

SISTEMA MODELLISTICO WRF-CAMX

20/12/2013, Sesto Fiorentino

Indice

Ringraziamenti	3		
Introduzione	4		
1. Il sistema di modelli WRF-CAMx	5		
1.1 Struttura del sistema modellistico WRF-CAMx	5		
1.2 Il modello meteorologico WRF-ARW	6		
1.2.1 Configurazione del modello WRF	6		
1.3 Il modello di chimica e trasporto CAMx	8		
1.3.1 Configurazione del modello CAMx	10		
1.4 Emissioni	12		
1.5 Condizioni iniziali e al contorno	15		
1.6 Implementazione di pre/postprocessori per CAMx	16		
1.7 Primi test sulla catena di modelli implementata	19		
2. Risultati	22		
2.1 Analisi meteorologica	23		
2.2 Le emissioni areali	24		
2.3 Le concentrazioni medie stimate	25		
2.4 Il dataset utilizzato per la validazione	31		
2.5 Gli indicatori statistici per la valutazione dei risultati	37		
2.6 GIS-QA	43		
Conclusioni	45		
Bibliografia	46		
Appendicedelle tavole degli indicatori di qualità dell'aria	47		

2

Ringraziamenti

Per il supporto fornito allo svolgimento del presente lavoro si ringraziano l'Unità Tecnica Modelli, Metodi e Tecnologie per le Valutazioni Ambientali dell'ENEA (UTVALAMB) nella persona del responsabile Dr.Gabriele Zanini e la Dr. Luisella Ciancarella, responsabile del Laboratorio qualità dell'aria (UTVALAMB-AIR) e i loro collaboratori.

Introduzione

Per rispondere alle caratteristiche richieste nell'ambito del Accordo tra Ministero dell'Ambiente e della Tutela del Territorio e del Mare, Regione Toscana e Comune di Firenze (ex. DM. 16/10/2006), è stato sviluppato un sistema in grado di fornire campi tridimensionali di concentrazione dei principali inquinanti atmosferici sia primari che secondari (PM10, PM2.5, NO2, O3, SO2) sull'intero territorio regionale.

La catena modellistica prevede l'uso del modello meteorologico WRF-ARW e del modello CAMx per la simulazione della chimica e del trasporto in atmosfera, configurato sul territorio regionale ad una risoluzione di 2 Km. Il periodo temporale di riferimento è relativo all'anno 2007, con risoluzione temporale oraria. Le emissioni sono fornite dall'inventario regionale IRSE, con passo temporale orario e con speciazione chimica. Le emissioni relative alle aree esterne alla regione Toscana che ricadono nel dominio di calcolo e le condizioni al contorno sono fornite da ENEA (modello di riferimento nazionale MINNI).

Una importante parte del lavoro ha riguardato la messa a punto di preprocessori, moduli di interfaccia e postprocessori per le elaborazioni grafiche e di analisi. Infine sono state messe a punto procedure di validazione e di verifica, al fine di costituire un robusto sistema modellistico per gli utilizzi richiesti in ambito regionale.

Il sistema di modelli WRF-CAMx configurato sulla Toscana permetterà di integrare le misure effettuate dalle stazioni di monitoraggio e di estenderne la rappresentatività spaziale, ottenendo stime di concentrazione in aree in cui non sono presenti le stazioni. Inoltre, le stime modellistiche potranno essere estese ad altri anni di riferimento, come ad esempio il 2010, non appena sia disponibile l'aggiornamento di IRSE: infatti la catena di modelli prevede la possibilità di seguire gli aggiornamenti e le modifiche apportate all'inventario regionale.

1. Il sistema di modelli WRF-CAMx

1.1 Struttura del sistema modellistico WRF-CAMx

Il sistema modellistico messo a punto su incarico della Regione Toscana si basa sul modello prognostico WRF-ARW [1], che fornisce l'input meteorologico, e sul modello CAMx [2], per la simulazione della chimica e del trasporto degli inquinanti in atmosfera.

Le emissioni sono fornite dall'inventario regionale IRSE, attraverso una specifica interfaccia, mentre sul territorio esterno alla regione le emissioni, come anche le condizioni iniziali e al contorno, sono ottenute dal modello di riferimento nazionale MINNI [8], fornite da ENEA.

Inoltre la catena di modelli è costituita anche da numerosi preprocessori, moduli di interfaccia e postprocessori, in buona parte sviluppati appositamente. Di seguito è riportato lo schema che sintetizza la struttura del sistema modellistico.

Fig.1 – Schema della catena di modelli WRF-CAMx

1.2 Il modello meteorologico WRF-ARW

Il modello WRF (Weather & Research Forecasting model, <u>www.wrf-model.org</u>, [1]) è stato sviluppato dalla NOAA (National Oceanic and Atmospheric Administration) e da NCEP (National Centre for Environmental Prediction). Si tratta di un modello che può essere considerato lo stato dell'arte per quanto riguarda la modellistica numerica a scala regionale.

Il modello WRF mostra una grande duttilità per campi di applicazione che vanno da simulazioni con risoluzione di pochi metri fino a migliaia di km. Possono essere fatte simulazioni con dati reali o idealizzate, con griglie innestate one-way o two-way, e anche con griglie in movimento per seguire particolari sistemi.

Le caratteristiche principali del modello sono:

- equazioni di Navier-Stokes non idrostatiche (con opzione per ipotesi idrostatica) per fluido compressibile.
- Applicazioni regionali e globali (da pochi metri a centinaia di km di risoluzione).
- Inclusione completa di Coriolis e di tutti i termini di curvatura.
- Possibilità di utilizzare più griglie con multipli livelli di annidamento in modalità one-way o two-way.
- Griglie innestate in movimento per seguire il tragitto del vortice.
- Coordinate di tipo "terrain-following" con possibilità di variare la spazitura con l'altezza.
- Diverse proiezioni geografiche (Stereografica Polare, Lambert, Mercatore, latitudine longitudine)
- Staggeraggio della griglia Arakawa.
- Opzioni di integrazione temporale Runge-Kutta di secondo e terzo ordine.
- Schemi di avvezione (sia orizzontale che verticale) dal secondo al sesto ordine.
- Usa "time-split" a piccoli passi per le onde acustiche e gravitazionali.
- Opzioni a fisica completa per radiazione superficiale, convezione cumuliforme, microfisica, ecc.

1.2.1 Configurazione del modello WRF

Il modello WRF-ARW è inizializzato con i dati delle analisi ECMWF (http://www.ecmwf.int/products/data/operational_system/), utilizzati come forcing ogni 6 ore, ed è strutturato su due griglie di calcolo innestate (one-way): la prima configurata ad una risoluzione orizzontale di 9 Km sull'intero territorio nazionale, l'altra ad una risoluzione di 3 Km, su un dominio che comprende l'Italia centro-settentrionale.

Fig.2 – Schema del modello meteo innestato WRF 9-3 Km inizializzato da analisi ECMWF.

Per quanto riguarda la struttura dei livelli verticali, la configurazione è stata scelta a valle di una serie di simulazioni finalizzate alla migliore descrizione dei flussi superficiali e del boundary-layer. In particolare è stato scelto un sistema di coordinate verticali terrain-following, tale da migliorare la descrizione nei bassi strati, con il primo livello corrispondente a circa 20 metri. Il time-step è pari a 40 secondi.

Di seguito le caratteristiche principali della configurazione adottata.

Numero griglie	2 (200x200 e 283x283)
Tipo di nesting	one-way
Risoluzione orizzontale	9 km e 3km
Parametrizzazione convettiva	Kain-Fritsch per la prima griglia; esplicita per la seconda griglia
Livelli verticali	35 sigma
Time-step	40 s
Parametrizzazione PBL	Yonsei
Parametrizzazione superficiale	Monin-Obukhov
Parametrizzazione radiativa (SW/LW)	Dudhia / RRTM
Microfisica	Stony Brook University (Lin and Colle)

Tab. 1 - Principali caratteristiche della config	gurazione adottata.
--	---------------------

1.3 Il modello di chimica e trasporto CAMx

Il modello di chimica e trasporto CAMx [2], Comprehensive Air quality Model with extensions, è stato sviluppato da ENVIRON International Corporation (<u>http://www.camx.com/</u>), e rappresenta uno dei modelli di riferimento a livello internazionale per lo studio dell'inquinamento atmosferico.

