] [kg] [kg]	Y=-4,42	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva dente di fondazione Moment oribaltante rispetto allo spigolo a valle Moment ost abilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo targenziale sul piano di posa della fondazione Sforzo targenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Moment o rispetto al baricentro della fondazione COEFFICIENTI DI SI CUREZZA	57532,94 115908,86 -51362,41 200513,94 484097,64 115908,86 57532,94 0,55 6,00 129402,10 26,40 64142,88	[kg] [kg] [kgm] [kgm] [kg] [kg] [n] [n] [kg] [kg] [kg] [kg]		
Coefficiente di sicurezza a ribaltamento	2.41			

83/144 84/144

Stabilità globale muro + terreno

Combinazione nº 23

Le asc isse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)
W peso della stris cia espresso in [kg]

angolo fra la base della striscia e l'orizzontale espresso in [º] (positivo antiorario) angolo d'attrito del terreno lungo la base della striscia

coesione del terreno lungo la base della striscia espressa in [kg/cmq] larghezza della striscia espressa in [m] pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -3,71 Y[m] = 3,71

Raggio del cerchio R[m]= 16,96

A scissa a valle del cerchio Xi[m] = -16,18A scissa a monte del cerchio Xs[m] = 12,86Larghezza della striscia dx[m] = 1,16Coefficiente di sicurezza C= 1.32 Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α (°)	Wsing	b/cosα	•	c	u
1	3632.65	71.15	3437.80	3.59	24.34	0.000	0.000
2	9875.17	61.15	8649.90	2.41	27.84	0.000	0.000
3	13977.80	53.77	11274.50	1.96	26.56	0.000	0.000
4	1772 1.34	47.54	13073.52	1.72	26.56	0.000	0.000
5	22129.59	41.99	14805.13	1.56	26.56	0.000	0.109
6	2435 6.46	36.90	14623.39	1.45	26.56	0.000	0.205
7	2621 6.21	32.13	13941.95	1.37	26.56	0.000	0.285
8	28664.07	27.60	13278.59	1.31	26.56	0.000	0.351
9	3001 0.47	23.25	11845.38	1.26	26.56	0.000	0.407
10	30746.39	19.04	10028.83	1.23	26.56	0.000	0.452
11	31569.62	14.93	8134.17	1.20	26.56	0.000	0.487
12	29699.30	10.90	5617.40	1.18	26.56	0.000	0.514
13	12720.85	6.93	1534.52	1.17	26.56	0.000	0.532
14	1259 5.83	2,99	656.50	1.16	26.56	0.000	0.542
15	12644.12	-0.94	-207.22	1.16	26.56	0.000	0.544
16	12507.08	-4.87	-1061.82	1.17	26.56	0.000	0.538
17	12182.74	-8.82	-1868.93	1.18	26.56	0.000	0.524
18	11666.32	-12.82	-2589.01	1.19	26.56	0.000	0.502
19	10949.91	-16.88	-3180.29	1.21	26.56	0.000	0.471
20	1002 1.71	-21.04	-3597.44	1.24	26.56	0.000	0.431
21	8865.07	-25.31	-3789.80	1.28	26.56	0.000	0.382
22	7456.60	-29.74	-3698.82	1.34	26.56	0.000	0.321
23	5763.24	-34.38	-3254.01	1.41	26.56	0.000	0.248
24	3736.92	-39.29	-2366.28	1.50	26.56	0.000	0.161
25	1304.20	-44.58	-915.39	1.63	26.56	0.000	0.056

ΣWi= 391013,65 [kg] $\Sigma W_i \sin \alpha_i = 104372,56 \text{ [kg]}$ ΣWtanφ= 195571,50 [kg] Σt anoxit an $\phi = 3.26$

Stabilità globale muro + terreno

Combinazione nº 24

Continuation: It is a series of the series o

angolo d'attrito del terreno lungo la base della striscia

coesione del terremo lungo la base della striscia espressa in [kg/cmq] larghezza della striscia espressa in [m] pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -3,71 Y[m] = 2,78

Raggio del cerchio R[m]= 16,15

A scissa a valle del cerchio Xi[m] = -15,92A scissa a monte del cerchio Xs[m] = 12,21Larghezza della striscia dx[m] = 1,12Coefficiente di sicurezza C= 1.29 Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α (°)	Wsinα	b/cosα	ф	с	u
1	3850.87	73.12	3684.86	3.87	24.75	0.000	0.000
2	1024 1.46	62.06	9047.33	2,40	27.44	0.000	0.000
3	14197.31	54.37	11538.94	1.93	26.56	0.000	0.000
4	1882 5.45	47.96	13980.68	1.68	26.56	0.000	0.022
5	2203 5.54	42.28	14823.97	1.52	26.56	0.000	0.135
6	24142.27	37.08	14555.39	1.41	26.56	0.000	0.229
7	2589 5.83	32.22	13805.57	1.33	26.56	0.000	0.307
8	2875 0.63	27.60	13322.09	1.27	26.56	0.000	0.372
9	29194.18	23.18	11491.79	1.22	26.56	0.000	0.425
10	30160.66	18.90	9769.38	1.19	26.56	0.000	0.469
11	31408.63	14.73	7984.01	1.16	26.56	0.000	0.503
12	24924.27	10.63	4598.29	1.14	26.56	0.000	0.528
13	1251 8.92	6.59	1437.01	1.13	26.56	0.000	0.545
14	1246 8.29	2.58	562.13	1.13	26.56	0.000	0.554
15	12494.24	-1.41	-307.55	1.13	26.56	0.000	0.555
16	12343.20	-5.41	-1164.17	1.13	26.56	0.000	0.549
17	1201 2.93	-9.44	-1970.36	1.14	26.56	0.000	0.534
18	1149 8.36	-13.52	-2687.47	1.16	26.56	0.000	0.511
19	1079 1.23	-17.66	-3274.46	1.18	26.56	0.000	0.480
20	9879.33	-21.91	-3686.54	1.21	26.56	0.000	0.439
21	8745.34	-26.29	-3873.19	1.25	26.56	0.000	0.389
22	7364.80	-30.84	-3775.43	1.31	26.56	0.000	0.327
23	5702.74	-35.62	-3321.30	1.38	26.56	0.000	0.253
24	3707.44	-40.71	-2418.05	1.48	26.56	0.000	0.165
25	1297.91	-46.23	-937.22	1.63	26.56	0.000	0.058

 Σ Wi= 384451,80 [kg] $\Sigma W_i \sin \alpha = 103185,70 \text{ [kg]}$ Σ Wtan ϕ = 192234,25 [kg] Σt anoxt an $\phi = 3.37$

COMBINAZIONE nº 25
Peso mu ro sfavore vol e e Peso terrapieno favorevole

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione del la spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	41132,15 38299,24 15000,73 X = 4,20 21,39 53,01	[kg] [kg] [kg] [m] [°]	Y = -7,43	[m]
Spinta falda Punto d'applicazione del la spinta della falda	7962,50 X = 4.20	[kg] [m]	Y=-10,13	[m]

85/144 86/144

Sottosp inta falda	15600,00	[kg]		
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravant e sulla fondazione a monte	70476,00 X = 2,10	[kg] [m]	Y=-4,42	[m]
Risultanti carichi esterni Componente dir. X Componente dir. Y Risultanti	-32663 11050	[kg] [kg]		
Risult ant e dei carichi applicati in dir. orizzontale Risult ant e dei carichi applicati in dir. verticale Resistenza passiva dente di fondazione Sforzo normale sul piano di posa della fondazione Sforzo tagenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risult ant e in fondazione Inclinazione della risultante (rispetto alla normale) Moment o rispetto al baricentro della fondazione Carico ultimo della fondazione	13599,24 129741,73 -55538,07 129741,73 13599,24 -0,80 6,00 130452,51 5,98 -103466,42 432531,95	[kg] [kg] [kg] [kg] [m] [m] [kg] ['g] [kgm]		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	6,00 0,4379 3,8868	[m] [kg/cmq] [kg/cmq]		

Fattori per il calcolo della capacità portante

C oeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori indinazione	$i_c = 0,91$	$i_q = 0.91$	$i_{f} = 0.76$
Fattori profon dità	$d_c = 1, 12$	$d_q = 1,06$	$d_{y} = 1,06$
I coefficient i N' tengono conto dei fattori di for	rma, profondità, inclinazione carico,	inclinazione piano di posa, inclina	zione pendio.
	$N'_c = 36.25$	$N'_{q} = 22.40$	$N'_{\gamma} = 17.80$
	rma, profondità, inclinazione carico,	inclinazione piano di posa, inclina	zione pendio.

COEFFICIEN TI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	5.12
Coefficiente di sicurezza a carico ultimo	3.33

Sollecitazioni paramento

Combinazione nº 25

L'ordinat y (espressa in m)è considenta positiva verso il basso con origine in testa al muro Momento positivo settende le fibrecontroterra (a monte), espresso in kgm Sórzo normale positivo di compressione, espresso in kg Taglio positivo es diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,37	953,33	6,65	54,37
3	0,73	1906,67	53,16	217,48
4	1,10	2860,00	179,42	489,34
5	1,55	4021,33	477, 14	822, 11
6	1,99	5182,67	886,83	963,25
7	2,44	6344,00	1286,97	786,67
8	2,89	7505,33	1561,84	415, 12
9	3,33	8666,67	1631,91	-130,35
10	3,78	9828,00	1419,50	-849,74
11	4,23	10989,33	846,61	- 1747,97
12	4,67	12150,67	-161,91	-2757,36
13	5,12	13312,00	- 1627,91	-3833,29
14	5,57	14473,33	-3610,73	-5072,34
15	6,01	15634,67	-6183,63	-6475,47
16	6,46	16796,00	-9419,91	-8042,69
17	6,91	17957,33	-13392,87	-9774,01
18	7,35	1911 8,67	-18175,79	-11669,42
19	7,80	2028 0,00	-23842,48	-13733,20
20	8,30	21580,00	-30057,30	-11055,61
21	8,80	2288 0,00	-34830,66	-7975,02

Sollecitazioni fondazione di valle

Combinazione nº 25
L'ascis a X(septesa ain m) e considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	-48,65	-963,34
3	0,20	-190,75	-1869,19
4	0,30	-420,57	-2717,57
5	0,40	-732,35	-3508,46
6	0,50	-1120,34	-4241,87
7	0,60	-1578,81	-4917,80
8	0,70	-2101,99	-5536,25
9	0,80	-2684,14	-6097,22
10	0,90	-3319,52	-6600,71
11	1.00	-4002-37	-7046.71

Sollecitazioni fondazione di monte

Combinazione nº 25

COMMIZZONE II 22.

Lascisa a (Kopersa sin m) è considerata positiva verso valle con origine in corrispondenz adell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm
Taglio positivos deriteto twoes Talko, opersso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	705, 10	3188,61
3	0,84	2536,47	5363,24
4	1,26	5233,04	7791,40
5	1,68	9001,70	9985,60
6	2,10	13478,98	11165,82

87/144 88/144

2,52 18239,03 11332,07 2,94 2285 5,96 10484,35 3,36 3,78 26903,92 29957,04 8622,66 5746,99 10 11 4,20 31589,44 1857,36

Armature e tensioni nei materiali del muro

Combinazione nº 2.5

Lordinata V(espressa in [mi]) è considerata positiva verso il basso con origine in testa al muro B bace dell'assezione espressa in [cmi] di alezza della sevicine espressa in [cmi] di alezza della sevicine espressa in [cmi] di area di amattura in corrispondenza del entro di monte in [cmi] serio di amattura in corrispondenza del entro di valle in [cmi] si serio nomine il trium espresso in [kgi]
M, sobre no nomine il utimo espresso in [kgi]
VRed Aliquota di taglo assorbito dal els, espresso in [kgi]
VRed Resis tenza al taglio, espresso in [kgi]

Nr.	Y	В, Н	A_{fs}	A_6	N_u	M_u	CS	V_{Rd}	V_{Rot}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,37	100, 80	8,04	8,04	979719	-6829	1027,68	25337		
3	0,73	100, 80	8,04	8,04	964206	-26884	505,70	25472		
4	1,10	100, 80	8,04	8,04	939414	-58935	328,47	25606		
5	1,55	100, 80	8,04	8,04	847242	- 100528	210,69	25769		
6	1,99	100, 80	8,04	8,04	712174	-121863	137,41	25932		
7	2,44	100, 80	8,04	8,04	637843	- 129395	100,54	26096		
8	2,89	100, 80	8,04	8,04	626154	- 130301	83,43	26259		
9	3,33	100, 80	8,04	8,04	671069	- 126361	77,43	26422		
10	3,78	100, 80	8,04	8,04	779212	-112545	79,28	26585		
11	4,23	100, 80	8,04	8,04	929604	-71616	84,59	26749		
12	4,67	100, 80	8,04	8,04	974952	12991	80,24	26912		
13	5,12	100, 80	8,04	8,04	837100	102368	62,88	27075		
14	5,57	100, 80	26,14	8,04	639068	159431	44,15	27239		
15	6,01	100, 80	38,70	24,63	491672	194460	31,45	30438		
16	6,46	100, 80	38,70	24,63	287695	161352	17,13	30601		
17	6,91	100, 80	38,70	24,63	171721	128072	9,56	30765		
18	7,35	100, 80	38,70	24,63	114612	108960	5,99	30928		
19	7,80	100, 80	38,70	24,63	83756	98468	4,13	31091		
20	8,30	100, 80	38,70	24,63	66479	92594	3,08	31274		
21	8,80	100, 80	30,66	16,59	40218	61224	1,76	28421		

89/144 90/144

Combinazione nº 25 Simbologia adottata B base della sezione espressa in [cm]

base dellas ezione espressa în [cm] alezza della sezione espressa în [cm] area di armatura în corrispondenza del lenbo inferiore în [cmq] area di armatura în corrispondenza del lenbo superiore în [cmq] sărza nomalie ultime espresso în [kgi] no mento ultime espresso în [kgi] coefficiente sicurezza se zione Aliquota di tiglio assorbia del est, espresso în [kg] Aliquota di înglio assorbia della matura, espresso în [kg] Resis tanza al tuglio, espresso în [kg]

Fondazion e di valle

 $(L'ascissa\,\,X,espressa\,in\,\,[m],\grave{e}\,positiva\,verso\,\,monte\,con\,origine\,in\,corrispondenza\,dell'estre\,no\,\,libero\,della\,\,fondazione\,di\,valle)$

Nr.	Y	В, Н	A_{fs}	A_6	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	1257	12,57	0	-46091	947,49	30124		
3	0.20	100, 100	12.57	12.57	0	-46091	241,63	30124		
4	0.30	100, 100	12.57	12.57	0	-46091	109,59	30124		
5	0.40	100, 100	12.57	12.57	0	-46091	62,94	30124		
6	0.50	100, 100	12.57	12.57	0	-46091	41.14	30124		
7	0.60	100, 100	12.57	12.57	0	-46091	29,19	30124		
8	0.70	100, 100	1257	25.13	Õ	-46041	21,90	30124		
9	0.80	100, 100	25.13	25,13	Õ	-91233	33,99	32019		
10	0.90	100, 100	25.13	31.42	ŏ	-91258	27.49	32019		
11	1.00	100, 100	25.13	31.42	0	-91258	22,80	32019		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libero della fondazione di monte)

Nr.	Y	В, Н	Afs	An	Nu	Mu	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 100	37,70	12,57	0	0	1000,00	32019		
2	0,42	100, 100	37,70	12,57	0	46000	65,24	32019		
3	0,84	100, 100	37,70	12,57	0	46000	18,14	32019		
4	1,26	100, 100	1257	12,57	0	46091	8,81	32019		
5	1.68	100, 100	25.13	25.13	0	91233	10.14	30124		
6	2,10	100, 100	25,13	25,13	0	91233	6,77	30124		
7	2,52	100, 100	25,13	25,13	0	91233	5,00	126292	302998	126292
8	2,94	100, 100	25,13	25,13	0	91233	3,99	126292	302998	126292
9	3,36	100, 100	31,42	31,42	0	113697	4,23	126292	302998	126292
10	3.78	100, 100	31.42	31.42	0	113697	3,80	30124		
11	4,20	100, 100	37,70	31,42	0	113752	3,60	30124		

Verifica sperone di fondazione

Base sezione B= 100 cm Altezza sezione H=100 [cm]

T=13599,2 [kg]

A = 12,57 [cmq] A = 12,57 [cmq] Sollecitazioni M=13606,0 [kgm] T=1:

M oment o ultimo sezione M₀ = 46091,29 [kgm]

Coeff.sicurezza sezione = 3,39

COMBINAZIONE n° 26

Peso mu ro favorevole e Peso terrapieno favorevole

Valore della spinta statica	41132,15	[kg]		
Componente orizzontale della spint a statica	38299,24	[kg]		
Componente verticale della spint a statica	15000,73	[kg]		
Punto d'applicazione del la spinta	X = 4,20	[m]	Y = -7,43	[m]
Inclinaz, della spintarispetto alla normale alla superficie	21,39	[°]		
Inclinazione linea di rottura in condizioni statiche	53,01	[°]		
Spinta falda	7962,50	[kg]		
Punto d'applicazione del la spinta della falda	7962,50 X = 4,20	[kg] [m]	Y=-10,13	[m]
			Y=-10,13	[m]
Punto d'applicazione della spinta della falda Sottospinta falda	X = 4,20 15600,00	[m] [kg]	Y=-10,13	[m]
Punto d'applicazione della spinta della falda Sottospinta falda Peso terrapieno gravante sulla fondazione a monte	X = 4,20 15600,00 70476,00	[m]	,	. ,
Punto d'applicazione della spinta della falda Sottospinta falda	X = 4,20 15600,00	[m] [kg]	Y = -10,13 Y = -4,42	[m]

Risultanti carichi esterni

Componente dir. X Componente dir. Y		-32663 11050	[kg] [kg]	
Componente di . 1		11050	[rg]	
<u>Risultanti</u> Risultante dei carichi applicati in dir. orizzontale		13599,24	[led]	
Risult ante dei carichi applicati in dir. or izzontale Risult ante dei carichi applicati in dir. verticale		118836,73	[kg] [kg]	
Resistenza p assiva dente di fondazione		-49935,27	[kg]	
Sforzo normale sul piano di posa della fondazione		118836,73	[kg]	
Sforzo t angenziale sul piano di posa della fondazione		13599,24	[kg]	
Eccentricità rispetto al baricentro della fondazione		-0.92	[m]	
Lunghezza fondazione reagente		6.00	[m]	
Risult ant e in fondazione		119612.33	[kg]	
Inclinazione della risultante (rispetto alla normale)		6.53	[°]	
Moment o risp ett o al baricentro della fondazione		-109101.92	[kgm]	
Carico ultimo della fondazione		424696,84	[kg]	
Tensioni sul terreno				
Lunghezza fondazione reagente		6,00	[m]	
Tensione terreno allo spigolo di valle		0,1622	[kg/cmq]	
Tensione terreno allo spigolo di monte		3,7990	[kg/cmq]	
Fattori per il calcolo della capacità portante				
C oeff. capacità portante	$N_c = 35.49$	$N_0 = 23$.18	$N_{\gamma} = 22.02$
Fattori forma	$s_c = 1.00$	$s_a = 1$		$s_{y} = 1,00$
Fattori inclinazione	$i_c = 0.93$	$i_0 = 0$		$i_{r} = 0.80$
Fattori profon dità	$d_c = 1.12$	$d_q = 1$		$d_v = 1.06$
I coefficient i N' t engono conto dei fattori di forma, prof				-1 /
	N'c = 36.91	$N'_q = 22$		N' _v = 18.79

COEFFICIENTI DISICUREZZA
Coefficiente di sicurezza a scorrimento 4.68 3.57 Coefficiente di sicurezza a carico ultimo

