





# PROSSIMA STAZIONE 2020

Viaggio tra i progetti dei fondi strutturali

2007-2013 >>> 2014-2020

Auditorium Sant'Apollonia, Firenze *via San Gallo, 25a*29 Novembre 2013



#### SINTER-CLEAN

# Sviluppo di un processo innovativo a basso consumo energetico per la sinterizzazione di ceramici tecnici in allumina ad alta densità

#### POR - FESR 2007/2013

Ricerca, sviluppo e trasferimento tecnologico, innovazione e imprenditorialità
Linea di intervento 1.1 b "Sostegno alla realizzazione di progetti di sviluppo sperimentale in materia di energia"















# 🖁 Industrie Bitossi



Q.G. a Vinci

U.O. di Montelupo Fiorentino





Mezzi macinanti





Rivestimenti antiusura











### Definizione del Progetto

Sviluppo di un'attività sperimentale e prototipale che implementi un processo innovativo di sinterizzazione di ceramici tecnici in allumina ad alta densità in una nuova tipologia di processo, con l'obiettivo di ridurre consistentemente il fabbisogno di energia primaria richiesto dallo stesso

|             | mesi                                                                                                                        | 1       | 1 2   | 2     | - 4   | 5     | - 6   | 7     | 0     | 0     | 10    | -11   | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20    | 21    | 22         | 23         | 24    |
|-------------|-----------------------------------------------------------------------------------------------------------------------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------|------------|-------|
|             |                                                                                                                             | 0.4/1.0 | 05/10 | 06/10 | 07/10 | 5     | 00/10 | 10/10 | 11/10 | 12/10 |       |       |       |       |       |       | 16    |       |       |       |       |       |            | 02/12      | 02/12 |
|             | Attività  1. Validazione del modello matematico                                                                             | 04/10   | 05/10 | 06/10 | 0//10 | 08/10 | 09/10 | 10/10 | 11/10 | 12/10 | 01/11 | 02/11 | 03/11 | 04/11 | 05/11 | 06/11 | 0//11 | 08/11 | 09/11 | 10/11 | 11/11 | 12/11 | 01/12      | 02/12      | 03/12 |
|             |                                                                                                                             |         |       |       |       |       |       |       |       |       |       |       |       | -     |       |       |       |       |       |       |       |       | lacksquare | lacksquare |       |
|             | Analisi cicli termici evacuazione leganti     Simulazioni termo fluido dinamiche leganti                                    |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       | lacksquare | igsquare   | _     |
| Obiettivo   | Simulazioni termo fiuldo dinamiche leganti     Analisi chimico fisica del debonding dei leganti                             |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       | lacksquare | igsquare   |       |
| Operativo 1 | * *                                                                                                                         |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       | -          | <b>└─</b>  |       |
|             | Analisi delle specifiche tecniche presenti sul mercato                                                                      |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |            | <u> </u>   |       |
|             | Caratterizzazione chimico-fisica di materiali innovativi e alternativi al refrattario                                       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |            | <u> </u>   |       |
|             | Validazione del modello matematico                                                                                          |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |            | '          |       |
| Obiettivo   | Simulazioni in temperatura dei materiali per la costruzione dei contenitori del semilavorato                                |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |            |            |       |
| Operativo 2 | <ol> <li>Confronto dei risultati ottenuti per individuare la realizzazione più vantaggiosa in termini energetici</li> </ol> |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |            |            |       |
|             | Valutazione e selezione di tecnologie per lo smaltimento / trattamento dei composti organici volatili                       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       | <u> </u>   | ļ!         | 1     |
| Obiettivo   | 2. Individuazione dei limiti della tecnologia scelta per lo smaltimento dei composti organici volatili e sua                |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |            |            |       |
| Operativo 3 | Caratterizzazione delle macchine per il debonding e per il trattamento dei fumi                                             |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |            |            |       |
|             | 1 Caratterizzazione energetica degli attuali forni                                                                          |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |            |            |       |
|             | Analisi di mercato della disponibilità di soluzioni alternative alle attuali                                                |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |            |            |       |
|             | Esecuzione di prove tecniche su attrezzature sperimentali                                                                   |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |            |            |       |
| Obiettivo   | Ricerca di eventuali miglioramenti da apportare alla soluzione scelta                                                       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |            |            |       |
| Operativo 4 | Determinazione della tipologia di forno da implementare sul prototipo                                                       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |            |            |       |
|             | Modellazione 3D della macchina e degli impianti necessari                                                                   |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |            |            |       |
|             | Verifica dell'integrazioni fra le parti sviluppate                                                                          |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |            |            |       |
|             | Stesura della documentazione tecnica                                                                                        |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |            |            |       |
| Obiettivo   | Realizzazione del prototipo                                                                                                 |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |            |            |       |
| Operativo 5 | 5. Prove di verifica e raggiungimento dei risultati attesi                                                                  |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |            |            |       |
|             | Coordinamento e controllo tecnico                                                                                           |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |            |            |       |
| Gestione e  | Controllo economico finanziario                                                                                             |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |            |            |       |
| rendicont.  | 3. Comitato Tecnico Scientifico                                                                                             |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |            |            |       |