Il modello si basa sull'equazione generale del trasporto, o di continuità, riferita ad un sistema di coordinate fisso o euleriano e in coordinate verticali terrain following:

$$\frac{\partial c_{1}}{\partial t} = -\nabla_{H} \cdot V_{H} \cdot c_{1} + \left[\frac{\partial (c_{1}\eta)}{\partial z} - c_{1}\frac{\partial}{\partial z}\left(\frac{\partial h}{\partial t}\right)\right] + \nabla \cdot \rho K\Delta \left(\frac{c_{1}}{\rho}\right) + \left[\frac{\partial c_{1}}{\partial t}\Big|_{Chemistry} + \frac{\partial c_{1}}{\partial t}\Big|_{Emission} + \frac{\partial c_{1}}{\partial t}\Big|_{Removal}\right]$$

- cl rappresenta la concentrazione della specie l,

- V_H è il vettore del vento orizzontale,
- $-\eta$ è il termine di *net-entrainment* verticale,
- h è l'altezza dello strato di interfaccia,
- ho è la densità dell'atmosfera,
- K è il coefficiente di diffusione turbolenza.

La variazione nel tempo della concentrazione, in ogni punto griglia e per ogni specie considerata, è espressa come la somma dei contributi dovuti alla avvezione orizzontale, al trasporto verticale, alla diffusione turbolenta orizzontale e verticale, alla chimica, che dipende dal meccanismo scelto, alle emissioni delle sorgenti presenti, alla rimozione dovuta alla deposizione secca e umida.

L'equazione di continuità è risolta con un metodo numerico che, separando i termini dell'equazione in moduli - tecnica dello splitting - ne computa in serie il singolo contributo ad ogni passo temporale. In prima battuta viene valutato il contributo alle emissioni da sorgente, poi il trasporto orizzontale, il trasporto verticale, la diffusione verticale, la diffusione orizzontale, la deposizione umida, la chimica.

I processi di trasformazione chimica in fase gassosa sono effettuati sulla base di meccanismi chimici ridotti, in particolare CB4 e SAPRC99 [3], che permettono una trattazione semplificata raggruppando i composti organici in classi omogenee. La principale differenza tra le due tipologie di meccanismi consiste nel fatto che nel CB4 i composti sono raggruppati sulla base dei legami e dei gruppi funzionali, mentre nel SAPRC99 sulla base della famiglia (ARO=aromatici, ALD=aldeidi, etc.). Inoltre è possibile includere la chimica del particolato sia organico che inorganico, che viene descritto attraverso 20 composti:

- aerosol secondario inorganico: solfato, nitrato, ammonio;
- aerosol marino: sodio, cloro;
- carbonio elementare e organico primario;
- aerosol crostale (fine e grosso);
- altro aerosol primario inerte (fine e grosso);

- aerosol secondario organico.

Per alcuni composti, aerosol crostale e altro aerosol primario, sono previste due frazioni granulometriche, fine inferiore a 2.5 μ m e grosso, tra 2.5 e 10 μ m. I composti secondari, il carbonio elementare e l'organico primario sono assegnati alla frazione fine, mentre l'aerosol marino alla frazione grossa.

La deposizione secca è trattata calcolando per ogni specie una velocità di deposizione, funzione del land use e delle condizioni meteorologiche locali, ed è inclusa nel calcolo della diffusione verticale. In particolare, per quanto riguarda l'aerosol, la deposizione secca avviene per diffusione, impatto e deposizione gravitazionale e viene stimata utilizzando l'approccio di Slinn e Slinn (1980). Per quanto riguarda la deposizione umida, viene utilizzato l'approccio di Seinfeld e Pandis (1998).

Per sfruttare al meglio le risorse di calcolo, il modello offre la possibilità di effettuare simulazioni su griglie innestate, allo scopo di ottenere su domini più piccoli una maggiore risoluzione.

L'input meteorologico, costituito da campi tridimensionali di vento, di temperatura, di pressione, dai coefficienti di diffusione verticale, dalla concentrazione media di vapor d'acqua, dalla copertura nuvolosa, dalla pioggia, può essere fornito da un modello prognostico come RAMS [4], MM5 o,come nel nostro caso WRF-ARW.

Per il calcolo dei ratei delle reazioni fotochimiche sono necessari input relativi a albedo, spessore della colonna di ozono stratosferico, opacità dell'aria; in presenza di copertura nuvolosa il valore dei ratei viene corretto.

E' possibile implementare il modello secondo varie configurazioni [4]. Nel file di controllo devono essere specificate tutte le informazioni necessarie al programma: dominio temporale, dimensione e risoluzione della griglia, tipo e origine del sistema di coordinate, specie da simulare, moduli attivati o disattivati, path dei files di input e output.

Il modello fornisce in uscita le stime di concentrazione media oraria, nonché le quantità depositate al suolo, relative alla rimozione secca ed alla rimozione umida, per ogni specie inquinante simulata.

1.3.1 Configurazione del modello CAMx

Nell'ambito di questo lavoro, CAMx (versione 5.4) è stato configurato su di un dominio di calcolo che copre l'intera regione Toscana, con una estensione di 220x248 Km². Il dominio, in coordinate UTM (32), è costituito da 110 per 124 celle quadrate di 2 Km di lato. Nella simulazione sono stati considerati 18 livelli verticali, da 20 m a 10500 m, con una risoluzione più alta in prossimità del suolo.

I files che costituiscono l'input meteorologico, forniti da WRF-ARW_v3.3, sono stati interpolati (da circa 3 Km a 2 Km), proiettati in coordinate UTM e opportunamente formattati utilizzando il processore wrfcamx_v3.3. Ciascun file contiene le stime orarie delle variabili per ogni giorno della simulazione.

Fig. 3 – Dominio di calcolo del modello CAMx.

Modello	CAMx versione 5.4								
Periodo	02/01/2007- 30/12/2007								
Risoluzione temporale	oraria (8712 ore)								
Dominio di calcolo	Dimensioni: 220x248 Km ² ; 110 x 124 celle								
	Risoluzione spaziale: 2 Km								
	Coordinate: UTM (32)								
	554 km E; 4677 Km N								
Livelli verticali	18 livelli; da 10 m a 10500 m								
Input meteo	WRF; variabili su base oraria, risoluzione 3 Km,								
	con interpolazione 2 Km								
Deposizione secca	Attivata - Slinn e Slinn (1980)								
Deposizione umida	Attivata - Seinfeld e Pandis (1998)								
Chimica	SAPRC99+CF (mech 5)								
Concentrazioni iniziali e	MINNI, risoluzione 4 Km, con interpolazione 2 Km								
al contorno									
Emissioni areali	IRSE; variabili su base oraria; risoluzione 1 Km, con								
	interpolazione 2 Km,								
	MINNI (area esterna alla Toscana): variabili su base								
	oraria; risoluzione 4 Km, con interpolazione 2 Km								
Emissioni puntuali	IRSE; variabili su base oraria; 517 camini								
Specie in output	26 specie: NO, NO2, O3, SO2, HNO3, NH3, PNO3, PSO4,								
	PNH4, POA, PEC, FPRM, CPRM, CCRS, FCRS, SOA1,								
	SOA2, SOA3, SOA4, SOA5, SOA6, SOA7, SOPA, SOPB,								
	NA, PCL								
Run eseguite	6 run, una per ogni bimestre								
Output	Concentrazioni medie orarie (file.avg), 363 file giornalieri								
	su base oraria.								
	Quantità depositate al suolo su base oraria (file.dep), 363								
	file giornalieri su base oraria.								

Tab. 2 - Principali caratteristiche delle simulazioni eseguite.