91/144 92/144

Combinazione nº 26
L'ordinata Y(espressa in m)è considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Siozo normale positivo di compressione, espresso in kg Taglio positivo se diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,37	733,33	6,65	54,37
3	0,73	1466,67	53,16	217,48
4	1,10	2200,00	179,42	489,34
5	1,55	3093,33	477,14	822,11
6	1,99	3986,67	886,83	963,25
7	2,44	4880,00	1286,97	786,67
8	2,89	5773,33	1561,84	415, 12
9	3,33	6666,67	1631,91	-130,35
10	3,78	7560,00	1419,50	-849,74
11	4,23	8453,33	846,61	- 1747,97
12	4,67	9346,67	-161,91	-2757,36
13	5,12	10240,00	- 1627,91	-3833,29
14	5,57	11133,33	-3610,73	-5072,34
15	6,01	12026,67	-6183,63	-6475,47
16	6,46	12920,00	-9419,91	-8042,69
17	6,91	13813,33	-13392,87	-9774,01
18	7,35	14706,67	-18175,79	-11669,42
19	7,80	15600,00	-23842,48	-13733,20
20	8,30	16600,00	-30057,30	-11055,61
21	8,80	17600,00	-34830,66	-7975,02

Sollecitazioni fondazione di valle

Combinazione nº 26
L'ascisa X(spress ain m) è considerata positiva veso monte con origine in corrispondenza dell'estremo libero della fondazione di valle
Momento positivo se tende le fibre inferiori, espresso in kgm
Taglio pos iñvo se diretto veso Falto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	-58,63	-1162,45
3	0,20	-230,47	-2264,28
4	0,30	-509,46	-3305,50
5	0,40	-889,55	-4286,11
6	0,50	- 1364,67	-5206,11
7	0,60	- 1928,75	-6065,50
8	0,70	-2575,75	-6864,27
9	0,80	-3299,59	-7602,43
10	0,90	-4094,21	-8279,98
11	1.00	-4953.56	-8896.92

Sollecitazioni fondazione di monte

Combinazione nº 26
L'ascis a Xispiesa ain m) è considerata positiva veso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm Taglio pos invose diretto veso Talto, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	789,14	3579,63
3	0,84	2857,20	6090,05
4	1,26	5881,85	8506,28
5	1,68	9900,79	10453,31
6	2,10	1451 2,95	11331,14

7	2,52	19269.26	11139,78
8	2,94	23720.67	9879,21
9	3,36	2741 8.1 1	7549,44
10	3,78	2991 2,5 1	4150,48
11	4,20	30754,82	-317,68

93/144 94/144

Combinazione nº 26

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro B base della sezione espressa in [cm]

obec una sezione espressa in [m] area di armatua in corrispondenza del lenbo di montein [mq] area di armatua in corrispondenza del lenbo di valle in [mq] s\(\text{brz} \) nomale ultimo espresso in [kg] mo mento ultimo espresso in [kgm]

coefficiente sicurezza se zione Aliquota di taglio assorbito dal cls, espresso in [kg]

Aliquota di taglio assorbito dall'armatura, espresso in [kg] Resis tenza al taglio, espresso in [kg]

Nr.	Y	В, Н	A_{fs}	A_6	Nu	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,37	100, 80	8,04	8,04	978145	-8864	1333,83	25307		
3	0,73	100, 80	8,04	8,04	958137	-34730	653,28	25410		
4	1,10	100, 80	8,04	8,04	926549	-75566	421,16	25513		
5	1,55	100, 80	8,04	8,04	753592	-116241	243,62	25638		
6	1,99	100, 80	8,04	8,04	596195	-132622	149,55	25764		
7	2,44	100, 80	8,04	8,04	504413	- 133025	103,36	25890		
8	2,89	100, 80	8,04	8,04	488975	-132280	84,70	26015		
9	3,33	100, 80	8,04	8,04	546242	- 133713	81,94	26141		
10	3,78	100, 80	8,04	8,04	672273	-126229	88,93	26267		
11	4,23	100, 80	8,04	8,04	896930	-89829	106,10	26392		
12	4,67	100, 80	8,04	8,04	971978	16837	103,99	26518		
13	5,12	100, 80	8,04	8,04	741848	117936	72,45	26643		
14	5,57	100, 80	26,14	8,04	457560	148394	41,10	26769		
15	6,01	100, 80	38,70	24,63	333529	171487	27,73	29931		
16	6,46	100, 80	38,70	24,63	178740	130319	13,83	30056		
17	6,91	100, 80	38,70	24,63	111175	107791	8,05	30182		
18	7,35	100, 80	38,70	24,63	78125	96554	5,31	30307		
19	7,80	100, 80	38,70	24,63	58897	90017	3,78	30433		
20	8,30	100, 80	38,70	24,63	47591	86172	2,87	30574		
21	8,80	100, 80	30,66	16,59	28993	57378	1,65	27678		

Armature e tensioni nei materiali della fondazione

Combinazione nº 26

Simbologia adottata
B base della sezione espressa in [cm]

bate de llasezione espressa in [cm]
altezza della sezione espressa in [cm]
area di armatua in corrispondenza del enbo interiore in [cmq]
area di armatua in corrispondenza del enbo superiore in [cmq]
sforzo normale ultimo espresso in [kg]
no mento ultimo espresso in [kgm]
coefficiente sicurezza sezione
Aliquata di [gib ossobito dal els, espresso in [kg]]

Ars N_u M_u CS VRcd

Aliquota di taglio assorbito dall'armatura, espresso in [kg] Re sis tenza al taglio, espresso in [kg]

Fondazion e di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estre no libero della fondazione di valle)

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12,57	12,57	0	-46091	786,17	30124		
3	0,20	100, 100	12,57	12,57	0	-46091	199,99	30124		
4	0,30	100, 100	12,57	12,57	0	-46091	90,47	30124		
5	0,40	100, 100	12,57	12,57	0	-46091	51,81	30124		
6	0,50	100, 100	12,57	12,57	0	-46091	33,77	30124		
7	0,60	100, 100	12,57	12,57	0	-46091	23,90	30124		
8	0,70	100, 100	12,57	25,13	0	-46041	17,87	30124		
9	0,80	100, 100	25,13	25,13	0	-91233	27,65	32019		
10	0,90	100, 100	25,13	31,42	0	-91258	22,29	32019		
11	1,00	100, 100	25,13	31,42	0	-91258	18,42	32019		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre no libero della fondazione di nonte)

Nr.	Y	В, Н	Ars	An	Nu	Mu	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	37,70	12,57	0	0	1000,00	32019		
2	0,42	100, 100	37,70	12,57	0	46000	58,29	32019		
3	0,84	100, 100	37,70	12,57	0	46000	16,10	32019		
4	1,26	100, 100	12,57	12,57	0	46091	7,84	32019		
5	1,68	100, 100	25,13	25,13	0	91233	9,21	30124		
6	2,10	100, 100	25,13	25,13	0	91233	6,29	30124		
7	2,52	100, 100	25,13	25,13	0	91233	4,73	126292	302998	126292
8	2,94	100, 100	25,13	25,13	0	91233	3,85	126292	302998	126292
9	3,36	100, 100	31,42	31,42	0	113697	4,15	126292	302998	126292
10	3,78	100, 100	31,42	31,42	0	113697	3,80	30124		
11	4,20	100, 100	37,70	31,42	0	113752	3,70	252584	302998	252584

Verifica sperone di fondazione

Base sezione B= 100 cm Altezza sezione H=100 [cm]

A₆=12,57 [cmq] A₆=12,57 [cmq] Sollecitazioni M=13606,0 [kgm] T=13599,2 [kg]

Moment o ultimo sezione $M_u = 46091,29$ [kgm]

Coeff.sicurezza sezione = 3,39

COMBINAZIONE n° 27

Peso mu ro sfavore vol e e Peso terrapieno sfavore vole

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione del la spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	41132,15 38299,24 15000,73 X = 4,20 21,39 53,01	[kg] [kg] [kg] [m] [°]	Y = -7,43	[m]
Spinta falda Punto d'applicazione del la spinta della falda Sottospinta falda	7962,50 X = 4,20 15600,00	[kg] [m] [kg]	Y = -10,13	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte	91618,80 X = 2,10	[kg] [m]	Y = -4,42	[m]

Risultanti carichi esterni

95/144 96/144

Componente dir. X Componente dir. Y		-32663 11050	[kg] [kg]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva dente di fondazione Sforzo normale sul piano di posa della fondazione Sforzo taggerziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Moment o rispetto al baricentro della fondazione Carico ultimo della fondazione	100	13599,24 150884,53 -64072,82 150884,53 13599,24 -0,81 6,00 151496,15 5,15 -122494,94 412756,47	[kg] [kg] [kg] [kg]
Tensioni sul terreno Lunghezza fondazione reagente		6.00	[m]
Tensione terreno allo spigolo di valle		0,4732	[kg/cmq]
Tensione terreno allo spigolo di monte		4,5563	[kg/cmq]
Fattori per il calcolo della capacità portante Coeff. capacità portante Fattori forma Fattori indin azione Fattori profondità I coefficient i N ¹ tengono conto dei fattori di forma, p	$N_c = 35.49$ $s_c = 1.00$ $i_c = 0.89$ $d_c = 1.12$ profondità, inclinazione carico, $N'_c = 35.57$	$\begin{array}{c} N_q=23\\ s_q=1\\ i_q=0\\ d_q=1\\ \text{in clinazione piano d}\\ N^i_q=21 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
COEFFICIENTI DI SICUREZZA		5.02	
Coefficiente di sicurezza a scorrimento Coefficiente di sicurezza a carico ultimo		5.92 2.74	
Coefficiente di sicurezza a carico ultimo		2.74	

Combinazione nº 27

L'ordinat y (espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo settende le fibrecontroterra (a monte), espresso in kgm Sórzo normale positivo di compressione, espresso in kg Taglio positivo es diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,37	953,33	6,65	54,37
3	0,73	1906,67	53,16	217,48
4	1,10	2860,00	179,42	489, 34
5	1,55	4021,33	477, 14	822, 11
6	1,99	5182,67	886,83	963,25
7	2,44	6344,00	1286,97	786,67
8	2,89	7505,33	1561,84	415, 12
9	3,33	8666,67	1631,91	-130,35
10	3,78	9828,00	1419,50	-849,74
11	4,23	10989,33	846,61	- 1747,97
12	4,67	12150,67	-161,91	-2757,36
13	5,12	13312,00	- 1627,91	-3833,29
14	5,57	14473,33	-3610,73	-5072,34
15	6,01	15634,67	-6183,63	-6475,47
16	6,46	16796,00	-9419,91	-8042,69
17	6,91	17957,33	-13392,87	-9774,01
18	7,35	1911 8,67	-18175,79	-11669,42
19	7,80	2028 0,00	-23842,48	-13733,20
20	8,30	21580,00	-30057,30	-11055,61
21	8,80	22880,00	-34830,66	-7975,02

Sollecitazioni fondazione di valle

Combinazione nº 27
L'ascis a X(septesa ain m) e considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr.	X	M	Т
1	0,00	0,00	0,00
2	0,10	-46,71	-922,81
3	0,20	-182,29	- 1777,57
4	0,30	-399,95	-2564,28
5	0,40	-692,88	-3282,94
6	0,50	-1054,27	-3933,54
7	0,60	-1477,32	-4516,09
8	0,70	-1955,22	-5030,59
9	0,80	-2481,17	-5477,03
10	0,90	-3048,36	-5855,42
11	1,00	-3649,99	-6165,76

Sollecitazioni fondazione di monte

Combinazione nº 27

COMMIZZONE II 27.

Lascisa a (Kopessa in m) è considerata positiva verso valle con origine in corrispondenz adell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm
Taglio positivos deriteto twoes Talko, opresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	1282,56	5907,36
3	0,84	4794,12	10614,27
4	1,26	10195,26	15388,22
5	1,68	17614,56	19741,73
6	2,10	2661 0,25	22894,79

97/144 98/144

7	2,52	36678.12	24847,39
8	2,94	4731 3.99	25599,55
9	3,36	5801 3,67	25151,25
10	3,78	68272,98	23502,51
11	4.20	77587,72	20653,31

Combinazione n° 27

L'ordinata Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro B base della sezione espressa in [cm]
H altezza della sezione espressa in [cm]
An area di armatua in corrispondenza del enho di monte in [cmq]
Na sforzo normale ultime espresso in [kg]
M, mo mento ultimo espresso in [kg]
CS coefficiente sicurezza esione
VRcd Aliquota di lagli o assorbito dall'armatura, espresso in [kg]
VRsd Aliquota di lagli o assorbito dall'armatura, espresso in [kg]
VRd Resis enza al laglio, espresso in [kg]

Nr.	Y	В, Н	A_{fs}	A_6	Nu	M_u	CS	V_{Rd}	V_{Rol}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,37	100, 80	8,04	8,04	979719	-6829	1027,68	25337		
3	0,73	100, 80	8,04	8,04	964206	-26884	505,70	25472		
4	1,10	100, 80	8,04	8,04	939414	-58935	328,47	25606		
5	1,55	100, 80	8,04	8,04	847242	-100528	210,69	25769		
6	1,99	100, 80	8,04	8,04	712174	-121863	137,41	25932		
7	2,44	100, 80	8,04	8,04	637843	-129395	100,54	26096		
8	2,89	100, 80	8,04	8,04	626154	- 130301	83,43	26259		
9	3,33	100, 80	8,04	8,04	671069	- 126361	77,43	26422		
10	3,78	100, 80	8,04	8,04	779212	-112545	79,28	26585		
11	4,23	100, 80	8,04	8,04	929604	-71616	84,59	26749		
12	4,67	100, 80	8,04	8,04	974952	12991	80,24	26912		
13	5,12	100, 80	8,04	8,04	837100	102368	62,88	27075		
14	5,57	100, 80	26,14	8,04	639068	159431	44,15	27239		
15	6,01	100, 80	38,70	24,63	491672	194460	31,45	30438		
16	6,46	100, 80	38,70	24,63	287695	161352	17,13	30601		
17	6,91	100, 80	38,70	24,63	171721	128072	9,56	30765		
18	7,35	100, 80	38,70	24,63	114612	108960	5,99	30928		
19	7,80	100, 80	38,70	24,63	83756	98468	4,13	31091		
20	8,30	100, 80	38,70	24,63	66479	92594	3,08	31274		
21	8 80	100.80	30.66	16.59	4021.8	61224	1.76	28/21		

99/144 100/144

Combinazione nº 27

Simbologia adottata
B base della sezione espressa in [cm]

base dellas ezione espressa în [cm] alezza della sezione espressa în [cm] area di armatura în corrispondenza del lenbo inferiore în [cmq] area di armatura în corrispondenza del lenbo superiore în [cmq] sărza nomalie ultime espresso în [kgi] no mento ultime espresso în [kgi] coefficiente sicurezza se zione Aliquota di tiglio assorbia del est, espresso în [kg] Aliquota di înglio assorbia della matura, espresso în [kg] Resis tanza al tuglio, espresso în [kg]

Fondazion e di valle

 $(L'ascissa\,\,X,espressa\,in\,\,[m],\grave{e}\,positiva\,verso\,\,monte\,con\,origine\,in\,corrispondenza\,dell'estre\,no\,\,libero\,della\,\,fondazione\,di\,valle)$

Nr.	Y	B, H	A_{fs}	A_6	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12.57	12,57	0	-46091	986,80	30124		
3	0,20	100, 100	1257	12,57	0	-46091	252,84	30124		
4	0,30	100, 100	1257	12,57	0	-46091	115,24	30124		
5	0,40	100, 100	1257	12,57	0	-46091	66,52	30124		
6	0,50	100, 100	12.57	12.57	0	-46091	43,72	30124		
7	0,60	100, 100	12.57	12.57	0	-46091	31.20	30124		
8	0.70	100, 100	12.57	25.13	0	-46041	23,55	30124		
9	0.80	100, 100	25.13	25.13	0	-91233	36,77	32019		
10	0,90	100, 100	25.13	31,42	Õ	-91258	29,94	32019		
11	1.00	100, 100	25.13	31.42	0	-91258	25,00	32019		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libe ro della fondazione di monte)

Nr.	Y	В, Н	Afs	An	Nu	Mu	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 100	37,70	12,57	0	0	1000,00	32019		
2	0,42	100, 100	37,70	12,57	0	46000	35,87	32019		
3	0,84	100, 100	37,70	12,57	0	46000	9,60	32019		
4	1,26	100, 100	1257	12,57	0	46091	4,52	32019		
5	1.68	100, 100	25.13	25,13	0	91233	5.18	30124		
6	2,10	100, 100	25,13	25,13	0	91233	3,43	30124		
7	2,52	100, 100	25,13	25,13	0	91233	2,49	126292	302998	126292
8	2,94	100, 100	25,13	25,13	0	91233	1,93	126292	302998	126292
9	3,36	100, 100	31,42	31,42	0	113697	1,96	126292	302998	126292
10	3.78	100, 100	31.42	31.42	0	113697	1.67	30124		
11	4,20	100, 100	37,70	31,42	0	113752	1,47	30124		

Verifica sperone di fondazione

Base sezione B= 100 cm Altezza sezione H=100 [cm]

T=13599,2 [kg]

A = 12,57 [cmq] A = 12,57 [cmq] Sollecitazioni M=13606,0 [kgm] T=1:

M oment o ultimo sezione M₀ = 46091,29 [kgm]

Coeff.sicurezza sezione = 3,39

COMBINAZIONE n° 28

Peso muro favorevole e Peso terrapieno sfavorevole

Valore della spinta statica Componente orizzontale della spint a statica Componente verticale della spinta a statica Punto d'applicazione della spinta Inclinaz, della spint a rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	41132,15 38299,24 15000,73 X = 4,20 21,39 53,01	[kg] [kg] [kg] [m] [°]	Y=-7,43	[m]
Spinta falda Punto d'applicazione della spinta della falda Sottospinta falda	7962,50 X = 4,20 15600,00	[kg] [m] [kg]	Y=-10,13	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte	91618,80 X = 2,10	[kg] [m]	Y=-4,42	[m]

Risultanti carichi esterni

Componente dir. X Componente dir. Y		-32663 11050	[kg] [kg]	
Risultanti Risultante dei carichi applicati in dir. crizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva dente di fondazione Sforzo normale sul piano di posa della fondazione Sforzo targenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Moment o rispetto al baricentro della fondazione		13599,24 139979,53 -58470,01 139979,53 13599,24 -0,92 6,00 140638,58 5,55 -128130,44	[kg kg kg m n n c c c kg kg kg kg kg kg kg kg kg kg	
Carico ultimo della fondazione Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte		405114,21 6,00 0,1975 4,4685	[kg] [m] [kg/cmq] [kg/cmq]	
Fattori per il calcolo della capacità portante C coff. capacità portante Fattori forma Fattori indinazione Fattori profondità I coefficient i N' tengono conto dei fattori di forma, profo	$N_c = 35.49$ $s_c = 1.00$ $i_c = 0.91$ $d_c = 1.12$ $N'_c = 36.07$	$\begin{array}{c} N_q=23\\ s_q=1\\ i_q=0\\ d_q=1\\ clinazione piano d\\ N_o=22 \end{array}$	00 91 06 i posa, inclinazione pendio	$N_{\gamma} = 22.02$ $s_{\gamma} = 1,00$ $i_{\gamma} = 0.75$ $d_{\gamma} = 1,06$ 3. $N'_{\gamma} = 17.53$

COEFFICIENTI DISICUREZZA
Coefficiente di sicurezza a scorrimento 5.48 2.89 Coefficiente di sicurezza a carico ultimo