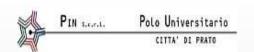











#### Il Gruppo di Lavoro



Industria ceramica, leader mondiale nella produzione di mezzi macinanti e rivestimenti antiusura in allumina sinterizzata ad alta densità



Impresa leader in materia di Progettazione, Costruzione, Montaggi Industriali, Manutenzione Full/Global Service e Ingegneria di Manutenzione



La società è un Centro di Ricerca e Formazione senza scopo di lucro, e per statuto è strumento nel rapporto tra Università e società

# Deimos S.r.l.

Società di consulenza amministrativo aziendale e pianificazione gestionale







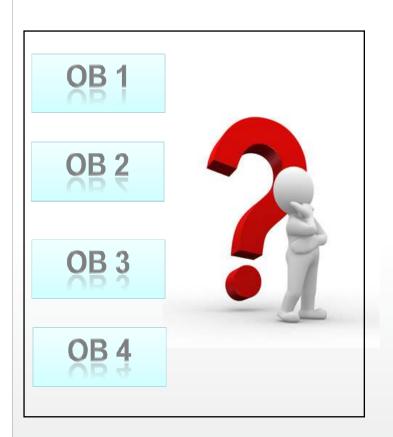




#### Svolgimento delle Attività














## Come proseguire??

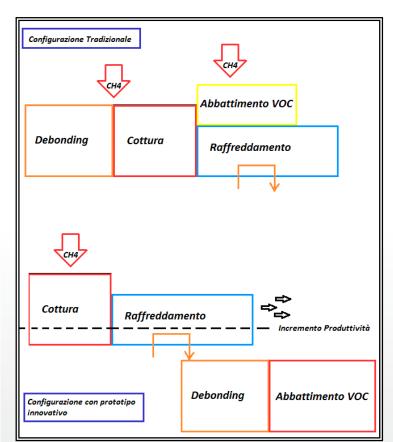




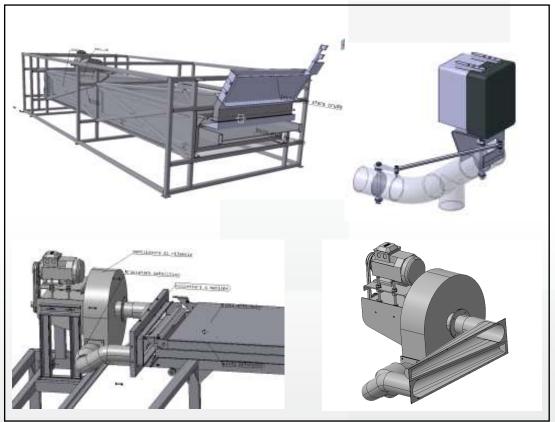
- Considerare i COV combustibile
- Recuperare calore non utilizzato
- Utilizzare tutta la potenza installata










## Il Prototipo

#### Schema a blocchi



#### Progettazione 3D



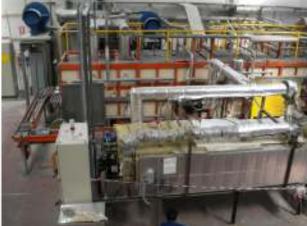


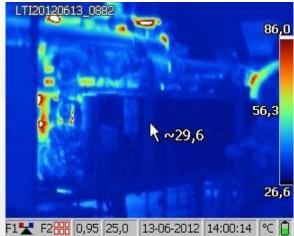









# Il Prototipo





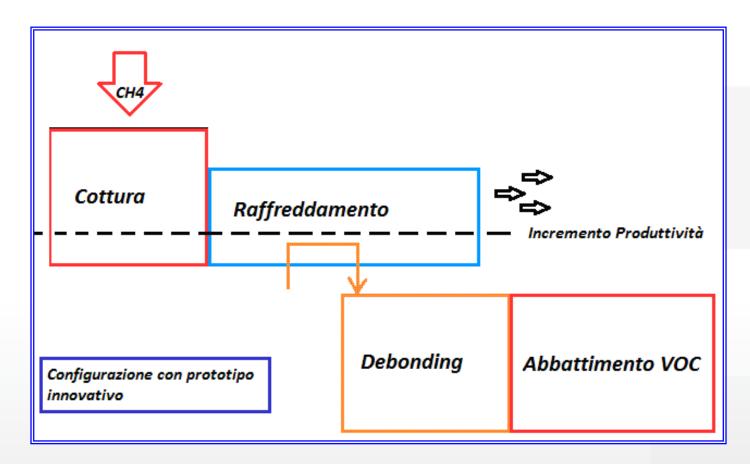

















#### E Domani?



Riduzione Consumo Specifico > 50%









Le ali alle tue idee.

## Ringraziamenti:



All'amministrazione territoriale



Al gruppo di lavoro