Il meccanismo chimico adottato, in linea con il modello di riferimento nazionale MINNI, è SAPRC99 più aerosol (mech5). Le emissioni areali, con disaggregazione temporale oraria e speciazione chimica, sono state ottenute dall'Inventario Regionale IRSE, alla risoluzione iniziale di 1Km, poi ricampionate a 2 Km. Sul territorio esterno alla regione Toscana, ma interno al dominio di calcolo, sono state utilizzate le emissioni del modello MINNI, a 4 Km di risoluzione e interpolate a 2 Km. Le emissioni puntuali disaggregate temporalmente su base oraria, anch'esse fornite da IRSE, sono relative a 517 camini appartenenti a 227 stabilimenti.

Infine, i files relativi alle concentrazioni iniziali e al contorno sono state ottenuti dal modello MINNI [8] a 4 Km di risoluzione e successivamente interpolati a 2 Km.

Le specie o composti chimici modellizzati sono 26: NO, NO2, O3, SO2, HNO3, NH3, aerosol secondario inorganico (PNO3, PSO4, PNH4) aerosol marino (NA, CL), carbonio elementare, (PEC), organico primario (POA), aerosol crostale (CCRS, FCRS), altro aerosol primario inerte (FPRM, CPRM), aerosol secondario organico (SOA1, SOA2, SOA3, SOA4, SOA5, SOA6, SOA7, SOPA, SOPB). La stima di concentrazione di PM10 è stata ottenuta come somma di tutte le classi di aerosol, mentre per ottenere le stime di PM2.5 sono stati sommati solo i composti con granulometria fine (aerosol secondario organico e inorganico, PEC, POA, FCRS, FPRM).

Con questa configurazione sono stati eseguiti sei run, relativi a due mesi ciascuno, per l'intero anno 2007, ottenendo sia campi bidimensionali di concentrazione medie orarie delle 26 specie e composti nel primo strato verticale (file.avg), che campi bidimensionali di quantità depositate al suolo su base oraria (file.dep). Nella tabella sono riportate le principali caratteristiche delle simulazioni.

1.4 Emissioni

Il modello CAMx può trattare emissioni diffuse, o areali, e emissioni derivanti da sorgenti puntuali (camini). Le emissioni sono espresse dal flusso di massa per unità di tempo, in particolare come grammi moli/ora per i gas e grammi/ora per l'aerosol: di conseguenza è necessario che le emissioni siano disaggregate sia su base temporale oraria, che su base spaziale (emissioni areali). Per la simulazione di inquinanti secondari, attivando la chimica, è necessario inoltre che le emissioni relative a VOC e al particolato siano disaggregate, secondo la codifica SAROAD, e poi riaggregate in accordo con il meccanismo chimico scelto (SAPRC99 + CF [3]).

Le emissioni, sia areali che puntuali, relative al territorio della regione Toscana sono fornite dall'inventario regionale IRSE, gestito dal software APEX (Techne Consulting).

Tale software non era predisposto per effettuare la disaggregazione spaziale, temporale e la "speciazione" chimica. Per questo motivo il Consorzio Lamma ha richiesto un upgrade alla società Techne Consulting, in base a queste specifiche esigenze. L'interfaccia sviluppata permette di estrarre file con disaggregazione temporale oraria, disaggregazione spaziale pari a 1 Km e speciazione chimica dei VOC e del particolato, in accordo con il meccanismo chimico SAPRC99 + CF. Le emissioni puntuali, anche queste disaggregate su base oraria e con speciazione chimica, sono fornite in due file distinti, uno relativo al rateo d'emissione di ciascun camino, l'altro con le caratteristiche dei camini presi in esame (coordinate geografiche, altezza e diametro del camino, velocità e temperatura dei fumi).

CAMX_SAPRC99+CF	MINN_saprc90+aero	IRSE_SAPRC99+CF
ACET	-	ACET
ALK1	deALK1	ALK1
ALK2	deALK2	ALK2
ALK3		
ALK4		
ALK5		
ARO1	DeARO1 + deC6H6	ARO1
ARO2	deARO2	ARO2
BACL		
BALD		BALD
ССНО	deCCHO	ССНО
CRES	deCRES	CRES
ETHE	deETHE	ETHE
GLY		GLY
нано	deHCHO	НСНО
ISOP	delSOP	ISOP
ISPD		
MEK	deMEK	MEK
MEOH		
METH		
MGLY	deMGLY	MGLY
MVK		
OLE1	deOLE1	OLE1
OLE2	deOLE2	OLE2
PHEN		
PROD		
RCHO	deRCHO	RCHO
TERP	deTRP1	OLE3
∞	deCO	8
NO	deNO	NO
NO2	deNO2	NO2
SO2	deSO2	SO2
SULF	deSULF	
NH3	deNH3	NH3
CH4	deCH4	CH4
CPRM	deACORS	CPRM
FPRM	DeA25I + deA25J	FPRM
PEC	deAECI+deAECJ	PEC
PNO3	DeANO3I + DeANO3J	PNO3
POA	DeAORPAI + DeAORPAJ	POA
PSO4	DeASO4I + DeASO4J	PSO4
CCRS	DeASOIL	
PNH4	DeANH4I + DeANH4J	
ISP	delSOP	ISOP
TOLA	DeARO1 + deO6H6	ARO1
TRP	deTRP1	OLE3
XYLA	deARO2	ARO2
CH3I		CH3I
SS		SS
NA		NA
PCL		PCL
non assegnati	REL	
non assegnati	deHC2H	
non assegnati	deCO2H	
non assegnati	deXC	

Tab. 3– Tabella di conversione delle specie emesse in CAMx (mech5), MINNI e IRSE.

Il dominio di calcolo include anche delle aree che sono esterne alla regione Toscana e che tuttavia non possono essere trascurate nel computo delle emissioni: sono state quindi utilizzate le emissioni del modello MINNI, fornite da ENEA. Si tratta di 365 file in formato netcdf relativi alle emissioni su base oraria di un'area maggiore rispetto al dominio di calcolo, a una risoluzione di 4 Km, per l'intero anno 2007. Il meccanismo chimico adottato nell'applicazione del modello MINNI per l'anno 2007 è SAPRC90 + AERO2: le emissioni sono espresse in $\mu g/(m^2s)$. E' stato quindi necessario effettuare un passaggio dalle specie modellate in MINNI a quelle utilizzate in CAMx (da SAPRC90 a SAPRC99 per i VOC e da AERO2 a CF per l'aerosol) sulla base della tabella di conversione riportata di seguito, uniformare le unità di misura, interpolare i file per passare da 4 a 2 Km di risoluzione.

A titolo di esempio, sono riportate le mappe relative al rateo emissivo, cumulato su 24 ore per NO, ENEA e IRSE.

Fig.4 – Mappe relative al rateo emissivo, cumulato su 24 ore per NO (emissioni diffuse) e localizzazione dei camini (emissioni puntuali).

LaMMA Sistema di modelli WRF-CAMx

1.5 Condizioni iniziali e al contorno

Il modello CAMx richiede campi di concentrazione utilizzati come condizioni iniziali e al contorno: le condizioni iniziali sono fornite da un campo tridimensionale relativo a un tempo precedente all'inizio della simulazione, mentre le condizioni al contorno, che devono essere fornite per tutto il periodo della simulazione, sono relative ad una cornice intorno al dominio di calcolo. In entrambi i casi si considerano i livelli verticali e le specie chimiche modellizzate o un sottoinsieme di queste.