101/144 102/144

Combinazione nº 28
L'ordinata Y (espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Siozo normale positivo di compressione, espresso in kg Taglio positivo ed diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,37	733,33	6,65	54,37
3	0,73	1466,67	53,16	217,48
4	1,10	2200,00	179,42	489,34
5	1,55	3093,33	477,14	822,11
6	1,99	3986,67	886,83	963,25
7	2,44	4880,00	1286,97	786,67
8	2,89	5773,33	1561,84	415, 12
9	3,33	6666,67	1631,91	-130,35
10	3,78	7560,00	1419,50	-849,74
11	4,23	8453,33	846,61	- 1747,97
12	4,67	9346,67	-161,91	-2757,36
13	5,12	10240,00	- 1627,91	-3833,29
14	5,57	11133,33	-3610,73	-5072,34
15	6,01	12026,67	-6183,63	-6475,47
16	6,46	12920,00	-9419,91	-8042,69
17	6,91	13813,33	-13392,87	-9774,01
18	7,35	14706,67	-18175,79	-11669,42
19	7,80	15600,00	-23842,48	-13733,20
20	8,30	16600,00	-30057,30	-11055,61
21	8,80	17600,00	-34830,66	-7975,02

Sollecitazioni fondazione di valle

Combinazione nº 28
L'asciss a X(spiess ai m pì è considerata positiva veso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in kgm
Taglio pas iñvo se diretto veso Falto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	- 56,69	-1121,92
3	0,20	-222,01	-2172,66
4	0,30	-488,85	-3152,22
5	0,40	-850,08	-4060,59
6	0,50	- 1298,59	-4897,78
7	0,60	- 1827,27	-5663,79
8	0,70	-2428,98	-6358,61
9	0,80	-3096,62	-6982,25
10	0,90	-3823,06	-7534,70
11	1.00	-4601.18	-8015.97

Sollecitazioni fondazione di monte

Combinazione nº 28
L'asciss Alkspress ain m) è considerata positiva veso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm Taglio pos invose diretto veso Talto, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	1366,61	6298,38
3	0,84	5114,84	11341,08
4	1,26	10844,07	16103,10
5	1,68	1851 3,65	20209,45
6	2,10	27644,21	23060,11

7	2,52	37708.35	24655,10
,	/-		,
8	2,94	48178,70	24994,41
9	3,36	58527,86	24078,04
10	3,78	6822 8,46	21905,99
11	4,20	76753,10	18478,27

103/144 104/144

Combinazione nº 28

Lordinata Y(espressa in [m]) è consideratapositiva verso il basso con origine in testa al muro Base dell'ascione espressa in [cm]

H altezza della sezione espressa in [cm]

A1, area di armatuni in corrispondenza del lenbo di montein [cm]

A2, area di armatuni in corrispondenza del lenbo di valle in [cm]

N4, sorzo normale ultimo espresso in [kgm]

M4, no mento ultimo espresso in [kgm]

CS coefficiente siamezza se sone

coefficiente sicurezza se zione Aliquota di taglio assorbito dal cls, espresso in [kg]

Aliquota di taglio assorbito dall'armatura, espresso in [kg] Resis tenza al taglio, espresso in [kg]

Nr.	Y	В, Н	A_{fs}	$\mathbf{A}_{\mathbf{fi}}$	Nu	M_u	CS	V_{Rd}	V_{Red}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,37	100, 80	8,04	8,04	978145	-8864	1333,83	25307		
3	0,73	100, 80	8,04	8,04	958137	-34730	653,28	25410		
4	1,10	100, 80	8,04	8,04	926549	-75566	421,16	25513		
5	1,55	100, 80	8,04	8,04	753592	-116241	243,62	25638		
6	1,99	100, 80	8,04	8,04	596195	-132622	149,55	25764		
7	2,44	100, 80	8,04	8,04	504413	-133025	103,36	25890		
8	2,89	100, 80	8,04	8,04	488975	-132280	84,70	26015		
9	3,33	100, 80	8,04	8,04	546242	- 133713	81,94	26141		
10	3,78	100, 80	8,04	8,04	672273	-126229	88,93	26267		
11	4,23	100, 80	8,04	8,04	896930	-89829	106,10	26392		
12	4,67	100, 80	8,04	8,04	971978	16837	103,99	26518		
13	5,12	100, 80	8,04	8,04	741848	117936	72,45	26643		
14	5,57	100, 80	26,14	8,04	457560	148394	41,10	26769		
15	6,01	100, 80	38,70	24,63	333529	171487	27,73	29931		
16	6,46	100, 80	38,70	24,63	178740	130319	13,83	30056		
17	6,91	100, 80	38,70	24,63	111175	107791	8,05	30182		
18	7,35	100, 80	38,70	24,63	78125	96554	5,31	30307		
19	7,80	100, 80	38,70	24,63	58897	90017	3,78	30433		
20	8,30	100, 80	38,70	24,63	47591	86172	2,87	30574		
21	8,80	100, 80	30,66	16,59	28993	57378	1,65	27678		

Armature e tensioni nei materiali della fondazione

Combinazione nº 28

Simbologia adottata
B base della sezione espressa in [cm]

altezza della sezione espressa in [cm]
area di armatura in corrispondenza del le nbo inferiore in [cmq]

Ars N_u M_u CS VRcd area di armatuta in corrispondenza del embo merore in [cmt]
area di armatuta in corrispondenza del lembo superiore in [cmt]
sforzo normale ultimo espresso in [kg:]
no mento ultimo espresso in [kg:n]
coefficiente sicurezza se zione
Alapora di taglio insosibito dal cls, espresso in [kg]

VRsd

Aliquota di taglio assorbito dall'armatura, espresso in [kg] Re sis tenza al taglio, espresso in [kg]

Fondazion e di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estre no libero della fondazione di valle)

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12,57	12,57	0	-46091	813,05	30124		
3	0,20	100, 100	12,57	12,57	0	-46091	207,61	30124		
4	0,30	100, 100	12,57	12,57	0	-46091	94,29	30124		
5	0,40	100, 100	12,57	12,57	0	-46091	54,22	30124		
6	0,50	100, 100	12,57	12,57	0	-46091	35,49	30124		
7	0,60	100, 100	12,57	12,57	0	-46091	25,22	30124		
8	0,70	100, 100	12,57	25,13	0	-46041	18,95	30124		
9	0,80	100, 100	25,13	25,13	0	-91233	29,46	32019		
10	0,90	100, 100	25,13	31,42	0	-91258	23,87	32019		
11	1,00	100, 100	25,13	31,42	0	-91258	19,83	32019		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre no libero della fondazione di nonte)

Nr.	Y	B, H	Ars	An	Nu	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	37,70	12,57	0	0	1000,00	32019		
2	0,42	100, 100	37,70	12,57	0	46000	33,66	32019		
3	0,84	100, 100	37,70	12,57	0	46000	8,99	32019		
4	1,26	100, 100	12,57	12,57	0	46091	4,25	32019		
5	1,68	100, 100	25,13	25,13	0	91233	4,93	30124		
6	2,10	100, 100	25,13	25,13	0	91233	3,30	30124		
7	2,52	100, 100	25,13	25,13	0	91233	2,42	126292	302998	126292
8	2,94	100, 100	25,13	25,13	0	91233	1,89	126292	302998	126292
9	3,36	100, 100	31,42	31,42	0	113697	1,94	126292	302998	126292
10	3,78	100, 100	31,42	31,42	0	113697	1,67	30124		
11	4,20	100, 100	37,70	31,42	0	113752	1,48	30124		

Verifica sperone di fondazione

Base sezione B= 100 cm Altezza sezione H=100 [cm]

A₆=12,57 [cmq] A₆=12,57 [cmq] Sollecitazioni M=13606,0 [kgm]

T=13599,2 [kg]

Moment o ultimo sezione M_u = 46091,29 [kgm] Coeff.sicurezza sezione = 3,39

COMBINAZIONE n° 29

Valore della spinta statica	43052,31	[kg]		
Componente orizzontale de lla spint a statica	41080,64	[kg]		
Componente verticale della spinta statica	12879,53	[kg]		
Punto d'applicazione del la spinta	X = 4,20	[m]	Y = -7,43	[m]
Inclinaz, della spinta rispetto alla normale alla superficie	17,41	[°]		
Inclinazione linea di rottura in condizioni statiche	50,33	[°]		
Spinta falda	6737,50	[kg]		
Punto d'applicazione del la spinta della falda	X = 4.20	[m]	Y = -10.13	[m]
Sottospinta falda	13200,00	[kg]		. ,
Peso terrapieno gravante sulla fondazione a monte	63428,40	[kg]		
Baricent ro terrapieno gravant e sulla fondazione a monte	X = 2,10	[m]	Y = -4,42	[m]
Risultanti carichi esterni				
Componente dir. X	-27638	[kg]		

105/144 106/144

Componente dir. Y	9350	[kg]
Risultanti		
Risult ant e dei carichi applicati in dir. orizzontale	20180,64	[kg]
Risult ant e dei carichi applicati in dir. verticale	106732,93	[kg]
Resistenza passiva dente di fondazione	-38586,60	[kg]
Moment o ribalt ante rispetto allo spigolo a valle	134521,51	[kgm]
Moment o st abilizzant e rispetto allo spigolo a valle	529042,21	[kgm]
Sforzo normale sul piano di posa della fondazione	106732,93	[kg]
Sforzo t angenziale sul piano di posa della fondazione	20180,64	[kg]
Eccentricità rispetto al baricentro della fondazione	-0,70	[m]
Lunghezza fondazione reagente	6,00	[m]
Risult ant e in fondazione	108624,02	[kg]
Inclinazione della risultante (rispetto alla normale)	10,71	[°]
Moment o risp ett o al baricentro del la fondazione	-74321,90	[kgm]

COEFFICIENTI DI SICUREZZA

3.93 Coefficiente di sicurezza a ribaltament o

Stabilità globale muro + terreno

Combinazione n° 30

Letaciste Xsono onsiderate positive vesso mone
Le ontinue to cono considerate positive vesso mone
Le ontinue to cono considerate positive vesso falto
Origine in testa al muno (spigolo contro tem)

peso della stiscia espresso in [kg]

ampolo fin la base della striscia forizzontale espresso in [°] (positivo antiomino)
ampolo dirato del arrico hango la stase della striscia espressa in [kg/cmq]

b minghezzo dela striscia espressa in [m]

pressione neltra lango la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -3,71 Y[m] = 2,78

Raggio del cerchio R[m]= 16,15

Xi[m]=-15,92 Xs[m]= 12,21 A scissa a valle del cerchio A scissa a monte del cerchio Larghezza del la striscia dx[m] = 1,12Coefficiente di sicurezza C= 1.55

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α (°)	Wsinα	b/cos a	ф	c	u
1	3850.87	73.12	3684.86	3.87	24.75	0.000	0.000
2	1024 1.46	62.06	9047.33	2.40	27.44	0.000	0.000
3	14197.31	54.37	11538.94	1.93	26.56	0.000	0.000
4	1723 9.40	47.96	12802.80	1.68	26.56	0.000	0.022
5	1978 5.77	42.28	13310.48	1.52	26.56	0.000	0.135
6	21892.50	37.08	13199.00	1.41	26.56	0.000	0.229
7	23646.07	32.22	12606.17	1.33	26.56	0.000	0.307
8	26500.86	27.60	12279.62	1.27	26.56	0.000	0.372
9	26944.42	23.18	10606.21	1.22	26.56	0.000	0.425
10	2791 0.89	18.90	9040.65	1.19	26.56	0.000	0.469
11	29493.28	14.73	7497.14	1.16	26.56	0.000	0.503
12	29107.05	10.63	5369.98	1.14	26.56	0.000	0.528
13	16836.14	6.59	1932.57	1.13	26.56	0.000	0.545
14	1246 8.29	2.58	562.13	1.13	26.56	0.000	0.554
15	12494.24	-1.41	-307.55	1.13	26.56	0.000	0.555
16	12343.20	-5.41	-1164.17	1.13	26.56	0.000	0.549
17	1201 2.93	-9.44	-1970.36	1.14	26.56	0.000	0.534
18	11498.36	-13.52	-2687.47	1.16	26.56	0.000	0.511
19	1079 1.23	-17.66	-3274.46	1.18	26.56	0.000	0.480
20	9879.33	-21.91	-3686.54	1.21	26.56	0.000	0.439
21	8745.34	-26.29	-3873.19	1.25	26.56	0.000	0.389
22	7364.80	-30.84	-3775.43	1.31	26.56	0.000	0.327
23	5702.74	-35.62	-3321.30	1.38	26.56	0.000	0.253
24	3707.44	-40.71	-2418.05	1.48	26.56	0.000	0.165
25	1297.91	-46.23	-937.22	1.63	26.56	0.000	0.058

 $\Sigma W_i = 375951,80 \, [kg]$ Σ Wisin α i= 96062,14 [kg] Σ Wtan ϕ = 187985, 14 [kg]

 Σt anoxt an $\phi = 3.37$

COMBINAZIONE nº 31 Peso mu ro sfavore vol e e Peso terrapieno sfavorevole

107/144 108/144

Sottospinta falda	15600,00	[kg]		
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	$104218,80 \\ X = 2,10$	[kg] [m]	Y=-4,42	[m]
Risultanti carichi esterni				
Componente dir. X	-32663	[kg]		
Componente dir. Y	11050	[kg]		
Risultanti				
Risult ant e dei carichi applicati in dir. orizzontale	19010,07	[kg]		
Risult ant e dei carichi applicati in dir. verticale	165475.40	[kg]		
Resistenza passiva dente di fondazione	-72495,40	[kg]		
Sforzo normale sul piano di posa della fondazione	165475,40	[kg]		
Sforzo t angenzia le sul piano di posa della fondazione	19010.07	[kg]		
Eccentricità rispetto al baricentro della fondazione	-0.62	[m]		
Lunghezza fondazione reagente	6,00	[m]		
Risult ant e in fondazione	166563,78	[kg]		
Inclinazione della risultante (rispetto alla normale)	6,55	[°]		
Moment o risp ett o al baricentro della fondazione	-103039,52	[kgm]		
Carico ultimo della fondazione	472386,83	[kg]		
Tensioni sul terreno				
Lunghezza fondazione reagente	6,00	[m]		
Tensione terreno allo spigolo di valle	1,0406	[kg/cmq]		
Tensione terreno allo spigolo di monte	4,4752	[kg/cmq]		

Fattori per il calcolo della capacità portante

C oeff. capacità portante	$N_c = 35.49$	$N_q = 23.18$	$N_{\gamma} = 22.02$				
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$				
Fattori indinazione	$i_c = 0,92$	$i_q = 0.92$	$i_{f} = 0.78$				
Fattori profon dità	$d_c = 1, 12$	$d_q = 1,06$	$d_{y} = 1,06$				
I coefficient i N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.							
	$N'_c = 36.45$	$N'_{q} = 22.53$	$N'_{\gamma} = 18.10$				

COEFFICIEN TI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	4.68
Coefficiente di sicurezza a carico ultimo	2.85

Sollecitazioni paramento

Combinazione nº 31

L'ordinat y (espressa in m) è conside na positiva verso il basso con origine in testa al muro Momento positivo settende le fibrecontroterra (a monte), espresso in kgm Sórzo normale positivo di compressione, espresso in kg Taglio positivo es diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,37	953,33	76,20	433,83
3	0,73	1906,67	331,49	976,88
4	1,10	2860,00	805,90	1628,94
5	1,55	4021,33	1716,09	2424,89
6	1,99	5182,67	2944,17	3008,26
7	2,44	6344,00	4330,52	3148,02
8	2,89	7505,33	5727,29	3077,19
9	3,33	8666,67	7053,58	2832,45
10	3,78	9828,00	8231,71	2413,79
11	4,23	10989,33	9183,70	1816,27
12	4,67	12150,67	9836,76	1126,68
13	5,12	13312,00	10182,18	393,75
14	5,57	14473,33	10164,11	-502,01
15	6,01	15634,67	9709,29	-1561,87
16	6,46	16796,00	8744,41	-2785,81
17	6,91	17957,33	7196,19	-4173,85
18	7,35	19118,67	4991,34	-5725,98
19	7,80	20280,00	2056,05	-7446,49
20	8,30	21580,00	-919,35	-4384,63
21	8,80	22880,00	-2261,15	-919,77

Sollecitazioni fondazione di valle

Combinazione nº 31
L'ascis a X(septesa ain m) e considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0.10	-18,52	-360,78
3	0,20	-70,25	-664,32
4	0,30	-149,47	-910,61
5	0,40	-250,46	-1099,65
6	0,50	-367,49	-1231,46
7	0,60	-494,84	-1306,02
8	0,70	-626,79	-1323,33
9	0,80	-757,60	-1283,40
10	0,90	-881,56	-1186,23
11	1,00	-992,94	-1031,81

Sollecitazioni fondazione di monte

Combinazione nº 31

Comminazione II 37 .

Lascisa a (Sepsessa in m) è considerata positiva verso valle con origine in corrispondenz adell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in Igm Taglio positivos de diretto usevo Tallo, opresso in Igm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	959,80	4402,17
3	0,84	3556,45	7794,56
4	1,26	7530,63	11444,65
5	1,68	13090,99	14864,96
6	2,10	19875,83	17275,48

109/144 110/144

2,52 27461,03 18676,22 2,94 35422,48 19067,16 18448,32 16819,70 3,36 3,78 43336,07 50777,70 10 11 4,20 57323,25 14181,28

Armature e tensioni nei materiali del muro

Combinazione nº 31

Lordinata V(espressa in [mi]) è considerata positiva veso il basso con origine in testa al muro B boare dell'assezione espressa in [cmi] a laceza della sevicine espressa in [cmi] al laceza della sevicine espressa in [cmi] a laceza della sevicine espressa in [kgi]

M, sobre no monte dittime espresso in [kgi]

M, monteno ultimo espresso in [kgi]

VRed Aliquota di taglo assorbito dall'estratura, espresso in [kgi]

VRd Resis tenza al taglio, espresso in [kgi]

Nr.	Y	В. Н	A_{fs}	A_{fi}	Nu	M_u	CS	V_{Rd}	V_{Red}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	ō	1000,00	25203		
2	0,37	100, 80	8,04	8,04	927648	-74144	973,06	25337		
3	0,73	100, 80	8,04	8,04	705276	- 122618	369,90	25472		
4	1,10	100, 80	8,04	8,04	465407	-131144	162,73	25606		
5	1,55	100, 80	8,04	8,04	213847	-91258	53,18	25769		
6	1,99	100, 80	8,04	8,04	102548	-58256	19,79	25932		
7	2,44	100, 80	8,04	8,04	68238	-46581	10,76	26096		
8	2,89	100, 80	8,04	8,04	55249	-42161	7,36	26259		
9	3,33	100, 80	8,04	8,04	49326	-40145	5,69	26422		
10	3,78	100, 80	8,04	8,04	46974	-39345	4,78	26585		
11	4,23	100, 80	8,04	8,04	47153	-39406	4,29	26749		
12	4,67	100, 80	8,04	8,04	49778	-40299	4,10	26912		
13	5,12	100, 80	8,04	8,04	55016	-42081	4,13	27075		
14	5,57	100, 80	26,14	8,04	177938	-124960	12,29	30840		
15	6,01	100, 80	38,70	24,63	297795	- 184933	19,05	35030		
16	6,46	100, 80	38,70	24,63	372373	-193866	22,17	35193		
17	6,91	100, 80	38,70	24,63	494703	-198247	27,55	35356		
18	7,35	100, 80	38,70	24,63	668490	-174524	34,97	35520		
19	7,80	100, 80	38,70	24,63	1006628	- 102055	49,64	35683		
20	8,30	100, 80	38,70	24,63	1139988	48565	52,83	31274		
21	8.80	100.80	30.66	16.59	1040126	102792	45.46	28421		

111/144 112/144

Combinazione nº 31
Simbologia adottata
B base della sezione espressa in [cm]

base dellas ezione espressa în [cm] alezza della sezione espressa în [cm] area di armatura în corrispondenza del lenbo inferiore în [cmq] area di armatura în corrispondenza del lenbo superiore în [cmq] sărza nomalie ultime espresso în [kgi] no mento ultime espresso în [kgi] coefficiente sicurezza se zione Aliquota di tiglio assorbia del est, espresso în [kg] Aliquota di înglio assorbia della matura, espresso în [kg] Resis tanza al tuglio, espresso în [kg]