Species Name Description	CAMX_SAPRC99	MINN_SAPRC90
Nitrogen dioxide	NO2	c_NO2
Nitric oxide	NO	c_NO
Uzone	<u>u</u>	c_03
Nitrate radical	NO3	c NO3
Dinitrogen pentoxide	N205	c_1000
Nitric acid	HNC3	c HNO3
Oxygen atom in the O ₁ (D) electronic state	O1D	
Hydroxyl radical	OH	
Ntrous acid	HONO	c_HONO
Hydroperoxy radical	HO2	c_HO2
Carbon monoxide		
Heroxynillic acid		C_HNO4
Sulfur dioxide	502	c 502
Sulfuric acid (daseous) H2SO4 or SO3	SULF	c SULF
Methylperoxy radical	CXO2	0_000
Formaldehyde	HCHO	c_HCHO
Methyl hydroperoxide	COOH	
Methanol	MEOH	
Organic peroxy radical converting NO to NO2 with HO2 production	RO2R	80011
Organic hydroperoxide	ROOH	c_ROOH
Organic peroxy radical converting NO to NO2	R2U2 R00N	
	RNO3	c RNO3
Methylethyl ketone	MEK	c MEK
Organic product	PROD	
Acetylperoxy radical	0003	
Peroxyacetyl nitrate	PAN	c_PAN
Peroxyacetic acid	CO3H	
Acetic acid	CO2H	c_CO2H
Higher acylperoxy radical (based on propylperoxy)	RCCB	a DAND
Acetaldebude		
Higher percarboxylic acid	RC3H	
Higher carboxylic acid	RC2H	
Peroxybenxoyl radical	BZCO	
Peroxybenzoyl nitrate	PBZN	
Phenoxy radical	BZO	
Peroxyacyl radical from methacrolein	MCO3	
compound from methacrolein	MPAN	
Tertiary-butoxy radical	IBOO	
Nitrophenol	NPHE	
Phenol	PHEN	
Nitrophenol reaction product	BZNO	
Other nitrogen containing product	XN	
Adduct from HO2 plus formaldehyde	HCC3	
Formic acid	HC2H	c_HC2H
Higher aldehyde (based on propionaldehyde)	ROHO	c_RCHO
Gyoxal Methodetursual	GLY	
Biacetyl	BACI	C_IVIGE1
Oresol	CRES	c CRES
Benzaldehvde	BALD	
Methacrolein	METH	
Methylvinyl ketone	MVK	
Isoprene product	ISPD	
Aromatic ring opening dicarbonyl product	DCB1	
Aromatic ring opening dicarbonyl product	DCB2	c_DCB2
Aromatic ring opening dicarbonyl product	0083	
Etitele	ISOP	
Temene	TERP	c TRP1
Lumped alkane 1	ALK1	c ALK1
Lumped alkane 2	ALK2	c_ALK2
Lumped alkane 3	ALK3	
Lumped alkane 4	ALK4	
Lumped alkane 5	ALK5	
Lumped aromatic 1	ARO1	c_ARO1+c_O6H6
Lumped aromatic 2	ARO2	c_ARO2
Lumpea olefin 1	ULE1	C_ULE1
Ethanol	I FTOH	
Methyl tertiany butyl	MIBE	+
Methylbutenol	MBUT	
~	non assegnati	c_C_O2
	non assegnati	c_000_02
	non assegnati	c BCO 02

Tab. 4 – Tabella di conversione delle specie chimiche dal modello MINNI a CAMx.

Nel nostro caso le condizioni al contorno sono ottenute dal modello nazionale MINNI. La risoluzione spaziale dei file originari è pari a 4 km, con 18 livelli verticali (da 20 a 10500 m) e risoluzione temporale oraria. Dato che il modello chimico utilizzato da MINNI per l'anno 2007 è SAPRC90 + AERO2, per utilizzare questi file nella catena modellistica implementata sono necessari due passaggi, che prevedono l'utilizzo di una tabella per il passaggio dalle specie MINNI alle specie CAMX e l'interpolazione alla risoluzione finale di CAMX.

0.4447	
CANIX_aerosol	MINNI_aerosol
PSO4	PSO4=c_ASO4J+c_ASO4I
PNH4	PNH4=c_ANH4J+c_ANH4I
PNO3	PNO3=c_ANO3J+c_ANO3I
POA	POA=c_AORAI+c_AORAJ+1.167*c_AORPAI+1.167*c_AORPAJ+c_AORBJ+c_AORBI
PEC	PEC=c_AECJ+c_AECI
FPRM	FPRM=c_A25J+c_A25I
CPRM	c_ACORS+c_ASOIL
PH2O	
NH3	c_NH3
CG1	
CG2	
CG5	
CG6	
TOLA	c_ARO1+c_C6H6
XYLA	c_ARO2
NA	c_ASEAS*0.396
PCL	c_ASEAS*0.312

Tab. 5 – Tabella di conversione delle specie chimiche dal modello MINNI a CAMx (aerosol).

1.6 Implementazione di pre/postprocessori per CAMx

L'implementazione della catena modellistica ha richiesto non solo l'allineamento delle versioni dei modelli, dei preprocessori e dei moduli di interfaccia, ma anche la realizzazione di alcuni di questi. Infatti alcuni preprocessori sono forniti direttamente da ENVIRON International Corporation, altri sono stati appositamente implementati. Di seguito si farà riferimento allo schema del sistema di modelli in Fig. 1.

In particolare, sono stati compilati e modificati il preprocessore wrfcamx.v3.3, che produce gli input meteo, utilizzando i file netcdf in uscita dal modello innestato ad alta risoluzione WRF-ARW.v3.3, a 3 Km, e i preprocessori ahomap.v4 e tuv.v4.8, che, producono due file necessari per il calcolo dei ratei delle reazioni fotochimiche, utilizzando come input dati di ozono forniti da TOMS (<u>ftp://toms.gsfc.nasa.gov/pub/omi/data/</u>).

I moduli di interfaccia per la gestione delle emissioni e delle condizioni al contorno sono stati invece sviluppati appositamente. La messa a punto dei moduli per fornire dell'input emissivo al modello è stata realizzata attraverso numerosi passaggi. Il modulo di interfaccia per l'inventario IRSE, sviluppato da Techne Consulting in ambiente LINUX, fornisce in uscita, per le emissioni areali, file giornalieri in formato netcdf corrispondenti a matrici di flusso di massa per unità di tempo (g/h per le polveri e gmol/h per i gas) di 220x248 celle di 1km di lato per 24 ore, per 35 specie e composti chimici considerati dal meccanismo chimico SAPRC99 + CF [3]. Questi file giornalieri, che corrispondono a tre tipologie – prefestivo, festivo, feriale – per ciascun mese (modulo APEX), sono poi ricampionati (da 1 a 2 Km) e formattati sia nei formati richiesti dal modello che come file netcdf (modulo Irse_emis). Questo secondo formato è utile nel caso in cui si vogliano considerare anche le emissioni su aree esterne alla regione Toscana: per queste aree infatti è necessario utilizzare le emissioni ottenute dal modello MINNI [8].

Dopo aver effettuato un passaggio dalle specie modellate in MINNI a quelle utilizzate in CAMx, uniformato le unità di misura, interpolato per passare da 4 a 2 Km di risoluzione (modulo Enea_emis), i file netcdf ottenuti sono sovrapposti ai file elaborati da IRSE in modo da ottenere una copertura completa del dominio di calcolo. Infine il file netcdf ottenuto viene formattato nei formati richiesti da CAMx (modulo emi_camx). Da sottolineare che questa parte della catena di modelli è in grado di gestire insieme o separatamente le emissioni fornite da IRSE o dal modello MINNI, in modo da poter effettuare simulazioni con le sole emissioni IRSE (aree esterne alla Toscana con emissioni pari a zero), con le emissioni di MINNI su tutto il dominio di calcolo, o con la combinazione dei due tipi, cioè emissioni IRSE sul territorio toscano e MINNI sul territorio esterno.

Le emissioni puntuali, fornite da IRSE attraverso la nuova interfaccia APEX in due file distinti, uno relativo al rateo di emissione e l'altro alle caratteristiche dei camini, sono disaggregate su base oraria e con speciazione chimica e riferite a giorni tipo come le emissioni areali. E' stata sviluppata una apposita interfaccia per formattare questi file in un unico file giornaliero nei formati di CAMx (modulo ptcamx).

Anche per le condizioni al contorno fornite dal modello MINNI è stata sviluppata una apposita interfaccia per il modello CAMx, con la funzione di effettuare il passaggio dalle specie MINNI alle specie CAMX e l'interpolazione alla risoluzione finale di 2 Km (modulo boundcamx).

La gestione e la riduzione delle dimensioni dei file di uscita dal modello hanno previsto la messa a punto di un postprocessore (modulo camx2netcdf) che permette di trasformare i formati di uscita del modello CAMx, come riportato nello schema relativo alla gestione degli output in Fig.5. In particolare i file in formato binario (avrg) relativi ai campi di concentrazione degli inquinanti modellizzati sono formattati in netcdf. Per rendere i file di uscita compatibili con il software grafico GrADS, Grid Analysis and Display System (<u>http://www.iges.org/grads/</u>), un *tool* interattivo sviluppato in ambiente LINUX che consente, attraverso script personalizzati, la gestione e la visualizzazione di grandi quantità di dati, è stato necessario effettuare un passaggio di coordinate, da UTM (32) a lat lon. Allo scopo è stato utilizzato il programma GDAL, Geospatial Data Abstraction Library (<u>http://www.gdal.org/</u>), in quanto GrADS non è predisposto per elaborare file in coordinate UTM.

Attraverso GrADS, con appositi script, sono state elaborate le mappe medie di concentrazione di PM10, PM2.5, NO2, SO2, O3, con periodi temporali variabili (medie giornaliere, mensili, stagionali, annue). Sono state elaborate anche mappe riferite a campi meteorologici ottenuti da WRF, utilizzando il postprocessore UPP (<u>www.wrf-model.org</u> [1]). Per quanto riguarda la visualizzazione delle emissioni, è stato realizzato un apposito processore (emis2netcdf) che permette di elaborare file relativi a emissioni areali IRSE, MINNI o all'unione dei due tipi.

Inoltre, sempre con GRADS, possono venire effettuate estrazioni di serie storiche di singoli punti, in corrispondenza delle centraline di monitoraggio ARPAT, per la validazione del modello. In particolare è stato sviluppato un programma (SKILL) per il calcolo degli indicatori statistici (vedi § 2.5).

Fig.5 – Schema descrittivo della gestione degli output.

Per la realizzazione di istogrammi e scatter-plot, utilizzando sia i valori ottenuti dal modello che le misure delle centraline ARPAT, sono stati sviluppati alcuni script per XMGRACE (<u>http://plasma-gate.weizmann.ac.il/Grace/</u>).

Infine, gli elaborati grafici e le tabelle di sintesi ottenuti possono essere trasferiti in ambiente MAPGIS (modulo GRADS2ARC), per fornire layer informativi alla piattaforma GIS-QA (§ 2.6).

1.7 Primi test sulla catena di modelli implementata

Un primo test della catena di modelli implementata è stato effettuato considerando i soli inquinanti inerti, ottenuti dall'inventario IRSE. Le emissioni, disaggregate a livello spaziale a 1 Km di risoluzione, sono state considerate costanti nel tempo, mentre le emissioni esterne al territorio toscano sono state considerate nulle. La simulazione, ottenuta considerando solo NOx, della durata temporale di un anno (2007), con risoluzione oraria, è relativa a un dominio che copre l'intera regione Toscana con passo di 1 Km, con condizioni al contorno nulle. Questa simulazione ha permesso di valutare i tempi di calcolo e le dimensioni dei file di uscita, che anche in questo caso semplificato sono dell'ordine di 20 giorni di tempo macchina e di circa 2Gb per un anno di simulazione.

E' stato poi effettuato un run relativo al test-case fornito da ENVIRON con la versione del modello utilizzata nella catena, CAMx_v5.4: il test-case, già completo di file di input (dominio Stati Uniti), riguardava un caso studio di tre giorni, con modello chimico CB4 più aerosol, ed è servito unicamente a fare prime valutazioni sui tempi di calcolo, dimensioni dei file di uscita e ordini di grandezza delle concentrazioni delle sostanze oggetto di studio.

Per la messa a punto della catena modellistica per inquinanti secondari, in attesa che fosse fornita la nuova interfaccia di IRSE, sono stati utilizzati i file relativi alle emissioni areali ottenuti dal modello MINNI, forniti da ENEA. Allo scopo di valutare i tempi di calcolo e le dimensioni dei file prodotti da CAMx, sono state effettuate alcune simulazioni, di un giorno ciascuna, con chimica attivata, condizioni al contorno nulle e risoluzione spaziale rispettivamente di 1Km, 2 Km e 4Km, interpolando i file originari. La simulazione a più alta risoluzione ha impiegato due giorni per simulare un giorno, mentre la simulazione a 4Km di risoluzione ha effettuato un run di un giorno in soli 45 minuti. Il test a 2Km di risoluzione, con tempi di calcolo di circa 7 ore, rappresenta un buon compromesso risoluzione/tempi di calcolo.

Configurazione meteo: sono stati effettuati alcuni test per la scelta della configurazione meteorologica ottimale. Sono stati eseguiti sei run (tre giorni nel

periodo invernale, tre giorni nel periodo estivo) con configurazioni differenti del modello WRF. In particolare la prima configurazione (WRF_p1) prevede una diversa descrizione dei livelli verticali vicini al suolo, partendo da circa 50 m, mentre le altre due configurazioni (p2 e p3) hanno il primo livello a circa 20 m e una migliore descrizione della PBL.

Fig.6 – Mappe di concentrazione media (3-4 agosto) dei principali inquinanti con WRF_p1.

Fig.7 – Mappe di concentrazione media (3-4 agosto) dei principali inquinanti con WRF_p2.

Fig.8 – Mappe di concentrazione media (3-4 agosto) dei principali inquinanti con WRF_p2 e diversa configurazione di wrfcamx.

La terza configurazione prevede il nesting two way, mentre le configurazioni p1 e p2 il nesting one way. L'analisi dei risultati ha evidenziato un miglioramento con la configurazione p2, a parità di tempi computazionali (Fig. 6 – 7), mentre il notevole aumento dei tempi di calcolo con la configurazione p3 non comporta variazioni di prestazione rilevanti.

Prestazioni molto diverse si possono ottenere, a parità di configurazione del modello meteo [6], effettuando variazioni di alcuni parametri nel preprocessore wrfcamx, in particolare della soglia per la diffusività verticale (Kv), che è stata scelta pari a 1 dopo numerosi test. A titolo di esempio è riportato in Fig. 8 una prova che ha portato a risultati particolarmente negativi, come si evidenzia dalle mappe di concentrazione di NO2, PM, SO2 che presentano valori molto elevati e la mappa relativa all'ozono, praticamente assente nelle ore più calde del giorno, nel mese di agosto.

2. Risultati

I risultati ottenuti dalla catena di modelli relativi alla simulazione dell'anno 2007 sono presentati in questo capitolo. Trattandosi di una notevole mole di dati, 363 file giornalieri (base oraria) in formato netcdf, relativi a 110 x 124 pixel di 2 km di lato e a 26 inquinanti, è stato necessario procedere a elaborazioni per ottenere mappe di sintesi (medie annue, medie stagionali, medie mensili, etc.), serie storiche orarie o giornaliere in corrispondenza dei siti di misura, istogrammi, scatter-plot e indicatori statistici.

Nei prossimi paragrafi sono presentate, oltre alle mappe relative ad alcuni campi meteorologici ed alle emissioni, le mappe di concentrazione media annua, stagionale e mensile, il data-set delle misure, gli indicatori statistici e le elaborazioni grafiche significative per effettuare una validazione del sistema di modelli.

Di seguito è riportato l'elenco di tutti gli elaborati grafici effettuati: per motivi di sintesi solo una parte di questi verranno inseriti nel rapporto.