Fondazion e di valle

 $(L'ascissa\,\,X,espressa\,in\,\,[m],\grave{e}\,positiva\,verso\,\,monte\,con\,origine\,in\,corrispondenza\,dell'estre\,no\,\,libero\,della\,\,fondazione\,di\,valle)$

Nr.	Y	В, Н	A_{fs}	A_6	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	1257	12,57	0	-46091	2489,26	30124		
3	0,20	100, 100	1257	12,57	0	-46091	656,12	30124		
4	0,30	100, 100	1257	12,57	0	-46091	308,36	30124		
5	0,40	100, 100	1257	12,57	0	-46091	184,03	30124		
6	0.50	100, 100	12.57	12.57	0	-46091	125,42	30124		
7	0.60	100, 100	12.57	12.57	0	-46091	93,14	30124		
8	0.70	100, 100	12.57	25.13	0	-46041	73,45	30124		
9	0.80	100, 100	25.13	25.13	0	-91233	120,42	32019		
10	0.90	100, 100	25.13	31,42	Õ	-91258	103,52	32019		
11	1.00	100, 100	25.13	31.42	0	-91258	91,91	32019		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libero della fondazione di monte)

Nr.	Y	В, Н	Ars	An	Nu	Mu	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 100	37,70	12,57	0	0	1000,00	32019		
2	0,42	100, 100	37,70	12,57	0	46000	47,93	32019		
3	0,84	100, 100	37,70	12,57	0	46000	12,93	32019		
4	1,26	100, 100	1257	12,57	0	46091	6,12	32019		
5	1,68	100, 100	25,13	25,13	0	91233	6,97	30124		
6	2,10	100, 100	25,13	25,13	0	91233	4,59	30124		
7	2,52	100, 100	25,13	25,13	0	91233	3,32	126292	302998	126292
8	2,94	100, 100	25,13	25,13	0	91233	2,58	126292	302998	126292
9	3,36	100, 100	31,42	31,42	0	113697	2,62	126292	302998	126292
10	3,78	100, 100	31,42	31,42	0	113697	2,24	30124		
11	4,20	100, 100	37,70	31,42	0	113752	1,98	30124		

Verifica sperone di fondazione

Base sezione B= 100 cm Altezza sezione H=100 [cm]

T=19010,1 [kg]

A = 12,57 [cmq] A = 12,57 [cmq] Sollecitazioni M=19019,6 [kgm] T=1 M oment o ultimo sezione M₀ = 46091,29 [kgm]

Coeff.sicurezza sezione = 2,42

COMBINAZIONE n° 32

Peso muro favorevole e Peso terrapieno sfavorevole

Valore del la spinta statica	46896,54	[kg]		
Componente orizzontale della spint a statica	43710,07	[kg]		
Componente verticale della spinta statica	16991,60	[kg]		
Punto d'applicazione della spinta	X = 4,20	[m]	Y = -6.89	[m]
Inclinaz, della spintarispetto alla normale alla superficie	21,24	[°]		
Inclinazione linea di rottura in condizioni statiche	55,57	[°]		
Spinta falda	7062.50	[log]		
Spinta falda	7962,50 X = 4.20	[kg]	V= -10.13	[m]
Punto d'applicazione del la spinta della falda	X = 4.20	[m]	Y=-10,13	[m]
			Y=-10,13	[m]
Punto d'applicazione del la spinta della falda	X = 4.20	[m]	Y=-10,13	[m]
Punto d'applicazione della spinta della falda Sottospinta falda	X = 4.20 15600,00	[m] [kg]	Y = -10,13 Y = -4,42	[m]

Risultanti carichi esterni

Componente dir. X Componente dir. Y		-32663 11050	[kg] [kg]
Risultanti Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva dente di fondazione Sforzo normale sul piano di posa della fondazione Sforzo tangerziale sul piano di posa della fondazione Sforzo tangerziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione		19010,07 154570,40 -66892,59 154570,40 19010,07 -0,70 6,00 155735,01 7,01 -108675,02 470279,86	[kg] [kg] [kg] [kg] [m] [에 [kg] [[°]] [kgm] [kg]
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte		6,00 0,7649 4,3874	[m] [kg/cmq] [kg/cmq]
Fattori per il calcolo della capacità portante Coeff. capacità portante Fattori forma Fattori indinazione Fattori profon dità I coefficient i N' tengono conto dei fattori di forma, profon	$\begin{aligned} N_c &= 35.49 \\ s_c &= 1.00 \\ i_c &= 0.93 \\ d_c &= 1.12 \end{aligned}$ which inclinazione carico, incl	$\begin{aligned} N_q &= 23.\\ s_q &= 1.6\\ i_q &= 0.9\\ d_q &= 1.6\\ linazione piano di \\ N_q &= 22.8 \end{aligned}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

4.36

3.04

113/144 114/144

COEFFICIENTI DISICUREZZA
Coefficiente di sicurezza a scorrimento

Coefficiente di sicurezza a carico ultimo

Combinazione nº 32
L'ordinata Y(espressa in m)è considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Siozo normale positivo di compressione, espresso in kg Taglio positivo se diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,37	733,33	76,20	433,83
3	0,73	1466,67	331,49	976,88
4	1,10	2200,00	805,90	1628,94
5	1,55	3093,33	1716,09	2424,89
6	1,99	3986,67	2944,17	3008,26
7	2,44	4880,00	4330,52	3148,02
8	2,89	5773,33	5727,29	3077,19
9	3,33	6666,67	7053,58	2832,45
10	3,78	7560,00	8231,71	2413,79
11	4,23	8453,33	9183,70	1816,27
12	4,67	9346,67	9836,76	1126,68
13	5,12	10240,00	10182,18	393,75
14	5,57	11133,33	10164,11	-502,01
15	6,01	12026,67	9709,29	- 1561,87
16	6,46	12920,00	8744,41	-2785,81
17	6,91	13813,33	7196,19	-4173,85
18	7,35	14706,67	4991,34	-5725,98
19	7,80	15600,00	2056,05	-7446,49
20	8,30	16600,00	-919,35	-4384,63
21	8,80	17600,00	-2261,15	-919,77

Sollecitazioni fondazione di valle

Combinazione nº 32
L'ascisa X(spress ain m) è considerata positiva veso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in kgm
Taglio pas iñvo se diretto veso Falto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	-28,50	-559,89
3	0,20	-109,97	- 1059,40
4	0,30	-238,37	- 1498,54
5	0,40	-407,66	- 1877,31
6	0,50	-611,82	-2195,70
7	0,60	-844,79	-2453,71
8	0,70	-1100,54	-2651,35
9	0,80	- 1373,05	-2788,62
10	0,90	- 1656,26	-2865,51
11	1.00	- 1944.14	-2882.02

Sollecitazioni fondazione di monte

Combinazione nº 32

Comminazione II ali considerata positiva verso valle on origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo set tende le fibre infacio, espresso in Igm Taglio positivo est ende col entreto veso fondo, peresso in Igm Taglio positivo e di entreto veso fondo, peresso in Igm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	1043,85	4793,19
3	0,84	3877,18	8521,37
4	1,26	8179,44	12159,53
5	1,68	13990,08	15332,68
6	2,10	20909,79	17440,81

7	2,52	2849 1.26	18483,92
8	2.94	36287.19	18462.03
9	3,36	43850.26	17375,11
10	3,78	50733,18	15223,18
11	4,20	5648 8,63	12006,24

115/144 116/144

Combinazione nº 32

Lordinata Y(espressa in [m]) è consideratapositiva vesso il basso con origine in testa al muro Base dell'ascione espressa in [cm]

H altezza della sezione espressa in [cm]

A1 altezza della sezione espressa in [cm]

A2 area di armatun in corrispondenza del lenbo di montein [cm]

N4 sibrzo normale ultimo espresso in [kgm]

M4 no mento ultimo espresso in [kgm]

CS coefficiente siamezza sezione

coefficiente sicurezza se zione Aliquota di taglio assorbito dal cls, espresso in [kg] Aliquota di taglio assorbito dall'armatura, espresso in [kg] Resis tenza al taglio, espresso in [kg]

Nr.	Y	В, Н	A_{fs}	A_6	Nu	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	V_{Ral}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,37	100, 80	8,04	8.04	886546	-92117	1208,93	25307		
3	0,73	100, 80	8,04	8,04	588721	-133060	401,40	25410		
4	1,10	100, 80	8,04	8.04	300253	- 109988	136,48	25513		
5	1,55	100, 80	8,04	8,04	108913	-60421	35,21	25638		
6	1,99	100, 80	8,04	8.04	58661	-43322	14,71	25764		
7	2,44	100, 80	8,04	8,04	42697	-37889	8,75	25890		
8	2,89	100, 80	8,04	8,04	35843	-35557	6,21	26015		
9	3,33	100, 80	8,04	8,04	32546	-34435	4,88	26141		
10	3,78	100, 80	8,04	8,04	31206	-33979	4,13	26267		
11	4,23	100, 80	8,04	8,04	31309	-34014	3,70	26392		
12	4,67	100, 80	8,04	8,04	32802	-34522	3,51	26518		
13	5,12	100, 80	8,04	8,04	35715	-35513	3,49	26643		
14	5,57	100, 80	26,14	8,04	121305	-110745	10,90	30370		
15	6,01	100, 80	38,70	24,63	209263	-168940	17,40	34522		
16	6,46	100, 80	38,70	24,63	265370	- 179606	20,54	34648		
17	6,91	100, 80	38,70	24,63	372070	- 193834	26,94	34774		
18	7,35	100, 80	38,70	24,63	564953	- 191741	38,41	34899		
19	7,80	100, 80	38,70	24,63	927130	-122194	59,43	35025		
20	8,30	100, 80	38,70	24,63	1130302	62599	68,09	30574		
21	8,80	100, 80	30,66	16,59	972616	124956	55,26	27678		

Armature e tensioni nei materiali della fondazione

Combinazione nº 32

Simbologia adottata
B base della sezione espressa in [cm]

bate de llasezione espressa in [cm]
altezza della sezione espressa in [cm]
area di armatua in corrispondenza del enbo interiore in [cmq]
area di armatua in corrispondenza del enbo superiore in [cmq]
sforzo normale ultimo espresso in [kg]
no mento ultimo espresso in [kgm]
coefficiente sicurezza sezione
Aliquata di [gib ossobito dal els, espresso in [kg]] Ars N_u M_u CS VRcd

VRsd

Aliquota di taglio assorbito dall'armatura, espresso in [kg] Re sis tenza al taglio, espresso in [kg]

Fondazion e di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estre no libero della fondazione di valle)

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12,57	12,57	0	-46091	1617,37	30124		
3	0,20	100, 100	12,57	12,57	0	-46091	419,14	30124		
4	0,30	100, 100	12,57	12,57	0	-46091	193,36	30124		
5	0,40	100, 100	12,57	12,57	0	-46091	113,06	30124		
6	0,50	100, 100	12,57	12,57	0	-46091	75,34	30124		
7	0,60	100, 100	12,57	12,57	0	-46091	54,56	30124		
8	0,70	100, 100	12,57	25,13	0	-46041	41,83	30124		
9	0,80	100, 100	25,13	25,13	0	-91233	66,45	32019		
10	0,90	100, 100	25,13	31,42	0	-91258	55,10	32019		
11	1,00	100, 100	25,13	31,42	0	-91258	46,94	32019		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre no libe ro della fondazione di nonte)

Nr.	Y	B, H	Ars	An	Nu	M_{u}	CS	V_{Rd}	$\mathbf{V}_{\mathbf{Red}}$	V_{Rsd}
1	0,00	100, 100	37,70	12,57	0	0	1000,00	32019		
2	0,42	100, 100	37,70	12,57	0	46000	44,07	32019		
3	0,84	100, 100	37,70	12,57	0	46000	11,86	32019		
4	1,26	100, 100	12,57	12,57	0	46091	5,64	32019		
5	1,68	100, 100	25,13	25,13	0	91233	6,52	30124		
6	2,10	100, 100	25,13	25,13	0	91233	4,36	30124		
7	2,52	100, 100	25,13	25,13	0	91233	3,20	126292	302998	126292
8	2,94	100, 100	25,13	25,13	0	91233	2,51	126292	302998	126292
9	3,36	100, 100	31,42	31,42	0	113697	2,59	126292	302998	126292
10	3,78	100, 100	31,42	31,42	0	113697	2,24	30124		
11	4,20	100, 100	37,70	31,42	0	113752	2,01	30124		

Verifica sperone di fondazione

Base sezione B= 100 cm Altezza sezione H=100 [cm]

A₆=12,57 [cmq] A₆=12,57 [cmq] Sollecitazioni M=19019,6 [kgm]

Moment o ultimo sezione $M_u = 46091,29$ [kgm]

Coeff.sicurezza sezione = 2,42

COMBINAZIONE n° 33

Peso mu ro sfavore vol e e Peso terrapieno favore vole

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione del la spinta Inclinaz, della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	46896,54 43710,07 16991,60 X = 4,20 21,24 55,57	[kg] [kg] [kg] [m] [°]	Y = -6,89	[m]
Spinta falda Punto d'applicazione del la spinta della falda Sottospinta falda	7962,50 X = 4,20 15600,00	[kg] [m] [kg]	Y = -10,13	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte	83076,00 X = 2,10	[kg] [m]	Y = -4,42	[m]

Risultanti carichi esterni

117/144 118/144

Componente dir . X Componente dir . Y	-32663 11050	[kg] [kg]
Risultante Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva dente di fondazione Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	19010.07 144332,60 -63960.66 144332,60 19010.07 -0.58 6.00 145579,13 7.50 -84011.00 501412,20	[8] [8] [8] [8] [8] [8]
<u>Tensioni sul terreno</u> Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	6,00 1,0054 3,8057	[m] [kg/cmq] [kg/cmq]

Fattori per il calcolo della capacità portante

Coeff. capacità portante No	$= 35.49$ $N_q = 23.18$	$N_{\gamma} = 22.02$
Fattori forma	$s_c = 1,00$ $s_q = 1,00$	$s_{\gamma} = 1,00$
Fattori indinazione	$i_c = 0.94$ $i_q = 0.94$	$i_{r} = 0.82$
Fattori profon dità	$d_c = 1,12$ $d_q = 1,06$	$d_{r} = 1.06$

I coefficient i N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio. $N'_{7} = 19.24$ $N'_c = 37.19$ $\hat{N}'_q = 22.99$

COEFFICIEN TI DISICUREZZA
Coefficiente di sicurezza a scorrimento

4.10 Coefficiente di sicurezza a carico ultimo 3.47

Sollecitazioni paramento

Combinazione nº 33

L'ordinat y (espressa in m) è conside na positiva verso il basso con origine in testa al muro Momento positivo settende le fibrecontroterra (a monte), espresso in kgm Sórzo normale positivo di compressione, espresso in kg Taglio positivo es diretto di montre verso valle, espresso in kg

Nr.	Y	N	М	Т
1	0,00	0,00	0,00	0,00
2	0,37	953,33	76,20	433,83
3	0,73	1906,67	331.49	976.88
4	1,10	2860,00	805,90	1628,94
5	1,55	4021,33	1716,09	2424,89
6	1,99	5182,67	2944.17	3008,26
7	2,44	6344,00	4330.52	3148,02
8	2,89	7505,33	5727,29	3077,19
9	3,33	8666,67	7053,58	2832,45
10	3,78	9828,00	8231,71	2413,79
11	4,23	10989,33	9183,70	1816,27
12	4,67	12150,67	9836,76	1126,68
13	5,12	13312,00	10182,18	393,75
14	5,57	14473,33	10164,11	-502,01
15	6,01	15634,67	9709,29	-1561,87
16	6,46	16796,00	8744,41	-2785,81
17	6,91	17957,33	7196,19	-4173,85
18	7,35	19118,67	4991,34	-5725,98
19	7,80	20280,00	2056,05	-7446,49
20	8,30	21580,00	-919,35	-4384,63
21	8,80	22880,00	-2261,15	-919,77

Sollecitazioni fondazione di valle

Combinazione nº 33
L'ascis a X(septesa ain m) e considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr.	X	M	Т
1	0,00	0.00	0,00
2	0,10	-20,45	-401,30
3	0,20	-78,70	-755,93
4	0,30	-170,09	-1063,89
5	0,40	-289,93	-1325,18
6	0,50	-433,57	-1539,79
7	0,60	-596,33	- 1707,73
8	0,70	-773,56	-1829,00
9	0,80	-960,57	- 1903,59
10	0,90	-1152,72	-1931,51
11	1,00	-1345,32	-1912,76

Sollecitazioni fondazione di monte

Combinazione nº 33

L'asciss a X(espress a in m) è considerata positiva verso valle con origine in corrispondenz a del l'estremo libero della fondazione di monte Momento positivo se tende le fibre inferiori, espresso in kgm Ta glio positivo se diretto verso l'alto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	382,33	1683,42
3	0,84	1298,81	2543,53
4	1,26	2568,41	3847,83
5	1,68	4478,12	5108,83
6	2,10	6744,56	5546,51

119/144 120/144

2,52 9021,93 5160,89 2,94 3951,97 10964,45 3,36 3,78 12226,32 12461,76 1919.73 10 -935,82 11 4,20 11324,97 -4614,67

Armature e tensioni nei materiali del muro

Combinazione nº 33

Lordinata V(espressa in [mi]) è considerata positiva verso il basso con origine in testa al muro B boare dell'assezione espressa in [cmi] di alezza della sevicane espressa in [cmi] di alezza della sevicane espressa in [cmi] di area di armattura in corrispondenza del embo di monte in [cmi] serio di armattura in corrispondenza del embo di valle in [cmi] si serio nomine il trium espresso in [kgi]
M, sobre no nomine il ufirim espresso in [kgi]
VRed Aliquota di taglo assorbito dal els, espresso in [kgi]
VRed Resis tenza al taglio, espresso in [kgi]

NT	Y	D 11			N		CS	X 7	X 7	*7
Nr.		B, H	Ars	A _{fi}	Nu	M _u		V _{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,37	100, 80	8,04	8,04	927648	-74144	973,06	25337		
3	0,73	100, 80	8,04	8,04	705276	- 122618	369,90	25472		
4	1,10	100, 80	8,04	8,04	465407	-131144	162,73	25606		
5	1,55	100, 80	8,04	8,04	213847	-91258	53,18	25769		
6	1,99	100, 80	8,04	8,04	102548	-58256	19,79	25932		
7	2,44	100, 80	8,04	8,04	68238	-46581	10,76	26096		
8	2,89	100, 80	8,04	8,04	55249	-42161	7,36	26259		
9	3,33	100, 80	8,04	8,04	49326	-40145	5,69	26422		
10	3,78	100, 80	8,04	8,04	46974	-39345	4,78	26585		
11	4,23	100, 80	8,04	8,04	47153	-39406	4,29	26749		
12	4,67	100, 80	8,04	8,04	49778	-40299	4,10	26912		
13	5,12	100, 80	8,04	8,04	55016	-42081	4,13	27075		
14	5,57	100, 80	26,14	8,04	177938	-124960	12,29	30840		
15	6,01	100, 80	38,70	24,63	297795	- 184933	19,05	35030		
16	6,46	100, 80	38,70	24,63	372373	- 193866	22,17	35193		
17	6,91	100, 80	38,70	24,63	494703	- 198247	27,55	35356		
18	7,35	100, 80	38,70	24,63	668490	-174524	34,97	35520		
19	7,80	100, 80	38,70	24,63	1006628	-102055	49,64	35683		
20	8,30	100, 80	38,70	24,63	1139988	48565	52,83	31274		
21	8,80	100, 80	30,66	16,59	1040126	102792	45,46	28421		