Mappe medie stagionali dei campi di temperatura, vento medio, pressione, HPBL											
Mappe medie mensili dei campi di temperatura, vento medio, pressione, HPBL											
Emissione (flusso) media stagionale degli inquinanti PM10, VOC, NO, SO2											
Emissione (flusso) media mensile degli inquinanti PM10, VOC, NO, SO2											
Concentrazione media annua degli inquinanti PM10, PM2.5, NO2, SO2, O3											
Concentrazione media stagionali degli inquinanti PM10, PM2.5, NO2, SO2, O3											
Concentrazione media mensile degli inquinanti PM10, PM2.5, NO2, SO2, O3											
Grafici della serie temporale della concentrazione media giornaliera stime-misure											
di PM10, PM2.5, NO2, SO2, O3, in corrispondenza delle centraline di											
monitoraggio											
Grafici della serie temporale della concentrazione media orario stime-misure di											
O3 in corrispondenza delle centraline di monitoraggio (maggio-settembre)											
Scatter-plot delle concentrazioni medie annue stime-misure di PM10, PM2.5,											
NO2, SO2, O3											
Scatter-plot delle concentrazioni medie giornaliere stime-misure di PM10, NO2											
Scatter-plot delle concentrazioni medie orarie stime-misure di NO2, O3											

Tab. 6 - Elaborati grafici ottenuti dalle simulazioni.

2.1 Analisi meteorologica

Per una analisi meteorologica completa dell'anno 2007 si rimanda al sito (<u>http://www.lamma.rete.toscana.it/clima-e-energia/climatologia/report-mensili-</u> toscana/), dove sono archiviati i report mensili a cura del Consorzio Lamma.

I principali campi meteorologici stimati dal modello WRF-ARW e utilizzati nella catena di modelli sono stati elaborati per ottenere delle mappe medie di sintesi per temperatura, velocità del vento, pressione a terra, altezza di Planetary Boundary Layer – HPBL: in questo caso sono state elaborate due mappe, una relativa alla media nelle ore centrali del giorno, dalle 10 alle 17, mentre l'altra è relativa alla media dalle 0 alle 9 e dalle 18 alle 23.

Queste mappe, insieme alle mappe relative ai flussi di emissione e alle mappe di concentrazione media degli inquinanti riportate nel paragrafo successivo, permettono di interpretare i risultati ottenuti valutando l'influenza del fattore meteorologico.

A titolo di esempio vengono riportate le mappe dei campi meteo relativi al mese di gennaio e giugno.

Fig.9 – Mappe dei campi medi mensili di vento, temperatura, pressione, hpbl (10-17h e 0-9h; 18-23) relative al mese di dicembre.

LaMMA Sistema di modelli WRF-CAMx

Fig.10 – Mappe dei campi medi mensili di vento, temperatura, pressione, hpbl (10-17h e 0-9h; 18-23) relative al mese di giugno.

2.2 Le emissioni areali

Le emissioni areali utilizzate per la simulazione modellistica, come abbiamo visto, sono ottenute dall'unione dei dati dell'inventario IRSE nel territorio toscano e dei dati relativi al modello MINNI per la parte compresa nel dominio di calcolo ma esterna alla Toscana. Per valutare le variazioni mensili o stagionali del rateo emissivo, sono state elaborate mappe di valori medi per l'ossido di azoto e per le polveri, come somma di FPRM, CPRM, PEC, PNO3, POA, PSO4.

Di seguito, a titolo di esempio, sono riportate le mappe relative di mese di gennaio, di giugno e le mappe delle differenze. Si può notare come nel mese invernale siano maggiori i contributi di NO e PM nelle aree urbane o industriali. Per quanto riguarda l'emissione di NO si evidenzia un contributo maggiore anche in Emilia-Romagna, mentre nel mese estivo è maggiore il contributo dovuto alle tratte marittime.

Fig.11 – Mappe delle emissioni medie mensili di NO e PM, relative ai mesi di gennaio, giugno e alla loro differenza.

2.3 Le concentrazioni medie stimate

Di seguito sono riportate le mappe medie mensili (gennaio e giugno) delle concentrazioni di PM10, PM2.5, NO2, SO2, O3: come nel caso di HPBL per questo inquinante sono state elaborate due mappe, una relativa alle ore centrali del giorno (10-17) e l'altra relativa agli intervalli 0-9 e 18-23.

NO2 [µg/mª] MEAN JAN 2007

IN DE IN IE

SO2 [µg/m³] MEAN JAN 2007

10 15 20 25 30 35 40

11 40

44.2 44

43,8

43.0

43.4

43.2

42.8

42.6

12.4

11.2

43.8

43.6

43.4

43.2

43

42.8

42.0

50

10['].9E

15 10 25

10'87

10 20 30 40 50 60 70 80 90 100120180200360 Ο3_no_peak [μg/m³] MEAN JAN 2007

11.3

43.8

43.6

03_peak [µg/m³] MEAN JAN 2007

44.0

++ +3.8

43,4

43.4

43.2

42.£8

42.48

42.4

113

43.4

43.4

43.4

43.2

43

42.8

42.6

PM10 [µg/m*] MEAN JAN 2007

ğ

10'BE 11'LE

10 15 20 25 30 35 40 45

PM25 [µg/m³] MEAN JAN 2007

10.00

10[']8E

10

Confrontando i risultati dei due mesi, si evidenzia come le concentrazioni di PM10, PM2.5 e NO2 siano maggiori in inverno nelle aree più densamente abitate della Toscana e nell'area nord-est del dominio (Emilia-Romagna), in accordo con il quadro emissivo e meteorologico: infatti nei mesi invernali l'aumento delle concentrazioni degli inquinanti è imputabile sia all'aumento delle emissioni che a fattori meteorologici favorevoli all'accumulo delle sostanze inquinanti in atmosfera. Nel mese di giugno le concentrazioni di questi inquinanti, come pure dell'SO2, sono maggiori in corrispondenza delle tratte marittime. L'ozono presenta una marcata variazione giornaliera nel mese estivo e valori più alti sul mare; d'inverno invece i valori sono sempre bassi, sia nelle ore centrali del giorno che nelle restanti ore.

Nelle figure successive sono riportate le medie stagionali (gennaio-marzo; aprilegiugno; luglio-settembre; ottobre-dicembre) per NO2 (Fig. 14), PM10, PM2.5 (Fig. 15), SO2 (Fig. 16), mentre per quanto riguarda l'ozono le medie stagionali sono sostituite dalle medie dei periodi maggio-settembre e gennaio-marzo; ottobre-dicembre (Fig. 17).

Infine in Fig. 18 sono riportate le concentrazioni medie annue per l'anno 2007 (dal 2 gennaio al 30 dicembre).

Fig.14 – Mappe delle concentrazioni medie stagionali (µg/m3) di NO2.

Fig.15 – Mappe delle concentrazioni medie stagionali (μ g/m3) di PM10 e PM2.5.

LaMMA Sistema di modelli WRF-CAMx

ONSORZIC

Fig.16 – Mappe delle concentrazioni medie stagionali (μ g/m3) di NO2 e SO2.

Fig.17 – Mappe delle concentrazioni medie ($\mu g/m3$) di O3 nei mesi maggio- settembre, gennaio-aprile e ottobre - dicembre.

Fig.18 – Mappe delle concentrazioni medie (µg/m3) di PM10, PM2.5, NO2, SO2, O3, relative all'anno 2007.

2.4 Il dataset utilizzato per la validazione

Per valutare i risultati ottenuti dalla simulazione modellistica, le stime di concentrazione di PM10, PM2.5, NO2, SO2, O3 sono state confrontate con i dati misurati nelle stazioni di monitoraggio di ARPAT, che ricadono sul territorio regionale.

Il data-set utilizzato per la validazione del modello è costituito dalle misure effettuate in 70 stazioni di monitoraggio, ciascuna delle quali misura almeno uno degli inquinanti in esame. Nella tabella sono riportate le principali caratteristiche di queste stazioni: il codice identificativo (codice Lamma), il nome, la provincia, le coordinate geografiche, se appartiene o no alla rete regionale, il tipo di stazione (fondo, traffico, industriale), il tipo di zona (urbana, periferica, rurale), per ogni inquinante misurato la percentuale di dati validi (in rosso se inferiori al 75%).

Per quanto riguarda le 57 stazioni che misurano NO2, 50 hanno dati validi superiori al 75%, delle quali 25 sono di fondo, 18 di traffico, 7 industriali. Delle 51 stazioni che misurano PM10 41 hanno dati validi superiori al 75%, delle quali 13 sono di fondo, 19 di traffico, 9 industriali. Delle 7 stazioni che misurano PM2.5 solo 3 hanno dati validi superiori al 75%, delle quali 2 sono di fondo, 1 di traffico. Delle 32 stazioni che misurano O3 27 hanno dati validi superiori al 75%, delle quali 20 sono di fondo, 3 di traffico, 4 industriali. Le 19 stazioni che misurano PM10 hanno tutte dati validi superiori al 75%, 9 sono di fondo, 6 di traffico, 4 industriali.

Anche se, in linea di principio, per la validazione dovrebbero essere utilizzate solo le stazioni di fondo, per dare una valutazione delle prestazioni del modello sono state utilizzate anche le altre.

Per tutti gli inquinanti sono stati elaborati grafici delle concentrazioni medie giornaliere misurate e stimate, per ogni stazione (156 grafici); per l'ozono sono stati elaborati grafici mensili (maggio-settembre) su base oraria (150 grafici). A titolo di esempio nelle Fig. 20,21,22 sono riportati alcuni di questi grafici.

Inoltre, per NO2 e PM10 sono stati elaborati scatter-plot su base giornaliera, per NO2 e O3 su base oraria, con riferimento ai limiti previsti nel Decreto Legislativo 155/2010 [5,7] (140 grafici), riportati a titolo di esempio in Fig.23.

Gli scatter-plot su base annua sono stati elaborati per tutti gli inquinanti, considerando tutte le stazioni con misure superiori al 75%, solo le stazioni della rete regionale, solo le stazioni di fondo (15 grafici), nelle Fig.24 e 25.

Infine sono stati considerati i dati accorpati delle medie annue per ciascun inquinante, riportati nei grafici nelle figure 26-30.

Fig. 19 – *Mappa e tabella delle stazioni di monitoraggio ARPAT: in verde le stazioni di fondo, in rosso le traffico, in giallo le industriali.*