121/144 122/144

Combinazione n° 33

Simbologia adutata
B base de lla sezione espressa in [cm]
H alecza della sezione espressa in [cm]
An area di armatun in corrispondenza del lenbo inferiore in [cm]
An area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in corrispondenza del lenbo superfore in [cm]
M, area di armatun in socione dal consenso in [kg]
VRSd Aliquota di tigglio sosofito dal l'armatura, espresso in [kg]
VRd Resistenza al taglio, espresso in [kg]

Fondazion e di valle

 $(L'ascissa\,\,X,espressa\,in\,\,[m],\grave{e}\,positiva\,verso\,\,monte\,con\,origine\,in\,corrispondenza\,dell'estre\,no\,\,libero\,della\,\,fondazione\,di\,valle)$

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0.10	100, 100	12.57	12.57	0	-46091	2253,40	30124		
3	0.20	100, 100	12.57	12.57	0	-46091	585,62	30124		
4	0,30	100, 100	1257	12,57	0	-46091	270,99	30124		
5	0,40	100, 100	1257	12,57	0	-46091	158,98	30124		
6	0.50	100, 100	12.57	12.57	0	-46091	106,31	30124		
7	0,60	100, 100	12.57	12.57	0	-46091	77,29	30124		
8	0.70	100, 100	1257	25.13	0	-46041	59,52	30124		
9	0.80	100, 100	25.13	25.13	0	-91233	94,98	32019		
10	0,90	100, 100	25.13	31,42	Õ	-91258	79,17	32019		
11	1,00	100, 100	25,13	31,42	0	-91258	67,83	32019		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libero della fondazione di monte)

Nr.	Y	В, Н	Ars	An	Nu	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	37,70	12,57	0	0	1000,00	32019		
2	0,42	100, 100	37,70	12,57	0	46000	120,31	32019		
3	0,84	100, 100	37,70	12,57	0	46000	35,42	32019		
4	1,26	100, 100	12,57	12,57	0	46091	17,95	32019		
5	1,68	100, 100	25,13	25,13	0	91233	20,37	30124		
6	2,10	100, 100	25,13	25,13	0	91233	13,53	30124		
7	2,52	100, 100	25,13	25,13	0	91233	10,11	126292	302998	126292
8	2,94	100, 100	25,13	25,13	0	91233	8,32	126292	302998	126292
9	3,36	100, 100	31,42	31,42	0	113697	9,30	126292	302998	126292
10	3,78	100, 100	31,42	31,42	0	113697	9,12	126292	302998	126292
11	4,20	100, 100	37,70	31,42	0	113752	10,04	252584	302998	252584

Verifica sperone di fondazione Base sezione B= 100 cm Altezza sezione H=100 [cm]

T=19010,1 [kg]

M_s=12.57 [cmq] A_s=12.57 [cmq] Sollecitazioni M=19019,6 [kgm] T=1

Momento ultimo sezione M_s = 46091,29 [kgm]

Coeff.sicurezza sezione = 2,42

COMBINAZIONE n° 34

Peso mu ro favorevole e Peso terrapieno favorevole

Valore del la spinta statica Componente orizzontale del la spinta statica Componente verticale del la spinta statica Punto d'applicazione del la spinta Inclinaz, della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	46896,54 43710,07 16991,60 X = 4,20 21,24 55,57	[kg] [kg] [kg] [m] [°] [°]	Y=-6,89	[m]
Spinta falda Punto d'applicazione della spinta della falda Sottospinta falda	7962,50 X = 4,20 15600,00	[kg] [m] [kg]	Y=-10,13	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte	83076,00 X = 2,10	[kg] [m]	Y=-4,42	[m]

Risultanti carichi esterni

Componente dir. X Componente dir. Y		-32663 11050	[kg] [kg]
Risultanti Risultanti dei carichi applicati in dir, orizzontale Risultante dei carichi applicati in dir, verticale Resistenza passiva dente di fondazione Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Moment o rispetto al baricentro della fondazione Carico ul limo della fondazione		19010,07 133427,60 -58357,85 133427,60 19010,07 -0,67 6,00 134775,03 8,11 -89646,50 501165,34	[kg] [kg] [kg] [kg] [m] [m] [kg] [c] [kgm]
Tensioni all terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte		6,00 0,7297 3,7179	[kg] [m] [kg/cmq] [kg/cmq]
Fattori per il calcolo della capacità portante Coeff. capacità portante Fattori forma Fattori indinazione Fattori profondità I coefficient i N' tengono conto dei fattori di forma, profo	$\begin{split} N_c &= 35.49 \\ s_c &= 1,00 \\ i_c &= 0,95 \\ d_c &= 1,12 \end{split}$ nditā, inclinazione carico, inc	$\begin{aligned} N_q &= 23.\\ s_q &= 1.\\ i_q &= 0.\\ d_q &= 1.\\ linazione piano di \\ N_q' &= 23.4 \end{aligned}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

3.78

3.76

123/144 124/144

COEFFICIENTI DISICUREZZA
Coefficiente di sicurezza a scorrimento

Coefficiente di sicurezza a carico ultimo

Combinazione nº 34

Lordinata Y(espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Siozo normale positivo di compressione, espresso in kg
Taglio positivo ed diretto di montreveno valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,37	733,33	76,20	433,83
3	0,73	1466,67	331,49	976,88
4	1,10	2200,00	805,90	1628,94
5	1,55	3093,33	1716,09	2424,89
6	1,99	3986,67	2944,17	3008,26
7	2,44	4880,00	4330,52	3148,02
8	2,89	5773,33	5727,29	3077,19
9	3,33	6666,67	7053,58	2832,45
10	3,78	7560,00	8231,71	2413,79
11	4,23	8453,33	9183,70	1816,27
12	4,67	9346,67	9836,76	1126,68
13	5,12	10240,00	10182,18	393,75
14	5,57	11133,33	10164,11	-502,01
15	6,01	12026,67	9709,29	- 1561,87
16	6,46	12920,00	8744,41	-2785,81
17	6,91	13813,33	7196,19	-4173,85
18	7,35	14706,67	4991,34	-5725,98
19	7,80	15600,00	2056,05	-7446,49
20	8,30	16600,00	-919,35	-4384,63
21	8,80	17600,00	-2261,15	-919,77

Sollecitazioni fondazione di valle

Combinazione nº 34
L'ascisa X(spress ain m) è considerata positiva veso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in kgm
Taglio pas iñvo se diretto veso Falto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	-30,44	-600,41
3	0,20	-118,42	-1151,02
4	0,30	-258,98	- 1651,83
5	0,40	-447,13	-2102,83
6	0,50	-677,89	-2504,03
7	0,60	-946,27	-2855,43
8	0,70	-1247,31	-3157,02
9	0,80	- 1576,02	-3408,80
10	0.90	- 1927,41	-3610,79
11	1.00	-2296.52	- 3762.97

Sollecitazioni fondazione di monte

Combinazione nº 34
L'asciss a Xispiess ain m) è considerata positiva veso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo se tende le fibre inferiori, espresso in kgm Taglio pos invose diretto veso Talto, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	466,38	2074,44
3	0,84	1619,53	3270,34
4	1,26	3217,22	4562,71
5	1,68	5377,22	5576,54
6	2,10	7778,53	5711,84

7	2,52	10052.17	4968.60
,	/-		
8	2,94	11829,16	3346,83
9	3,36	12740,51	846,52
10	3,78	12417,23	-2532,33
11	4.20	1049 0.3 5	-6789.71

125/144 126/144

Combinazione nº 34

Lordinata Y(espressa in [m]) è consideratapositiva vesso il basso con origine in testa al muro Base dell'ascione espressa in [cm]

H altezza della sezione espressa in [cm]

A1, area di armatuni in corrispondenza del lenbo di montein [cm]

A2, area di armatuni in corrispondenza del lenbo di valle in [cm]

N4, sorzo normale ultimo espresso in [kgm]

M4, no mento ultimo espresso in [kgm]

CS coefficiente siamezza se sone

coefficiente sicurezza se zione Aliquota di taglio assorbito dal cls, espresso in [kg]

Aliquota di taglio assorbito dall'armatura, espresso in [kg] Re sis tenza al taglio, espresso in [kg]

Nr.	Y	В, Н	A_{fs}	A_6	Nu	M_u	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 80	8,04	8,04	0	0	1000,00	25203		
2	0,37	100, 80	8,04	8,04	886546	-92117	1208,93	25307		
3	0,73	100, 80	8,04	8,04	588721	-133060	401,40	25410		
4	1,10	100, 80	8,04	8,04	300253	- 109988	136,48	25513		
5	1,55	100, 80	8,04	8,04	108913	-60421	35,21	25638		
6	1,99	100, 80	8,04	8,04	58661	-43322	14,71	25764		
7	2,44	100, 80	8,04	8,04	42697	-37889	8,75	25890		
8	2,89	100, 80	8,04	8,04	35843	-35557	6,21	26015		
9	3,33	100, 80	8,04	8,04	32546	-34435	4,88	26141		
10	3,78	100, 80	8,04	8,04	31206	-33979	4,13	26267		
11	4,23	100, 80	8,04	8,04	31309	-34014	3,70	26392		
12	4,67	100, 80	8,04	8,04	32802	-34522	3,51	26518		
13	5,12	100, 80	8,04	8,04	35715	-35513	3,49	26643		
14	5,57	100, 80	26,14	8,04	121305	-110745	10,90	30370		
15	6,01	100, 80	38,70	24,63	209263	-168940	17,40	34522		
16	6,46	100, 80	38,70	24,63	265370	- 179606	20,54	34648		
17	6,91	100, 80	38,70	24,63	372070	- 193834	26,94	34774		
18	7,35	100, 80	38,70	24,63	564953	- 191741	38,41	34899		
19	7,80	100, 80	38,70	24,63	927130	-122194	59,43	35025		
20	8,30	100, 80	38,70	24,63	1130302	62599	68,09	30574		
21	8,80	100, 80	30,66	16,59	972616	124956	55,26	27678		

Armature e tensioni nei materiali della fondazione

Combinazione nº 34

Simbologia adottata
B base della sezione espressa in [cm]

bate de llasezione espressa in [cm]
altezza della sezione espressa in [cm]
area di armatua in corrispondenza del enbo interiore in [cmq]
area di armatua in corrispondenza del enbo superiore in [cmq]
sforzo normale ultimo espresso in [kg]
no mento ultimo espresso in [kgm]
coefficiente sicurezza sezione
Aliquata di [gib ossobito dal els, espresso in [kg]] Ars N_u M_u CS VRcd

VRsd

Aliquota di taglio assorbito dall'armatura, espresso in [kg] Re sis tenza al taglio, espresso in [kg]

Fondazion e di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estre no libero della fondazione di valle)

Nr.	Y	В, Н	A_{fs}	A_{fi}	N_u	M_u	CS	V_{Rd}	V_{Rad}	V_{Rsd}
1	0,00	100, 100	12,57	12,57	0	0	1000,00	30124		
2	0,10	100, 100	12,57	12,57	0	-46091	1514,38	30124		
3	0,20	100, 100	12,57	12,57	0	-46091	389,21	30124		
4	0,30	100, 100	12,57	12,57	0	-46091	177,97	30124		
5	0,40	100, 100	12,57	12,57	0	-46091	103,08	30124		
6	0,50	100, 100	12,57	12,57	0	-46091	67,99	30124		
7	0,60	100, 100	12,57	12,57	0	-46091	48,71	30124		
8	0,70	100, 100	12,57	25,13	0	-46041	36,91	30124		
9	0,80	100, 100	25,13	25,13	0	-91233	57,89	32019		
10	0,90	100, 100	25,13	31,42	0	-91258	47,35	32019		
11	1,00	100, 100	25,13	31,42	0	-91258	39,74	32019		

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre no libero della fondazione di nonte)

Nr.	Y	B, H	Ars	An	Nu	M_u	CS	V_{Rd}	$V_{R\alpha l}$	V_{Rsd}
1	0,00	100, 100	37,70	12,57	0	0	1000,00	32019		
2	0,42	100, 100	37,70	12,57	0	46000	98,63	32019		
3	0,84	100, 100	37,70	12,57	0	46000	28,40	32019		
4	1,26	100, 100	12,57	12,57	0	46091	14,33	32019		
5	1,68	100, 100	25,13	25,13	0	91233	16,97	30124		
6	2,10	100, 100	25,13	25,13	0	91233	11,73	30124		
7	2,52	100, 100	25,13	25,13	0	91233	9,08	126292	302998	126292
8	2,94	100, 100	25,13	25,13	0	91233	7,71	126292	302998	126292
9	3,36	100, 100	31,42	31,42	0	113697	8,92	126292	302998	126292
10	3,78	100, 100	31,42	31,42	0	113697	9,16	126292	302998	126292
11	4,20	100, 100	37,70	31,42	0	113752	10,84	252584	302998	252584

Verifica sperone di fondazione

Base sezione B= 100 cm Altezza sezione H=100 [cm]

A₆=12,57 [cmq] A₆=12,57 [cmq] Sollecitazioni M=19019,6 [kgm]

Moment o ultimo sezione M_u = 46091,29 [kgm]

Coeff.sicurezza sezione = 2,42

COMBINAZIONE n° 35

Valore della spinta statica Componente orizzontale della spint a statica Componente verticale della spinta a statica Punto d'applicazione della spinta Inclinaz. della spint a rispetto alla normale alla superficie Inclinazione l inea di rottura in condizioni statiche	49497,67 47265,40 14696,95 X = 4,20 17,27 53,96	[kg] [kg] [kg] [m] [°]	Y = -6,81	[m]
Spinta falda Punto d'applicazione del la spinta della falda Sottospinta falda	6737,50 X = 4,20 13200,00	[kg] [m] [kg]	Y=-10,13	[m]
Peso terrapieno gravante sulla fondazione a monte Baricent ro terrapieno gravante sulla fondazione a monte	76028,40 X = 2,10	[kg] [m]	Y = -4,42	[m]
Risultanti carichi esterni Componente dir. X	-27638	[kg]		

127/144 128/144 -46973,27

3.30

[kgm]

Componente dir. Y 9350 [kg] <u>Risultanti</u> Risult ante dei carichi applicati in dir. orizzontale Risult ante dei carichi applicati in dir. verticale 26365.40 [kg] 121150,35 [kg] Resistenza passiva dente di fondazione -46015,45 [kg] Moment o ribalt ante rispetto allo spigolo a valle 178662,40 [kgm] Moment o st abilizzant e rispetto allo spigolo a valle 589086,73 [kgm] Sforzo normale sul piano di posa della fondazione 121150,35 [kg] Sforzo t angenziale sul piano di posa della fondazione 26365.40 [kg] [m] Eccentricità rispetto al baricentro della fondazione -0,39 Lunghezza fondazione reagente 6,00 [m] Risult ant e in fondazione 123986,06 [kg] [°] Inclinazione del la risultante (rispetto alla normale) 12,28

COEFFICIENTI DI SICUREZZA

Moment o risp ett o al baricentro del la fondazione

Coefficiente di sicurezza a ribaltament o

Stabilità globale muro + terreno

Combinazione nº 36

Le acisse X sono considerate positive verso monte
Le ordinate Y sono considerate positive verso falto
Origine in testa a funus o pigolo centro tera)
W peso della striscia e spresso in [kg]
α angolo fa la la base della striscia e Torizzontale espresso in [*] (positivo antiorario)
φ angolo d'attrito del terreno lungo la base della striscia

coesione del terremo lungo la base della striscia espressa in [kg/cmq] larghezza della striscia espressa in [m] pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36 Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -3,71

Raggio del cerchio R[m]= 14,56

A scissa a valle del cerchio Xi[m]=-15,37 Xs[m]= 10,83 A scissa a monte del cerchio Larghezza del la striscia dx[m] = 1.05Coefficiente di sicurezza C= 1.48 Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	W	α (°)	Wsinα	b/cosα	ф	c	u
1	4451.63	77.02	4337.88	4.67	25.49	0.000	0.000
2	11197.42	63.32	10005.05	2.33	26.56	0.000	0.000
3	1688 4.46	55.11	13849.85	1.83	26.56	0.000	0.000
4	20267.03	48.40	15154.75	1.58	26.56	0.000	0.093
5	2251 1.09	42.49	15205.50	1.42	26.56	0.000	0.200
6	24348.88	37.11	14689.30	1.31	26.56	0.000	0.287
7	2686 0.29	32.08	14267.03	1.24	26.56	0.000	0.360
8	2796 1.21	27.33	12835.94	1.18	26.56	0.000	0.420
9	2873 9.17	22.77	11121.72	1.14	26.56	0.000	0.469
10	29563.10	18.36	9310.23	1.10	26.56	0.000	0.508
11	31791.27	14.06	7721.34	1.08	26.56	0.000	0.539
12	22326.93	9.84	3814.12	1.06	26.56	0.000	0.561
13	1255 3.17	5.67	1240.12	1.05	26.56	0.000	0.575
14	12200.30	1.53	326.35	1.05	26.56	0.000	0.582
15	12179.89	-2.60	-551.62	1.05	26.56	0.000	0.581
16	12000.25	-6.74	-1407.98	1.06	26.56	0.000	0.572
17	1165 8.50	-10.92	-2207.79	1.07	26.56	0.000	0.556
18	11148.97	-15.15	-2914.54	1.09	26.56	0.000	0.532
19	1046 2.68	-19.48	-3489.01	1.11	26.56	0.000	0.499
20	9586.49	-23.92	-3887.66	1.15	26.56	0.000	0.457
21	8501.62	-28.53	-4060.49	1.19	26.56	0.000	0.406
22	7181.15	-33.35	-3947.59	1.25	26.56	0.000	0.343
23	5585.49	-38.45	-3473.36	1.34	26.56	0.000	0.266
24	3653.57	-43.95	-2535.79	1.46	26.56	0.000	0.174
25	1283.24	-50.03	-983.46	1.63	26.56	0.000	0.061

ΣWi= 384897,78 [kg] ΣW:sinα:= 104419,90 [kg] ΣWtanφ= 192305,93 [kg] $\Sigma t an\alpha t an \varphi = 3.61$

129/144 130/144

Combinazione nº 37

L'ordinata Y(espressa in m) è considenta positiva verso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Siozo normale positivo di compressione, espresso in kg Taglio positivo ed diretto di montre verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,37	733,33	5,11	41,82
3	0,73	1466,67	40,89	167,29
4	1,10	2200,00	138,02	376,41
5	1,55	3093,33	367,03	632,39
6	1,99	3986,67	682,17	740,96
7	2,44	4880,00	989,97	605, 13
8	2,89	5773,33	1201,41	319,32
9	3,33	6666,67	1255,32	-100,27
10	3,78	7560,00	1091,92	-653,65
11	4,23	8453,33	651,24	- 1344,60
12	4,67	9346,67	-124,55	-2121,04
13	5,12	10240,00	- 1252,24	-2948,69
14	5,57	11133,33	- 2777,48	-3901,80
15	6,01	12026,67	-4756,64	-4981,13
16	6,46	12920,00	-7246,09	-6186,69
17	6,91	13813,33	-10302,21	-7518,47
18	7,35	14706,67	-13981,38	-8976,47
19	7,80	15600,00	-18340,37	-10564,00
20	8,30	16600,00	-23121,00	-8504,32
21	8,80	17600,00	-26792,82	-6134,63

Sollecitazioni fondazione di valle

Combinazione nº 37
L'asciss a X(spiess ai m pì è considerata positiva veso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo se tende le fibre inferiori, espresso in kgm Taglio pas iñvo se diretto veso Falto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	-35,02	-691,76
3	0,20	-136,62	- 1331,59
4	0,30	-299,61	- 1919,47
5	0,40	-518,78	-2455,42
6	0,50	-788,96	-2939,43
7	0,60	-1104,94	-3371,50
8	0,70	- 1461,53	-3751,63
9	0,80	- 1853,53	-4079,82
10	0,90	-2275,76	-4356,08
11	1,00	-2723,02	-4580,39

Sollecitazioni fondazione di monte

Combinazione nº 37

Comminazation: A second considerata positiva verso valle on origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo set tende le fibre infacio, espesso in Igan Taglio positivo est ende cel derito teves o lono, perso sin Igan.

Nr. M 0,00 0,00 0,00 981,53 4521,28 0,42 0,84 3669,61 8126.36 11790,26 1,26 7806,16 1,68 13493,16 15137,96 20393,79 2,10 17569,48

7	2,52	28123,25	19084,80
8	2,94	36296,75	19683,93
9	3,36	44529,49	19366,87
10	3,78	52436,66	18133,62
11	4.20	5963 3.47	15984.18

131/144 132/144

Combinazione nº 37

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro B base della sezione espressa in [cm]

altezza della sezione espressa in [cm] area di armatura in corrispondenza del lembo di monte in [cmq]

A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq] tens ione nel ca leestruzzo espressa in [kg/c mq]

tens ione tangenziale nel calcestruzzo espressa in [kg/cmq] tens ione nell'armatura disposta sul lembo di monte in [kg/cmq]

tens ione nell'armatura disposta sul lembo di valle in [kg/cmq]

Nr.	Y	В, Н	A_{fs}	A_6	σc	τ	σs	o ii
1	0,00	100, 80	8,04	8.04	0,00	0,00	0,00	0,00
2	0,37	100, 80	8,04	8.04	0.09	0,01	-1,28	- 1,39
2 3	0,73	100, 80	8,04	8,04	0,21	0,03	-2,20	-3,14
4	1,10	100, 80	8,04	8,04	0,39	0,06	-2,42	-5,59
5	1,55	100, 80	8,04	8,04	0,70	0,10	-1,41	-9,85
6	1,99	100, 80	8,04	8,04	1,10	0,12	1,00	-15,27
7	2,44	100, 80	8,04	8,04	1,53	0,09	4,78	-21,11
8	2,89	100, 80	8,04	8,04	1,85	0,05	6,55	-25,50
9	3,33	100, 80	8,04	8,04	1,96	-0,02	4,04	-27,24
10	3,78	100, 80	8,04	8,04	1,88	-0,10	-1,17	-26,34
11	4,23	100, 80	8,04	8,04	1,60	-0,21	-7,89	-22,88
12	4,67	100, 80	8,04	8,04	1,24	-0,33	-18,45	-15,58
13	5,12	100, 80	8,04	8,04	2,34	-0,46	-33,05	-4,23
14	5,57	100, 80	26,14	8,04	3,79	-0,61	-51,43	24,04
15	6,01	100, 80	38,70	24,63	5,78	-0,78	-75,49	82,30
16	6,46	100, 80	38,70	24,63	8,91	-0,97	-111,54	197,71
17	6,91	100, 80	38,70	24,63	12,64	-1,18	-153,47	353,03
18	7,35	100, 80	38,70	24,63	17,05	-1,41	-202,21	547,36
19	7,80	100, 80	38,70	24,63	22,21	-1,66	-258,72	782,60
20	8,30	100, 80	38,70	24,63	27,83	-1,33	-320,14	1041,35
21	8,80	100, 80	30,66	16,59	38,41	-0,96	-417,16	1808,15

Armature e tensioni nei materiali della fondazione

Combinazione nº 37

Simbologia adottata
B base della sezione espressa in [cm]

altezza della sezione espressa in [cm] area di armatura in corrispondenza del le nbo inferiore in [cmq]

area di armatura in corrispondenza del le nbo superiore in [cmq] tens ione nel calcestruzzo espressa in [kg/cmq]

tens ione tartestruzzo spiesza in [kg/cmq] tens ione tangenziale nel cakestruzzo espressa in [kg/cmq] tens ione nell'armatura disposta in corrispondenza del lembo inferiore in [kg/cmq] tens ione nell'armatura disposta in corrispondenza del lembo superiore in [kg/cmq]

Fondazion e di valle

 $(L'ascissa\ X, espressa\ in\ [m], \`e\ positiva\ verso\ monte\ con\ origine\ in\ corrispondenza\ dell'estre\ mo\ libero\ della\ fondazione\ di\ valle)$

Nr.	X	В, Н	A_{fs}	A_6	σc	τ.	σn	σ_{fs}
1	0,00	100, 100	12,57	12,57	0,00	0,00	0,00	0,00
2	0,10	100, 100	12,57	12,57	0,04	-0,09	-0,43	3,11
3	0,20	100, 100	12,57	12,57	0,16	-0,16	-1,69	12,12
4	0,30	100, 100	12,57	12,57	0,36	-0,24	-3,70	26,58
5	0,40	100, 100	12,57	12,57	0,62	-0,30	-6,41	46,02
6	0,50	100, 100	12,57	12,57	0,95	-0,36	-9,75	69,98
7	0,60	100, 100	12,57	12,57	1,32	-0,42	-13,66	98,01
8	0,70	100, 100	12,57	25,13	1,62	-0,46	-16,21	129,24
9	0,80	100, 100	25,13	25,13	1,57	-0,51	-17,94	83,38
10	0,90	100, 100	25,13	31,42	1,86	-0,54	-21,12	102,13
11	1,00	100, 100	25,13	31,42	2,23	-0,57	-25,27	122,20

Fondazion e di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre no libero della fondazione di nonte)

Nr.	X	В, Н	A_{fs}	A_{fi}	σ .	τ.	G ii	σ_{ls}
1	0,00	100, 100	37,70	12,57	0,00	0,00	0,00	0,00
2	0,42	100, 100	37,70	12,57	1,01	0,56	86,61	-9,83
3	0,84	100, 100	37,70	12,57	3,79	1,01	323,81	-36,76
4	1,26	100, 100	12,57	12,57	9,36	1,46	692,44	-96,51
5	1,68	100, 100	25,13	25,13	11,44	1,87	607,00	-130,60
6	2,10	100, 100	25,13	25,13	17,29	2,18	917,43	-197,39
7	2,52	100, 100	25,13	25,13	23,84	2,36	1265,15	-272,20
8	2,94	100, 100	25,13	25,13	30,77	2,44	1632,84	-351,31
9	3,36	100, 100	31,42	31,42	33,67	2,40	1609,53	-393,73
10	3,78	100, 100	31,42	31,42	39,65	2,25	1895,34	-463,65
11	4,20	100, 100	37,70	31,42	43,66	1,98	2150,10	-507,29

Verifica sperone di fondazione

Base sezione B= 100 cm Altezza sezione H=100 [cm]

A_{fs}=12,57 [cmq] A_{fs}=12,57 [cmq]

Sollecitazioni M=10466,2 [kgm] T=10 Moment o ultimo sezione Mu = 46091,29 [kgm] T=10461,0 [kg]

Coeff.sicurezza sezione = 4,40

Verifiche a fessurazione

 $\frac{Combinazione \ n^o \ 37}{Lordina \ Y \ (sepsesa in \ [n])} \ \dot{e} \ considerata positiva veso il basso con origine in testa al muro <math display="block"> A_{fs} \ \ area \ di \ armatua \ in \ corrispondenza \ del \ le nbo \ di \ monte in \ [enq]$

area di armatura in corrispondenza del lembo di valle in [cmq] Momento di prima fe ssurazione espressa in [kgm]

Momento at pinna tessulatzone espressa in [kgm]
Momento agente nella sezione espressa in [kgm]
deformazione media espressa in [%]
Distanza media trale fessure espressa in [mm]
Apertura media della fessura espressa in [mm]

Verifica fessurazione paramento

N°	Y	As	An	$\mathbf{M}_{\mathbf{pf}}$	M	E m	Sm	w
1	0,00	8,04	8,04	- 16102	0	0,0000	0,00	0,000
2	0,37	8,04	8,04	-16102	-5	0,0000	0,00	0,000
3	0,73	8,04	8,04	-16102	-41	0,0000	0,00	0,000
4	1,10	8,04	8,04	-16102	-138	0,0000	0,00	0,000
5	1,55	8,04	8,04	-16102	-367	0,0000	0,00	0,000
6	1,99	8,04	8,04	-16102	-682	0,0000	0,00	0,000

133/144 134/144

7	2,44	8,04	8,04	-16102	-990	0.0000	0,00	0,000
8	2,89	8,04	8,04	-16102	-1201	0.0000	0,00	0,000
9	3,33	8.04	8,04	-16102	-1255	0.0000	0,00	0.000
10	3,78	8,04	8,04	- 16102	- 1092	0,0000	0,00	0,000
11	4,23	8,04	8,04	-16102	-651	0,0000	0,00	0,000
12	4,67	8,04	8,04	16102	125	0,0000	0,00	0,000
13	5,12	8,04	8,04	16102	1252	0,0000	0,00	0,000
14	5,57	26.14	8,04	16390	2777	0.0000	0,00	0.000
15	6,01	38,70	24,63	17868	4757	0,0000	0,00	0,000
16	6,46	38,70	24,63	17868	7246	0.0000	0,00	0.000
17	6,91	38,70	24,63	17868	10302	0,0000	0,00	0,000
18	7,35	38,70	24,63	17868	13981	0,0000	0,00	0,000
19	7,80	38.70	24,63	17868	18340	0.0224	132.83	0.050
20	8,30	38,70	24,63	17868	23121	0.0298	132,83	0,067
21	8,80	30.66	16,59	17120	26793	0.0584	163,96	0,163
Verifice	a fessurazione fo	ndazion e						
N°	Y	$\mathbf{A}_{\mathbf{f}_{\mathbf{i}}}$	A_6	M_{pf}	M	€m	S_{m}	w
1	-1,80	1257	12,57	-25528	0	0,0000	0,00	0.000
2	-1,70	12.57	12,57	-25528	-35	0,0000	0,00	0,000
3	-1,60	12,57	12,57	-25528	-137	0,0000	0,00	0,000
4	-1,50	1257	12,57	-25528	-300	0,0000	0,00	0,000
5	-1,40	12.57	12,57	-25528	-519	0,0000	0,00	0,000
6	-1,30	12,57	12,57	-25528	-789	0,0000	0,00	0,000
7	-1,20	12,57	12,57	-25528	-1105	0,0000	0,00	0,000
8	-1,10	12,57	25,13	-25805	- 1462	0,0000	0,00	0,000
9	-1,00	25,13	25,13	-27065	- 1854	0,0000	0,00	0,000
10	-0,90	25,13	31,42	-27204	-2276	0,0000	0,00	0.000
11	-0,80	25,13	31,42	-27204	-2723	0,0000	0,00	0,000
12	0,00	37,70	31,42	27973	59633	0,0915	126, 14	0,196
13	0,42	31,42	31,42	27834	52437	0,0780	126, 14	0,167
14	0,84	31,42	31,42	27834	44529	0,0622	126, 14	0,133
15	1,26	25.13	25,13	27065	36297	0,0569	137,47	0,133
1.0					20122	0,0361	137,47	0,084
16	1,68	25,13	25,13	27065	28123			
17		25,13 25,13	25,13 25,13	27065 27065	20394	0,0000	0,00	0,000
	1,68	25,13 25,13			20394 13493			
17	1,68 2,10	25,13 25,13 12,57	25,13 25,13 12,57	27065 27065 25528	20394 13493 7806	0,0000	0,00	0,000
17 18	1,68 2,10 2,52	25,13 25,13	25,13 25,13	27065 27065 25528 26072	20394 13493 7806 3670	0,0000	0,00 0,00	0,000 0,000
17 18 19 20 21	1,68 2,10 2,52 2,94 3,36 3,78	25,13 25,13 12,57 37,70 37,70	25,13 25,13 12,57 12,57 12,57	27065 27065 25528 26072 26072	20394 13493 7806	0,0000 0,0000 0,0000 0,0000 0,0000	0,00 0,00 0,00 0,00 0,00 0,00	0,000 0,000 0,000 0,000 0,000
17 18 19 20	1,68 2,10 2,52 2,94 3,36	25,13 25,13 12,57 37,70	25,13 25,13 12,57 12,57	27065 27065 25528 26072	20394 13493 7806 3670	0,0000 0,0000 0,0000 0,0000	0,00 0,00 0,00 0,00 0,00	0,000 0,000 0,000 0,000

Combinazione nº 38

L'ordinta Y(espressa in m) è considenta positiva veso il basso con origine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in lgm Sōrzo normale positivo di compressione, espresso in kg Taglio positivo ed ofteno di montre veso valle, espresso in kg

Nr.	Y	N	М	т
1	0,00	0,00	0,00	0,00
2	0,37	733,33	39,89	231,55
3	0,73	1466,67	180,06	546,99
4	1,10	2200,00	451,26	946,22
5	1,55	3093,33	986,51	1433,78
6	1,99	3986,67	1710,85	1763,47
7	2,44	4880,00	2511,75	1785,81
8	2,89	5773,33	3284,14	1650,36
9	3,33	6666,67	3966,15	1381,13
10	3,78	7560,00	4498,03	978, 12
11	4,23	8453,33	4819,78	437,53
12	4,67	9346,67	4874,79	-179,03
13	5,12	10240,00	4652,81	-835,16
14	5,57	11133,33	4109,94	-1616,63
15	6,01	12026,67	3189,82	-2524,33
16	6,46	12920,00	1836,08	-3558,25
17	6,91	13813,33	-7,67	-4718,39
18	7,35	14706,67	-2397,81	-6004,75
19	7,80	15600,00	-5391,10	-7420,65
20	8,30	16600,00	-8552,02	-5168,83
21	8,80	17600,00	-10508,06	-2607,00

Sollecitazioni fondazione di valle

Combinazione nº 38
L'ascis a X(septesa ain m) e considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, espresso in kgm Taglio positivo se diretto verso Tallo, espresso in kgm

Nr.	X	M	Т
1	0,00	0,00	0,00
2	0,10	-21,10	-414,21
3	0,20	-81,29	-781,77
4	0,30	-175,90	-1102,69
5	0,40	-300,27	-1376,98
6	0,50	-449,74	-1604,61
7	0,60	-619,64	-1785,61
8	0,70	-805,31	-1919,97
9	0,80	-1002,08	-2007,68
10	0,90	-1205,29	-2048,75
11	1,00	-1410,27	-2043,18

Sollecitazioni fondazione di monte

Combinazione nº 38

COMMIZZONE II 30.

Lascisa A(Spessa in m) è considerata positiva verso valle con origine in corrispondenz adell'estremo libero della fondazione di monte Momento positivo setende le fibre inferiori, espresso in kgm
Taglio positivos deriteto twoes Talko, opersso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	822,63	3780,15
3	0,84	3060,14	6737,54
4	1,26	6493,73	9847,17
5	1,68	11264,58	12734,04
6	2,10	17075,14	14798,14

135/144 136/144

7	2,52	23579.83	16039.48
8	2.94	3043 3.12	16458,06
9	3,36	37289.42	16053,88
10	3,78	43803,19	14826,93
11	4.20	49628.85	12777.22

Combinazione nº 38

Lordinara Y(espressa in [m]) è considerata positiva veso il basso con origine in testa al muro B bore de lilascezione espressa in [cm] al carzati adda avviane espressa in [cm] al carzati adda avviane espressa in [cm] al cara di ammutun in corrispondenza del enho di valle in [cm] area di ammutun in corrispondenza del enho di valle in [cm] que in science nel carbestrazzo espressa in [gg/cmq] que in science nel farmatura disposta sul lembo di monte in [gg/cmq] que in cara di ammutun disposta sul lembo di valle in [gg/cmq] que in cen in nel farmatura disposta sul lembo di valle in [gg/cmq]

Nr.	Y	В, Н	A_{fs}	A_6	σc	τ	σs	σi
1	0.00	100, 80	8,04	8,04	0.00	0,00	0.00	0,00
2	0,37	100, 80	8,04	8,04	0,12	0.04	-0,88	- 1,79
3	0,73	100, 80	8,04	8,04	0,34	0,09	-0,60	-4,74
4	1,10	100, 80	8,04	8,04	0,70	0,15	2,30	-9,60
5	1,55	100, 80	8,04	8,04	1,66	0,22	24,70	-21,56
6	1,99	100, 80	8,04	8,04	3,24	0,28	86,88	-39,62
7	2,44	100, 80	8,04	8,04	5,02	0,28	170,15	-58,93
8	2,89	100, 80	8,04	8,04	6,70	0,26	251,68	-77,08
9	3,33	100, 80	8,04	8,04	8,16	0,22	319,14	-92,99
10	3,78	100, 80	8,04	8,04	9,26	0,15	361,98	-105,46
11	4,23	100, 80	8,04	8,04	9,84	0,07	370,33	-113,12
12	4,67	100, 80	8,04	8,04	9,77	-0,03	336,07	-114,41
13	5,12	100, 80	8,04	8,04	8,99	-0,13	261,32	-108,40
14	5,57	100, 80	26,14	8,04	5,95	-0,25	71,63	-78,51
15	6,01	100, 80	38,70	24,63	4,07	-0,40	20,41	-55,65
16	6,46	100, 80	38,70	24,63	2,91	-0,56	-3,29	-40,90
17	6,91	100, 80	38,70	24,63	1,62	-0,74	-22,15	-24,20
18	7,35	100, 80	38,70	24,63	3,29	-0,94	-46,17	-2,06
19	7,80	100, 80	38,70	24,63	6,51	-1,16	-86,36	72,28
20	8,30	100, 80	38,70	24,63	10,50	-0,81	-132,78	213,48
21	8,80	100, 80	30,66	16,59	15,00	-0,41	-181,14	433,21

137/144 138/144

Combinazione nº 38

Simbologia adottata
B base della sezione espressa in [cm]

base de la sectione espressa in [cm]
area di armatum in corrispondenza del lenho inferiore in [cmq]
area di armatum in corrispondenza del lenho superiore in [cmq]
tans ione nel calestruzzo spressa in [lg/cmq]
tans ione nel carrispondenza del lenho superiore in [cmq]
tans ione nel granifa en calestruzzo sepressa in [lg/cmq]
tans ione nel flammatura disposta in corrispondenza del lenho inferiore in [lg/cmq] tens ione nell'armatura disposta in corrispondenza del lembo superiore in [kg/cmq]

Fondazion e di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estre no libero della fondazione di valle)

Nr.	X	В, Н	A_{fs}	A_6	σc	τ	σ_{ii}	σ_{ls}
1	0,00	100, 100	12,57	12,57	0,00	0,00	0,00	0,00
2	0,10	100, 100	12,57	12,57	0,03	-0,05	-0,26	1,87
3	0,20	100, 100	12,57	12,57	0,10	-0,10	-1,00	7,21
4	0,30	100, 100	12,57	12,57	0,21	-0,14	-2,17	15,60
5	0,40	100, 100	12.57	12,57	0,36	-0,17	-3,71	26,64
6	0,50	100, 100	12,57	12,57	0,54	-0,20	-5,56	39,89
7	0,60	100, 100	12,57	12,57	0,74	-0,22	-7,66	54,96
8	0,70	100, 100	12,57	25,13	0,89	-0,24	-8,93	71,21
9	0,80	100, 100	25,13	25,13	0,85	-0,25	-9,70	45,08
10	0,90	100, 100	25,13	31,42	0,99	-0,25	-11,18	54,09
11	1.00	100, 100	25.13	31.42	1.16	-0.25	-13.09	63.29

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libero della fondazione di monte)

Nr.	X	В, Н	A_{fs}	A_{fi}	σc	τ	o fi	G fs
1	0,00	100, 100	37,70	12,57	0,00	0,00	0,00	0,00
2	0,42	100, 100	37,70	12,57	0,85	0.47	72,59	-8,24
3	0,84	100, 100	37,70	12,57	3,16	0,83	270,03	-30,65
4	1,26	100, 100	12.57	12,57	7,78	1,22	576,02	-80,28
5	1,68	100, 100	25,13	25,13	9,55	1,58	506,75	-109,03
6	2,10	100, 100	25,13	25,13	14,47	1,83	768,14	-165,27
7	2,52	100, 100	25.13	25.13	19.99	1.99	1060,76	-228.23
8	2,94	100, 100	25,13	25,13	25,80	2,04	1369,06	-294,56
9	3,36	100, 100	31,42	31,42	28,19	1,99	1347,84	-329,72
10	3,78	100, 100	31,42	31,42	33,12	1,84	1583,28	-387,31
11	4 20	100 100	3770	31.42	3634	1.58	1789 38	-422 18

<u>Verifica sperone di fondazione</u> Base sezione B= 100 cm Altezza sezione H=100 [cm]

A_{fi}=12,57 [cmq] A_{fs}=12,57 [cmq]

Sollecitazioni M=13130,0 [kgm] T=1: M oment o ultimo sezione $M_u = 46091,29$ [kgm] T=13123,5 [kg]

Coeff.sicurezza sezione = 3,51

Verifiche a fessurazione

Verifica fessurazione paramento

N°	Y	As	An	Mpf	M	E m	Sm	w
1	0,00	8,04	8,04	- 16102	0	0,000	0,00	0,000
2	0,37	8,04	8,04	-16102	-40	0,0000	0,00	0,000
3	0,73	8,04	8,04	- 16102	-180	0,0000	0,00	0,000
4	1,10	8,04	8,04	-16102	-451	0,000	0,00	0,000
5	1,55	8,04	8,04	-16102	-987	0,0000	0,00	0,000
6	1,99	8,04	8,04	-16102	- 1711	0,000	0,00	0,000

7									
9 3,33 8,04 8,04 -16102 -3966 0,0000 0,00 0,00 0,000 10 3,78 8,04 8,04 -16102 -4498 0,0000 0,00 0,00 0,000 11 4,23 8,04 8,04 -16102 -4820 0,0000 0,00 0,00 0,000 12 4,67 8,04 8,04 -16102 -4875 0,0000 0,00 0,00 0,000 13 5,12 8,04 8,04 -16102 -4853 0,0000 0,00 0,00 0,000 14 5,57 26,14 8,04 1-7479 -4110 0,0000 0,00 0,00 0,000 15 6,01 38,70 24,63 -18722 -3190 0,0000 0,00 0,00 0,00 16 6,46 38,70 24,63 18722 -3190 0,0000 0,00 0,00 0,00 17 6,91 38,70 24,63 17868 8 0,0000 0,00 0,00 0,00 18 7,35 38,70 24,63 17868 2398 0,0000 0,00 0,00 0,00 19 7,80 38,70 24,63 17868 2398 0,0000 0,00 0,00 0,00 19 7,80 38,70 24,63 17868 2398 0,0000 0,00 0,00 0,00 20 8,30 38,70 24,63 17868 8552 0,0000 0,00 0,00 0,00 21 8,80 30,66 16,59 17120 10508 0,000 0,00 0,00 0,00 0 21 8,80 30,66 16,59 17120 10508 0,000 0,00 0,00 0,00 0 2 -1,70 12,57 12,57 -25528 -21 0,0000 0,00 0,00 0,00 0 3 -1,60 12,57 12,57 -25528 -21 0,0000 0,00 0,00 0,00 0 3 -1,60 12,57 12,57 -25528 -21 0,0000 0,00 0,00 0,00 0 5 -1,40 12,57 12,57 -25528 -176 0,0000 0,00 0,00 0,00 0 5 -1,40 12,57 12,57 -25528 -450 0,0000 0,00 0,00 0,00 0,00 0,00 0 5 -1,40 12,57 12,57 -25528 -450 0,0000 0,00 0,00 0,00 0 5 -1,40 12,57 12,57 -25528 -450 0,0000 0,00 0,00 0,00 0,00 0 5 -1,40 12,57 12,57 -25528 -450 0,0000 0,00 0,00 0,00 0 0,00	7	2,44	8,04	8,04	-16102	-2512	00000	0,00	0,000
9 3,33 8,04 8,04 -16102 -3966 0,0000 0,00 0,00 0,000 10 3,78 8,04 8,04 -16102 -4498 0,0000 0,00 0,00 0,000 11 4,23 8,04 8,04 -16102 -4820 0,0000 0,00 0,00 0,000 12 4,67 8,04 8,04 -16102 -4875 0,0000 0,00 0,00 0,000 13 5,12 8,04 8,04 -16102 -4853 0,0000 0,00 0,00 0,000 14 5,57 26,14 8,04 1-7479 -4110 0,0000 0,00 0,00 0,000 15 6,01 38,70 24,63 -18722 -3190 0,0000 0,00 0,00 0,00 16 6,46 38,70 24,63 18722 -3190 0,0000 0,00 0,00 0,00 17 6,91 38,70 24,63 17868 8 0,0000 0,00 0,00 0,00 18 7,35 38,70 24,63 17868 2398 0,0000 0,00 0,00 0,00 19 7,80 38,70 24,63 17868 2398 0,0000 0,00 0,00 0,00 19 7,80 38,70 24,63 17868 2398 0,0000 0,00 0,00 0,00 20 8,30 38,70 24,63 17868 8552 0,0000 0,00 0,00 0,00 21 8,80 30,66 16,59 17120 10508 0,000 0,00 0,00 0,00 0 21 8,80 30,66 16,59 17120 10508 0,000 0,00 0,00 0,00 0 2 -1,70 12,57 12,57 -25528 -21 0,0000 0,00 0,00 0,00 0 3 -1,60 12,57 12,57 -25528 -21 0,0000 0,00 0,00 0,00 0 3 -1,60 12,57 12,57 -25528 -21 0,0000 0,00 0,00 0,00 0 5 -1,40 12,57 12,57 -25528 -176 0,0000 0,00 0,00 0,00 0 5 -1,40 12,57 12,57 -25528 -450 0,0000 0,00 0,00 0,00 0,00 0,00 0 5 -1,40 12,57 12,57 -25528 -450 0,0000 0,00 0,00 0,00 0 5 -1,40 12,57 12,57 -25528 -450 0,0000 0,00 0,00 0,00 0,00 0 5 -1,40 12,57 12,57 -25528 -450 0,0000 0,00 0,00 0,00 0 0,00	8	2.89	8.04	8.04	-16102	-3284	0.0000	0.00	0.000
10 3,78 8,04 8,04 -16102 -4498 0,0000 0,00 0,000 11 4,23 8,04 8,04 -16102 -4820 0,0000 0,00 0,000 12 4,67 8,04 8,04 -16102 -4875 0,0000 0,00 0,000 13 5,12 8,04 8,04 -16102 -4653 0,0000 0,00 0,000 14 5,57 26,14 8,04 -17479 -44110 0,0000 0,00 0,000 15 6,01 38,70 24,63 -18722 -3190 0,0000 0,00 0,000 16 6,46 38,70 24,63 -18722 -1836 0,0000 0,00 0,000 17 6,91 38,70 24,63 17868 8 0,0000 0,00 0,000 18 7,35 38,70 24,63 17868 8398 0,0000 0,00 0,000 19 7,80 38,70 24,63 17868 5391 0,0000 0,00 0,000 20 8,30 38,70 24,63 17868 8552 0,0000 0,00 0,000 21 8,80 30,66 16,59 17120 10508 0,0000 0,00 0,000 22 -1,70 12,57 12,57 -25528 -21 0,0000 0,00 0,000 3 -1,60 12,57 12,57 -25528 -21 0,0000 0,00 0,000 4 -1,50 12,57 12,57 -25528 -300 0,0000 0,00 0,000 5 -1,40 12,57 12,57 -25528 -300 0,0000 0,00 0,000 6 -1,30 12,57 12,57 -25528 -300 0,0000 0,00 0,000 8 -1,10 12,57 12,57 -25528 -450 0,0000 0,00 0,000 9 -1,00 25,13 25,13 -27068 -1002 0,0000 0,00 0,000 10 -0,90 25,13 31,42 -27204 -1410 0,000 0,00 0,000 11 -0,80 25,13 31,42 -27204 -1410 0,000 0,00 0,000 12 0,00 37,70 31,42 27834 43803 0,0607 126,14 0,151 15 1,26 25,13 25,13 25,13 27065 1705 0,0000 0,00 0,000 10 -0,90 25,13 25,13 25,13 27065 17075 0,0000 0,00 0,000 12 0,00 37,70 31,42 27834 37289 0,0469 126,14 0,151 15 1,26 25,13 25,13 27065 17075 0,0000 0,00 0,000 10 2,94 12,57 12,57 25528 6494 0,0000 0,00 0,000 10 2,94 12,57 12,57 25528 6494 0,0000 0,00 0,000 12 2,94 12,57 12,57 25528 6494 0,0000 0,00 0,000 20 3,						-3966	0.0000		
12	10				-16102	-4498	0,0000		
13 5,12 8,04 8,04 -16102 -4653 0,0000 0,00 0,000 14 5,57 26,14 8,04 -17479 -4110 0,0000 0,00 0,000 15 6,01 38,70 24,63 -18722 -3190 0,0000 0,00 0,000 16 6,46 38,70 24,63 -18722 -1836 0,0000 0,00 0,000 17 6,91 38,70 24,63 17868 8 8 0,0000 0,00 0,000 18 7,35 38,70 24,63 17868 8 2398 0,0000 0,00 0,000 19 7,80 38,70 24,63 17868 5391 0,0000 0,00 0,000 20 8,30 38,70 24,63 17868 5391 0,0000 0,00 0,000 21 8,80 30,66 16,59 17120 10508 0,0000 0,00 0,000 21 8,80 30,66 16,59 17120 10508 0,0000 0,00 0,000 21 1,80 12,57 12,57 -25528 0 0,0000 0,00 0,000 3 -1,60 12,57 12,57 -25528 -21 0,0000 0,00 0,000 4 -1,50 12,57 12,57 -25528 -176 0,0000 0,00 0,000 5 -1,40 12,57 12,57 -25528 -176 0,0000 0,00 0,000 6 -1,30 12,57 12,57 -25528 -300 0,0000 0,00 0,000 6 -1,30 12,57 12,57 -25528 -450 0,0000 0,00 0,000 8 -1,10 12,57 25,13 -25805 -600 0,0000 0,00 0,000 8 -1,10 12,57 25,13 -27865 -1002 0,0000 0,00 0,000 10 -0,90 25,13 31,42 -27204 -1410 0,0000 0,00 0,000 11 -0,80 25,13 31,42 -27204 -1410 0,0000 0,00 0,000 12 0,00 37,70 31,42 27834 37289 0,0469 126,14 0,151 14 0,84 31,42 31,42 27834 37289 0,0469 126,14 0,151 15 1,26 25,13 25,13 25,13 27065 23800 0,000 0,000 0,000 17 2,10 25,13 25,13 25,13 27065 30433 0,0403 137,47 0,094 18 2,52 25,13 25,13 27065 27075 2823 0,0000 0,000 0,000 19 2,94 12,57 12,57 25528 6494 0,0000 0,000 0,000 10 2,94 12,57 12,57 25528 6494 0,0000 0,000 0,000 20 3,36 37,70 12,57 26072 823 0,0000 0,000 0,000 20 3,36 37,70 12,57 25528 26072 823 0,	11	4,23	8,04	8,04	- 16102	-4820	00000,0	0,00	0,000
14 5.57 26.14 8.04 -17479 -4110 0,0000 0,00 0,000 15 6.01 38,70 24,63 -18722 -3190 0,0000 0,00 0,000 0,000 17 6.91 38,70 24,63 17868 8 0,0000 0,00 0,000 0,000 18 7.35 38,70 24,63 17868 2398 0,0000 0,00 0,000 19 7.80 38,70 24,63 17868 2398 0,0000 0,00 0,000 20 8.30 38,70 24,63 17868 8552 0,0000 0,00 0,000 21 8.80 30,66 16,59 17120 10508 0,0000 0,00 0,000	12	4,67	8,04	8,04	- 16102	-4875	0.0000	0,00	0,000
15 6,01 38,70 24,63 -18722 -3190 0,0000 0,00 0,000 16 6,46 38,70 24,63 17868 8 0,0000 0,000 0,000 0,000 17 6,91 38,70 24,63 17868 8 0,0000 0,000 0,000 0,000 18 7,35 38,70 24,63 17868 2398 0,0000 0,00 0,000 0,000 19 7,80 38,70 24,63 17868 8351 0,0000 0,00 0,000 0,000 20 8,30 38,70 24,63 17868 8552 0,0000 0,00 0,000 0,000 21 8,80 30,66 16,59 17120 10508 0,0000 0,00 0,000	13	5,12	8,04	8,04	- 16102	-4653	00000,0	0,00	0,000
15 6,01 38,70 24,63 -18722 -3190 0,0000 0,00 0,000 16 6,46 38,70 24,63 17868 8 0,0000 0,000 0,000 0,000 17 6,91 38,70 24,63 17868 8 0,0000 0,000 0,000 0,000 18 7,35 38,70 24,63 17868 2398 0,0000 0,00 0,000 0,000 19 7,80 38,70 24,63 17868 8351 0,0000 0,00 0,000 0,000 20 8,30 38,70 24,63 17868 8552 0,0000 0,00 0,000 0,000 21 8,80 30,66 16,59 17120 10508 0,0000 0,00 0,000	14	5,57	26.14	8.04	- 17479	-4110	0.0000	0.00	0.000
17 6,91 38,70 24,63 17868 8 0,0000 0,00 0,000 18 7,35 38,70 24,63 17868 2398 0,0000 0,00 0,000 19 7,80 38,70 24,63 17868 8591 0,0000 0,00 0,000 20 8,30 38,70 24,63 17868 8552 0,0000 0,00 0,000 21 8,80 30,66 16,59 17120 10508 0,0000 0,00 0,000 21 8,80 30,66 16,59 17120 10508 0,0000 0,00 0,000 21 8,80 30,66 16,59 17120 10508 0,0000 0,00 0,000 21 1,80 12,57 12,57 -25528 0 0,0000 0,00 0,000 2 -1,70 12,57 12,57 -25528 -21 0,0000 0,00 0,000 3 -1,60 12,57 12,57 -25528 -81 0,0000 0,00 0,000 4 -1,50 12,57 12,57 -25528 -176 0,0000 0,00 0,000 5 -1,40 12,57 12,57 -25528 -300 0,0000 0,00 0,000 6 -1,30 12,57 12,57 -25528 -450 0,0000 0,00 0,000 6 -1,30 12,57 12,57 -25528 -450 0,0000 0,00 0,000 7 -1,20 12,57 12,57 -25528 -450 0,0000 0,00 0,000 8 -1,10 12,57 25,13 -25805 -805 0,0000 0,00 0,000 9 -1,00 25,13 31,42 -27204 -1410 0,0000 0,00 0,000 10 -0,90 25,13 31,42 -27204 -1410 0,0000 0,00 0,000 11 -0,80 25,13 31,42 -27204 -1410 0,0000 0,00 0,000 10 -0,90 25,13 31,42 -27204 -1410 0,0000 0,00 0,000 10 -0,90 25,13 31,42 -27204 -1410 0,0000 0,00 0,000 11 -0,80 25,13 31,42 27834 37289 0,0469 126,14 0,155 13 0,42 31,42 31,42 27834 37289 0,0469 126,14 0,155 14 0,84 31,42 31,42 27834 37289 0,0469 126,14 0,155 15 1,26 25,13 25,13 25,13 27065 23580 0,0000 0,000 0,000 17 2,10 25,13 25,13 27065 23580 0,0000 0,000 0,000 18 2,52 25,13 25,13 27065 23580 0,0000 0,000 0,000 19 2,94 12,57 12,57 25528 6072 823 0,0000 0,000 0,000 20 3,36 37,70 12,57 25528 60072 823 0,0000 0,00					- 18722	-3190	0,0000		0,000
18	16	6,46	38,70	24,63	- 18722	- 1836	00000	0,00	0,000
19 7,80 38,70 24,63 17868 5391 0,0000 0,00 0,000 0,000 20 8,30 38,70 24,63 17868 8552 0,0000 0,00 0,000 21 8,80 30,66 16,59 17120 10508 0,0000 0,00 0,000 21 8,80 30,66 16,59 17120 10508 0,0000 0,00 0,000 2	17	6,91	38,70	24,63	17868	8	0,0000	0,00	0,000
Verifica fessuraçione fondacione	18	7,35	38,70	24,63	17868	2398	0,0000	0,00	0,000
Verifica fessuraçione fondacione	19					5391	0.0000		
Verifica fessuracione fondazione N° Y A ₆ A ₆ M _p r M E _n S _m W 1 -1,80 12,57 12,57 -25528 0 0,0000 0,000 0,000 2 -1,70 12,57 12,57 -25528 -21 0,0000 0,00 0,000 3 -1,60 12,57 12,57 -25528 -21 0,0000 0,00 0,000 4 -1,50 12,57 12,57 -25528 -176 0,0000 0,00 0,000 5 -1,40 12,57 12,57 -25528 -176 0,0000 0,00 0,000 6 -1,30 12,57 12,57 -25528 -300 0,0000 0,00 0,000 7 -1,20 12,57 12,57 -25528 -450 0,0000 0,00 0,000 8 -1,10 12,57 25,13 -25805 -805 0,0000 0,00 0,000									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Verific	ca fessurazione fa	ondazion e						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N°	Y	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	A_{fi}	M_{pf}	M	€ m	Sm	w
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-1,80		12,57		0	0,0000	0,00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	-1,70					0,0000	0,00	0,000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	-1,60	12,57	12,57	-25528	-81	0,0000	0,00	0,000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	-1,50	12,57	12,57	-25528	-176	0,0000	0,00	0,000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	-1,40					0,0000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	-1,30		12,57	-25528		0,0000	0,00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-1,20	12,57	12,57	-25528	-620	0,0000	0,00	0,000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	-1,10	12,57	25,13	-25805	-805	0,0000	0,00	0,000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	-1,00	25,13	25,13	-27065	- 1002	0,0000	0,00	0,000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				31,42		43803	0,0607	126, 14	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1,26		25,13		30433	0,0403	137,47	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
20 3,36 37,70 12,57 26072 3060 0,0000 0,00 0,000 21 3,78 37,70 12,57 26072 823 0,0000 0,00 0,000									
21 3,78 37,70 12,57 26072 823 0,0000 0,00 0,000									
	20					20.00	0.0000	0.00	0.000
22 4,20 37,70 12,57 -28025 0 0,000 0,00 0,00	21	3,78	37,70	12,57	26072	823	0,0000	0,00	0,000

139/144 140/144

Combinazione nº 39

COMMINIZATORE IT 39

Lordinata Vespresa in mje considerata positiva veso il basso conorigine in testa al muro Momento positivo setende le fibrecontro terra (a monte), espresso in kgm Sforzo normale positivo di compressione, espresso in kg paglio positivo di compressione, espresso in kg paglio positivo di compressione, espresso in kg

Nr.	Y	N	M	Т
1	0,00	0,00	0,00	0.00
2	0,37	733,33	51,48	294,79
3	0,73	1466,67	226,45	673,56
4	1,10	2200,00	555,67	1136,15
5	1,55	3093,33	1193,00	1700,91
6 7	1,99	3986,67	2053,74	2104,30
7	2,44	4880,00	3019,01	2179,36
8	2,89	5773,33	3978,38	2094,04
9	3,33	6666,67	4869,76	1874,93
10	3,78	7560,00	5633,40	1522,04
11	4,23	8453,33	6209,30	1031,57
12	4,67	9346,67	6541,23	468,31
13	5,12	10240,00	6621,15	-130,66
14	5,57	11133,33	6405,74	-854,91
15	6,01	12026,67	5838,64	- 1705,39
16	6,46	12920,00	4863,46	-2682,10
17	6,91	13813,33	3423,84	-3785,03
18	7,35	14706,67	1463,38	-5014,18
19	7,80	15600,00	- 1074,68	-6372,86
20	8,30	16600,00	-3695,70	-4057,00
21	8.80	17600.00	-5079.81	- 1431,13

Sollecitazioni fondazione di valle

Combinazione n° 39
L'ascisa X(septesa ain m) e considerata positiva veso monte con origine in corrispondenza dell'estremo libero della fondazione di valle Momento positivo setende le fibre inferiori, esptesso in kgm Taglio pos fivose diretto veso l'alto, espresso in kgm

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,10	- 16,31	-318,74
3	0,20	-62,25	-592,69
4	0,30	-133,35	-821,85
5	0,40	-225,13	- 1006,24
6	0,50	-333,11	-1145,84
7	0,60	-452,81	- 1240,65
8	0,70	-579,75	- 1290,68
9	0,80	-709,45	- 1295,93
10	0,90	-837,44	- 1256,39
11	1,00	-959,24	- 1172,07

Sollecitazioni fondazione di monte

Combinazione nº 39
L'asciss a Xispiessa ain nº è considerata positiva veso valle con origine in corrispondenza dell'estremo libero della fondazione di monte Momento positivo se tende le fibre inferiori, espresso in kgm
Taglio pos i rivo se diretto veso l'alto, espresso in kg

Nr.	X	M	T
1	0,00	0,00	0,00
2	0,42	767,53	3523,26
3	0,84	2848,94	6256,52
4	1,26	6039,17	9174,80
5	1,68	10493,17	11903,08
6	2,10	15927,16	13841,38
7	2,52	22009,33	14989,68
8	2,94	28407,89	15347,99
9	3,36	34791,04	14916,31
10	3,78	40826,98	13694,63
11	4,20	46183,93	11682,97

Armature e tensioni nei materiali del muro

Combinazione nº 39

Lordinata Y (espressa in [ni]) è consideratapositiva verso il basso con origine in testa al muro B base de ll'assezione espressa in [nri] H alterza della sezione espressa in [nri] Ar, area di armatuna in corrispondenza del kenbo di monte in [nri] area di armatuna in corrispondenza del lenbo di valle in [cmi] G, tersione nel calcestruzzo espressa in [ng/cmi]

tens ione tartesmizzo sepressa in [kg/cmq] tens ione tangenziale nel calcestruzzo sepressa in [kg/cmq] tens ione nell'a matura disposta sul lembo di monte in [kg/cmq] tens ione nell'a matura disposta sul lembo di valle in [kg/cmq]

Nr.	Y	В, Н	A_{fs}	A_{fi}	σ _c	τ	σs	σii
1	0,00	100, 80	8,04	8,04	0,00	0,00	0,00	0,00
2	0,37	100, 80	8,04	8,04	0,13	0,05	-0,74	-1,93
3	0,73	100, 80	8,04	8,04	0,38	0,11	-0,03	-5,29
4	1,10	100, 80	8,04	8,04	0,87	0,18	6,53	-11,68
5	1,55	100, 80	8,04	8,04	2,17	0,27	48,73	-27,18
6	1,99	100, 80	8,04	8,04	4,11	0,33	139,28	-48,19
7	2,44	100, 80	8,04	8,04	6,25	0,34	252,77	-70,68
8	2,89	100, 80	8,04	8,04	8,36	0,33	367,10	-92,56
9	3,33	100, 80	8,04	8,04	10,30	0,29	470,52	-112,80
10	3,78	100, 80	8,04	8,04	11,94	0,24	552,42	-130,27
11	4,23	100, 80	8,04	8,04	13,14	0,16	602,46	-143,76
12	4,67	100, 80	8,04	8,04	13,77	0,07	611,26	-152,01
13	5,12	100, 80	8,04	8,04	13,80	-0,02	578,07	-154,66
14	5,57	100, 80	26,14	8,04	9,29	-0,13	184,40	-117,83
15	6,01	100, 80	38,70	24,63	7,05	-0,27	99,70	-92,10
16	6,46	100, 80	38,70	24,63	5,98	-0,42	61,12	-79,59
17	6,91	100, 80	38,70	24,63	4,42	-0,59	18,20	-60,73
18	7,35	100, 80	38,70	24,63	2,84	-0,79	-9,67	-40,35
19	7,80	100, 80	38,70	24,63	2,43	- 1,00	-35,08	-16,77
20	8,30	100, 80	38,70	24,63	4,57	-0,64	-63,11	12,60
21	8.80	100.80	30.66	16.59	6.61	-0.22	-88 74	56.16

141/144 142/144

Combinazione nº 39

Simbologia adottata
B base della sezione espressa in [cm]

base de la sectione espressa in [cm]
area di armatum in corrispondenza del lenho inferiore in [cmq]
area di armatum in corrispondenza del lenho superiore in [cmq]
tans ione nel calestruzzo spressa in [lg/cmq]
tans ione nel carrispondenza del carrispondenza del lenho inferiore in [gg/cmq]
tens ione nengenziale en calestruzzo sepressa in [lg/cmq]
tens ione nel l'armatura disposta in corrispondenza del lenho inferiore in [lg/cmq] tens ione nell'armatura disposta in corrispondenza del lembo superiore in [kg/cmq]

Fondazion e di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estre no libero della fondazione di valle)

Nr.	X	В, Н	A_{fs}	A_{fi}	σc	τ	σ _{fi}	σ_{ls}
1	0,00	100, 100	12,57	12,57	0,00	0,00	0,00	0,00
2	0,10	100, 100	12.57	12,57	0.02	-0.04	-0,20	1,45
3	0,20	100, 100	12,57	12,57	0,07	-0,07	-0,77	5,52
4	0,30	100, 100	12.57	12,57	0,16	-0,10	-1,65	11,83
5	0,40	100, 100	1257	12,57	0,27	-0.12	-2,78	1997
6	0,50	100, 100	12,57	12,57	0,40	-0,14	-4,12	29,55
7	0,60	100, 100	12.57	12,57	0,54	-0,15	-5,60	40,17
8	0,70	100, 100	12,57	25,13	0,64	-0,16	-6,43	51,27
9	0,80	100, 100	25,13	25,13	0,60	-0,16	-6,87	31.92
10	0,90	100, 100	25,13	31,42	0,69	-0,16	-7,77	37,58
11	1.00	100, 100	25.13	31.42	0.79	-0.15	-8.90	43.05

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estre mo libe ro della fondazione di monte)

Nr.	X	В, Н	A_{fs}	A_{fi}	σc	τ	σ _{fi}	G rs
1	0,00	100, 100	37,70	12,57	0,00	0,00	0,00	0,00
2	0,42	100, 100	37,70	12,57	0,79	0,44	67,73	-7,69
3	0,84	100, 100	37,70	12,57	2,94	0,77	251,39	-28,54
4	1,26	100, 100	12.57	12,57	7,24	1,14	535,70	-74,66
5	1,68	100, 100	25,13	25,13	8,90	1,47	472,04	-101,56
6	2,10	100, 100	25,13	25,13	13.50	1,71	716,50	-154,16
7	2.52	100, 100	25.13	25,13	18.66	1.86	990.11	-213,03
8	2.94	100, 100	25.13	25,13	24.08	1.90	1277.95	-274,96
9	3,36	100, 100	31,42	31,42	2631	1,85	1257,53	-307,63
10	3,78	100, 100	31,42	31,42	30.87	1,70	1475,70	-361,00
11	4.20	100, 100	37.70	31.42	33.81	1.45	1665,17	-392,88

Altezza sezione H=100 [cm]

T=14046,2 [kg]

Coeff.sicurezza sezione = 3,28

Verifiche a fessurazione

Verifica fessurazione paramento

N°	Y	As	An	$\mathbf{M}_{\mathbf{pf}}$	M	& m	Sm	w
1	0,00	8,04	8,04	- 16102	0	0,0000	0,00	0,000
2	0,37	8,04	8,04	-16102	-51	0,0000	0,00	0,000
3	0,73	8,04	8,04	-16102	-226	0,0000	0,00	0,000
4	1,10	8,04	8,04	-16102	-556	0,0000	0,00	0,000
5	1,55	8,04	8,04	-16102	-1193	0,0000	0,00	0,000
6	1,99	8,04	8,04	-16102	-2054	0,000	0,00	0,000

7	2,44	8,04	8,04	-16102	-3019	0,0000	0,00	0,000
8	2,89	8,04	8,04	-16102	-3978	0.0000	0,00	0,000
9	3,33	8,04	8,04	-16102	-4870	0.0000	0,00	0,000
10	3,78	8,04	8,04	-16102	-5633	0,0000	0,00	0,000
11	4,23	8,04	8,04	-16102	-6209	0,0000	0,00	0,000
12	4,67	8,04	8,04	-16102	-6541	0,0000	0,00	0,000
13	5,12	8,04	8,04	-16102	-6621	0,0000	0,00	0,000
14	5,57	26,14	8,04	- 17479	-6406	0,0000	0,00	0,000
15	6,01	38,70	24,63	-18722	-5839	0,0000	0,00	0,000
16	6,46	38,70	24,63	- 18722	-4863	0,0000	0,00	0,000
17	6,91	38,70	24,63	-18722	-3424	0,0000	0,00	0,000
18	7,35	38,70	24,63	- 18722	- 1463	0,0000	0,00	0,000
19	7,80	38,70	24,63	17868	1075	0,0000	0,00	0,000
20	8,30	38,70	24,63	17868	3696	0.0000	0,00	0,000
21	8,80	30,66	16,59	17120	5080	0,0000	0,00	0,000
Verifica	fessurazione fo	ondazion e						
N°	Y	A_{fs}	A_6	M_{pf}	M	€ m	Sm	w
1	-1,80	12,57	12,57	-25528	0	0,000	0,00	0,000
1 2	-1,80 -1,70	12,57 12,57	12,57 12,57	-25528 -25528	0 -16	0,0000	0,00 0,00	0,000 0,000
1	-1,80 -1,70 -1,60	12,57 12,57 12,57	12,57 12,57 12,57	-25528 -25528 -25528	0 -16 -62	0000,0 0000,0 0000,0	0,00 0,00 0,00	0,000 0,000 0,000
1 2 3 4	-1,80 -1,70	12,57 12,57	12,57 12,57	-25528 -25528	0 -16 -62 -133	0,0000	0,00 0,00	0,000 0,000
1 2 3 4 5	-1,80 -1,70 -1,60 -1,50 -1,40	12,57 12,57 12,57 12,57 12,57	12,57 12,57 12,57 12,57 12,57	-25528 -25528 -25528 -25528 -25528	0 -16 -62 -133 -225	0000,0 0000,0 0000,0 0000,0 0000,0	0,00 0,00 0,00 0,00 0,00 0,00	0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 6	-1,80 -1,70 -1,60 -1,50 -1,40 -1,30	12,57 12,57 12,57 12,57 12,57 12,57	12,57 12,57 12,57 12,57 12,57 12,57	-25528 -25528 -25528 -25528 -25528 -25528 -25528	0 -16 -62 -133 -225 -333	0,000,0 0,000,0 0,000,0 0,000,0 0,000,0 0,000,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00	0,000 0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 6 7	-1,80 -1,70 -1,60 -1,50 -1,40 -1,30 -1,20	12.57 12.57 12.57 12.57 12.57 12.57 12.57	12,57 12,57 12,57 12,57 12,57 12,57 12,57	-25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528	0 -16 -62 -133 -225 -333 -453	0000,0 0000,0 0000,0 0000,0 0000,0 0000,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00	0,000 0,000 0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 6 7 8	-1,80 -1,70 -1,60 -1,50 -1,40 -1,30 -1,20 -1,10	12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57	12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57 25,13	-25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528	0 -16 -62 -133 -225 -333 -453 -580	0000,0 0000,0 0000,0 0000,0 0000,0 0000,0 0000,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 6 7 8 9	-1,80 -1,70 -1,60 -1,50 -1,40 -1,30 -1,20 -1,10 -1,00	12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57 25,13	12,57 12,57 12,57 12,57 12,57 12,57 12,57 25,13 25,13	-25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -25605 -27065	0 -16 -62 -133 -225 -333 -453 -580 -709	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 6 7 8 9	-1,80 -1,70 -1,60 -1,50 -1,40 -1,30 -1,20 -1,10 -1,00 -0,90	12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57 25,13 25,13	12,57 12,57 12,57 12,57 12,57 12,57 12,57 25,13 25,13 31,42	-25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -27065 -27204	0 -16 -62 -133 -225 -333 -453 -580 -709 -837	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 6 7 8 9 10	-1,80 -1,70 -1,60 -1,50 -1,40 -1,30 -1,20 -1,10 -1,00 -0,90 -0,80	12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57 25,13 25,13	12,57 12,57 12,57 12,57 12,57 12,57 12,57 25,13 25,13 31,42 31,42	-25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -25605 -27065 -27204 -27204	0 -16 -62 -133 -2225 -333 -453 -580 -709 -837 -959	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 6 7 8 9 10 11 12	-1,80 -1,70 -1,60 -1,50 -1,40 -1,30 -1,20 -1,10 -1,00 -0,90 -0,80 0,00	12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57 25,13 25,13 25,13 37,70	12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57 25,13 25,13 31,42 31,42 31,42	-25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -25806 -27065 -27204 -27204 -27973	0 -16 -62 -133 -225 -333 -453 -580 -709 -837 -959 46184	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
1 2 3 4 5 6 7 8 9 10 11 12 13	-1,80 -1,70 -1,60 -1,50 -1,40 -1,30 -1,20 -1,10 -1,00 -0,90 -0,80 0,00 0,42	12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57 25,13 25,13 25,13 37,70 31,42	12,57 12,57 12,57 12,57 12,57 12,57 12,57 25,13 25,13 31,42 31,42 31,42 31,42	-25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -25805 -27065 -27204 -27204 -27973 27834	0 -16 -62 -133 -225 -333 -453 -580 -709 -837 -959 46184 40827	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00552 0,0545	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,117
1 2 3 4 5 6 7 8 9 10 11 12 13 14	-1,80 -1,70 -1,60 -1,50 -1,40 -1,30 -1,20 -1,10 -1,00 -0,90 -0,80 0,00 0,42 0,84	12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57 25,13 25,13 37,70 31,42	12,57 12,57 12,57 12,57 12,57 12,57 12,57 25,13 25,13 31,42 31,42 31,42 31,42 31,42	-25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -27204 -27204 -27204 27973 27834 27834	0 -16 -62 -133 -225 -333 -453 -580 -709 -837 -959 46184 40827 34791	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0052 0,0545 0,0413	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,140 0,117 0,089
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	-1,80 -1,70 -1,60 -1,50 -1,40 -1,30 -1,20 -1,10 -1,00 -0,90 -0,80 0,00 0,42 0,84 1,26	12.57 12.57 12.57 12.57 12.57 12.57 12.57 12.57 12.57 25.13 25.13 25.13 37.70 31.42 31.42 25.13	12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57 25,13 31,42 31,42 31,42 31,42 31,42 31,42 31,42 31,42	-25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -2706 -27204 -27204 -27973 -27834 -27065	0 -16 -62 -133 -225 -333 -453 -580 -709 -837 -959 46184 40827 34791 28408	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0052 0,0545 0,0413 0,0365	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,140 0,117 0,089
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	-1,80 -1,70 -1,60 -1,50 -1,40 -1,30 -1,20 -1,10 -1,00 -0,90 -0,80 0,00 0,42 0,84 1,26 1,68	12.57 12.57 12.57 12.57 12.57 12.57 12.57 25.13 25.13 25.13 37.70 31.42 31.42 25.13 25.13	12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57 25,13 25,13 31,42	-25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -27065 -2704 -27204 -27	0 -16 -62 -133 -225 -333 -453 -580 -709 -837 -959 46184 40827 34791 28408 22009	0,0000 0,	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,140 0,117 0,089 0,085
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	-1,80 -1,70 -1,60 -1,50 -1,40 -1,30 -1,20 -1,10 -0,90 -0,80 0,00 0,42 0,84 1,26 1,68 2,10	12.57 12.57 12.57 12.57 12.57 12.57 12.57 12.57 25.13 25.13 37.70 31.42 25.13 25.13 25.13 25.13	12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57 25,13 25,13 31,42 31,42 31,42 31,42 25,13 25,13 25,13	-25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -27066 -27204 -27204 -27204 -27204 -27204 -27204 -27205 -27065 -27065 -27065	0 -16 -62 -133 -225 -333 -453 -580 -709 -837 -959 46184 40827 34791 28408 22009 15927	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0545 0,0413 0,0365 0,0000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,140 0,117 0,089 0,085 0,000
1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18	-1,80 -1,70 -1,60 -1,50 -1,40 -1,30 -1,20 -1,10 -1,00 -0,90 -0,80 0,00 0,42 0,84 1,26 1,68 2,10 2,52	12.57 12.57 12.57 12.57 12.57 12.57 12.57 12.57 12.57 25.13 25.13 25.13 25.13 25.13 25.13 25.13 25.13 25.13 25.13	12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57 25,13 31,42	-25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -27066 -27204 -27204 -27204 -27973 -27834 -27065 -27065 -27065 -27065 -27065	0 -16 -62 -133 -225 -333 -453 -580 -709 -837 -959 46184 40827 34791 28408 22009 15927 10493	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0052 0,0545 0,0413 0,0365 0,0000 0,0000	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,140 0,117 0,089 0,000 0,000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	-1,80 -1,70 -1,60 -1,50 -1,50 -1,20 -1,10 -1,20 -1,10 -0,90 -0,90 -0,80 0,00 0,42 0,84 1,26 1,68 2,10 2,52 2,94	12.57 12.57 12.57 12.57 12.57 12.57 12.57 12.57 25.13 25.13 37.70 31.42 31.42 25.13 25.13 25.13 25.13	12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57 25,13 25,13 31,42	-25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -27045 -27204 -27204 -27204 -27204 -27065 -27065 -27065 -27065 -27065 -27065 -27065 -27065 -27065 -27065 -27065 -27065 -27065 -25528	0 -16 -62 -133 -225 -333 -453 -580 -709 -837 -959 46184 40827 34791 28408 22009 15927 10493 6039	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,114 0,117 0,085 0,085 0,000 0,000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	-1,80 -1,70 -1,60 -1,50 -1,40 -1,30 -1,20 -1,10 -0,90 -0,80 0,00 0,42 0,84 1,26 1,68 2,10 2,52 2,94 3,36	12.57 12.57 12.57 12.57 12.57 12.57 12.57 12.57 25.13 25.13 25.13 37.70 31.42 25.13 25.13 25.13 25.13 25.13 25.13	12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57 25,13 25,13 31,42	-25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -27066 -27204 -27204 -27204 -27204 -27065 -2706 -27065 -27	0 -16 -62 -133 -225 -333 -453 -580 -709 -837 -959 46184 40827 34791 28408 22009 10493 6039 2849	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0545 0,0413 0,0365 0,0000 0,0000 0,0000 0,0000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,140 0,117 0,089 0,085 0,000 0,000 0,000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	-1,80 -1,70 -1,60 -1,50 -1,50 -1,20 -1,10 -1,20 -1,10 -0,90 -0,90 -0,80 0,00 0,42 0,84 1,26 1,68 2,10 2,52 2,94	12.57 12.57 12.57 12.57 12.57 12.57 12.57 12.57 25.13 25.13 37.70 31.42 31.42 25.13 25.13 25.13 25.13	12,57 12,57 12,57 12,57 12,57 12,57 12,57 12,57 25,13 25,13 31,42	-25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -25528 -27045 -27204 -27204 -27204 -27204 -27065 -27065 -27065 -27065 -27065 -27065 -27065 -27065 -27065 -27065 -27065 -27065 -27065 -25528	0 -16 -62 -133 -225 -333 -453 -580 -709 -837 -959 46184 40827 34791 28408 22009 15927 10493 6039	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,114 0,117 0,085 0,085 0,000 0,000

143/144 144/144