1.4. Real Stabil 4.4. Funds Field 5.7. 2.8. Arrow Digit CARLSAND Encode 4.6. 5.7. 4.6. Arrow Digit CARLSAND Encode Digit CARLSAND	ID	NOME STAZIONE	PROV	Tipo Zona	Tipo staz	Rete Reg.	perc. NO2	perc. PM10	perc. 03	perc. PM2.5	perc. SO2	I	ID NOME STAZIONE		PROV	Tipo Zona	Tipo staz	Rete Reg.	perc. NO2	perc. PM10	perc. 03	perc. PM2.5	perc. SO2
2/2 A. Corpolia F. B. All Users F. B. All F. B. All T. B.	1 AF	R Casa Stabbi	AR	Rurale	Fondo	SI	91.78	12.88	95.07			1	13 F]	I CALENZANO Boccaccio	FI	Rurale	Industriale			45.75	94.79	41.92	
b) E Jeskil, (1) Construction Fill Under Freide Fill Under Fill Under Freide Fill Under Fill Under Fill Under Freide Fill Under Fil	2 AF	R Acropoli	AR	Urbana	Fondo	SI	98.90		100.00			1	16 FJ	I Passo dei Pecorai	FI	Rurale	Industriale		99.45	50.96		45.75	
6 6 6 6 6 6 6 7 0.00 9	5 FI	I BASSI	FI	Urbana	Fondo	SI	100.00	97.26			100.00	1	18 F]	I MONTELUPO PRATELLE	FI	Rurale	Industriale		30.14	29.04			
Iso PI Setting number File Ausde Fande State State </td <td>6 FI</td> <td>I BOBOLI</td> <td>FI</td> <td>Urbana</td> <td>Fondo</td> <td>SI</td> <td>98.08</td> <td>95.34</td> <td>98.08</td> <td></td> <td>98.63</td> <td>2</td> <td>24 L]</td> <td>I GOBETTI</td> <td>Ц</td> <td>Urbana</td> <td>Industriale</td> <td>SI</td> <td>98.90</td> <td>97.53</td> <td></td> <td></td> <td></td>	6 FI	I BOBOLI	FI	Urbana	Fondo	SI	98.08	95.34	98.08		98.63	2	24 L]	I GOBETTI	Ц	Urbana	Industriale	SI	98.90	97.53			
11 IF 50/00 CUT II wates Prod 986. 44.99 00.00 Plu L VENETO U. Pretrice 946.01461 98.5 99.7 98.0 11 IF 1000000000000000000000000000000000	10 FI	[Settignano	FI	Rurale	Fondo	SI	100.00		96.71			2	26 L]	I COTONE	Ц	Periferica	Industriale		99.73	97.53			
12/15 CSCH02CC FI Unteral Prode 10 00 94.8 97.1 0 10 10 PI Puttless 10 98.8 99.4 99.4 10 PI Unteral Prode 98.8 98.9 99.4	11 FI	[Signa	FI	Urbana	Fondo		98.63	44.38		45.48		2	28 L]	I VENETO	Ц	Periferica	Industriale		98.36	93.97			98.0
14/11 Campiellamelo FI Uteral Pende 98.6 48.77 47.85 14/11 Filt Monage Alls FI Uteral Fende 9.86 94.7 47.85 14/11 Filt Monage Alls FI Uteral Fende 9.84 97.87 10.00 97.9 95.0 99.9	12 FI	I SCANDICCI	FI	Urbana	Fondo	SI	100.00	96.44	97.81		100	4	40 P.	I LARI	PI	Periferica	Industriale			98.63			
17/F Hordskop Asis FI Ubas Fodo 97.5 97.1 Hordskop Vielling 104	14 FI	[Campi-Bisenzio	FI	Urbana	Fondo		98.63	48.77		47.95		4	11 P.	I SANROMANO	PI	Urbana	Industriale			99.45			
19/11 Morthalpo via Milejini F1 useras rendo 1 <td>17 FI</td> <td>I Montelupo Asia</td> <td>FI</td> <td>Urbana</td> <td>Fondo</td> <td></td> <td>98.36</td> <td>96.44</td> <td>97.53</td> <td></td> <td></td> <td>4</td> <td>14 P.</td> <td>I ORATOIO</td> <td>PI</td> <td>Periferica</td> <td>Industriale</td> <td></td> <td>99.45</td> <td>97.81</td> <td></td> <td></td> <td></td>	17 FI	I Montelupo Asia	FI	Urbana	Fondo		98.36	96.44	97.53			4	14 P.	I ORATOIO	PI	Periferica	Industriale		99.45	97.81			
21 GR LPSS GR Urange Frande SL 06.44 91.1 92.70 09.20 480 P1 SAMFACROCE COCPRATE P1. Pentifiere Industrial SL 00.00 99.80 23 LI MCGROTARIO LI Herriser Frande 99.81 97.86 99.87 76.76 97.84 P1. Pentifiere Industrial 99.99 <	19 FI	I Montelupo via Milani	FI	Urbana	Fondo							4	16 P.	I MONTECERBOLIBIS	PI	Periferica	Industriale			98.08	98.90		98.9
122 LL Goglello LL Utware Fondo 9863 997	21 G	RURSS	GR	Urbana	Fondo	SI	85.48	91.51	93.70		89.32	4	18 P.	I SANTACROCE COOP	PI	Periferica	Industriale	SI	100.00	98.08			
25 LI M GCRDATO LI Prefere Prode 99 10 97 26 96 26 97 26 96 26 97 26	22 LI	[Cappiello	LI	Urbana	Fondo	SI	100.00		98.63		99.73	4	19 P.	I SANTACROCE SERAO	PI	Periferica	Industriale			94.79	99.45		
190 LF Doglo San Rocco LI Useaa Pode 99.10 86.20 93.44 PI Burde Industriate 97.8 30 LU CAVANUCRI LU Useaa Pode 69.2 95.34 90.10 90	25 LI	I M.GORDATO	LI	Periferica	Fondo		99.18	97.26	97.53			6	52 L]	I-VIA-GUIDO-ROSSA	Ц	Periferica	Industriale		98.90		99.45		95.6
11 LD ASSACLA LD Unitse Findo Image: Second action of the second action	29 LI	I Poggio San Rocco	Ц	Urbana	Fondo		93.15		86.30	95.34		7	70 P.	I-SANTA-CROCE-CERRI	PI	Rurale	Industriale						97.8
12 LU CAPANINCRI LU Utura Fundo 189.2 9.34 9.34 33 LU 2VAREGGIO LU Vitans Fundo S15 94.4 90.0 34 LU 2VAREGGIO LU Vitans Fundo S1 94.2 90.0 37 Ki Galvani MS Vitans Fundo S1 29.4 90.0 170.0 90.0 37 Ki Galvani MS Vitans Fundo S1 29.2 90.0 170.0 90.0 170.0 90.0 90.0 170.0 90.0 90.0 170.0 90.0 90.0 170.0 90.0 <td>31 LU</td> <td>J PAŜSAGLIA</td> <td>LU</td> <td>Urbana</td> <td>Fondo</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>en miljed m</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>	31 LU	J PAŜSAGLIA	LU	Urbana	Fondo									en miljed m									1
39 LU Porceri PUID P910 P911 P914 P910 36 ME Colombarotto MS Urban Prinde S1 9240 P120	32 LU	J CAPANNORI	LU	Urbana	Fondo		89.32	95.34						(C) (C)									1
135 LU 2/14/EGGIO LU urbana Penda S1 94.92 99.00 47.77 100.00 30 MS Colombarotto MS urbana Penda S1 97.86 67.26 94.80 97.86 97.87 97.97 97.97 97.96 97.96 97.97 97.96 97.97 97.97 97.96 97.97<	33 LU	J Porcari	LU	Periferica	Fondo		93.15	96.44	95.62		98.08		-	Carl Carlos									1
16 MS Urbana Profito SI 97.26 98.36 97.36 45 PTAXSII PT Urbana Profito SI 92.46 98.85 92.86 51 POR CMA PD Urbana Profito SI 93.46 98.85 92.86 98.75 52 PD RCMA PD Urbana Profito SI 99.46 98.85 99.72 55 PT MCHALE PT Urbana Profito SI 99.16 66.96 99.45 56 PTRECULUI PT Urbana Profito SI 99.16 66.96 99.45 56 PDPARCCMARENULU PT Urbana Profito SI 99.16	35 LU	J 2VIAREGGIO	LU	Urbana	Fondo	SI	94.52	98.08	47.67		100.00		~ 8	and the second second									1
97 MS Calvani MS Utana Fondo 51 92.88 93.99 92.80 51 PO PCINTAVELLE PO Utana Fondo 51 92.86 93.70 52 DO ROMA PO Utana Fondo 51 92.66 93.89 93.67 53 PO San Poolo PO Utana Fondo 71.22 73 94.2 98.68 93.70 53 PO San Poolo PO Utana Fondo 51 91.86.58 97.81 91.65 93.95 92.00 93.95 93.90 93.92 93.91 93.92 93.92 93.92 93.93 93.92 93.92 93.93 93.92 93.92 93.93 93.92 93.92 93.93 93.92 93.92 93.93 93.92 93.93 93.92 93.93 93.92 93.93 93.92 93.93 93.92 93.93 93.92 93.93 93.92 93.93 93.92 93.93 93.92 93.93 93.92 93.93 93.92 93.93 <t< td=""><td>36 M</td><td>S Colombarotto</td><td>MS</td><td>Urbana</td><td>Fondo</td><td>SI</td><td>57.26</td><td>58.63</td><td>57.26</td><td></td><td></td><td></td><td></td><td>A CARLEN CONTRACT</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>	36 M	S Colombarotto	MS	Urbana	Fondo	SI	57.26	58.63	57.26					A CARLEN CONTRACT									1
145 PIPASSI PI Utama Fendo 918 946 9983	37 M	S Galvani	MS	Urbana	Fondo	SI	32.88	30.96	32.60					Contraction of the second				Sec.					1
Si PO PONTANELLE PO Usaa Fondo 180:03 75:99 583.42 96.68 99.70 Si PO San Paolo PO Utbaa Fondo S1 92:03 77:39 93:42 98.68 99.70 Si PO San Paolo PO Utbaa Fondo S1 99:10 96:56 99:73 94:24 96:66 99:73 So PT MSINNELL PT Utbaa Fondo S1 90:10 90:10 91:10<	45 PI	[PASSI	PI	Urhana	Fondo	SI	99.45		98.63						1		and the	12 DY	2 N				1
152 PO ROMA PO Uthama Fondo S1 27 79.78 99.42 98.68 99.70 155 PT MONTALE PT Huitan Fondo S1 29.05 99.80 99.16 99.99 94.52 155 PT MONTALE PT Huitan Fondo 91.98 98.66 99.52 157 PT SIGNORELL PT Uthama Fondo 91.98 100.00 100.00 15 FT MONTALE PT Uthama Fondo 91.98 100.00 100.00 15 FT MONTALE PT Uthama Fondo 91.98 100.00 100.00 16 FT MONTALE PT Uthama Fondo 91.98 17.53 100.00 16 FL MONOL LL Ruriele Fondo 11 97.53 100.00 17 ET CALINANO LLL RAR ENDERLICA AR Uthama Traffoo 95.88 97.95 100.00 15 FT EMONTALE FT Uthama Traffoo 97.78 98.68 99.62 20 GR SONNO CR Huitan Traffoo 97.78 98.68 99.62	51 PC	O FONTANELLE	PO	Urbana	Fondo		86.03	75.89	63.84				×.,	Later appendix	Prof.	VDr. I	and a second second second	1.30	1.5.1				1
SB PC OS SA PROIO PO Ubana Fonda 7 7 12.3 9 9 18 65 17 10.0	52 PC	O ROMA	PO	Urbana	Fondo	SI	80.27	79.73	93.42	98.63	93.70				119-150		12-2-311	Saw 11-	32/16				1
SS PT MONTALE PT Burde Fondo SI 99:09 96:16 96:99 94:02 SS PT MENTALE PT Burdea Fondo 99:18 96:09 94:02 ST PT SIGNDRELLI PT Urbea Fondo SI 99:00 77:53 ST PT SIGNDRELLI PT Urbea Fondo SI 99:00 77:53 ST PT SIGNDRELIA PT Urbea Fondo SI 99:00 77:53 ST PT SIGNDREMANO QL Parzie Fondo SI 99:00 77:53 ST PT FIGRINANO LI Parzie Fondo SI 99:10 97:81 97:81 ST PT FIGRINANO LI Parzie Fondo SI 97:91 <td>53 PC</td> <td>O San Paolo</td> <td>PO</td> <td>Urbana</td> <td>Fondo</td> <td></td> <td>71.23</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>R. S. Landon</td> <td>Spel 1</td> <td>2-974</td> <td>115</td> <td>Nº CIG</td> <td>ASA.</td> <td></td> <td></td> <td></td> <td>1</td>	53 PC	O San Paolo	PO	Urbana	Fondo		71.23							R. S. Landon	Spel 1	2-974	115	Nº CIG	ASA.				1
156 PT MERLINI PT Ubbas Pondo 99.18 97.63 157 PT SIGNOFELLI PT Ubbas Pondo 91.02 100.00 157 PT SIGNOFELLI PT Ubbas Pondo 91.23 100.00 157 PS SIGNOFELLI PT Ubbas Pondo 91.23 100.00 157 PS SIGNOFELLI PT Ubbas Pondo 91.23 100.00 157 PS PASACO-MAREMMA QR Rurde Pondo 91.23 100.00 17 FC CLENARO GIOVANNI DU Rurde Pondo 91.2 95.93 100.00 17 FC CLENARO GIOVANNI AR Urbana Pondo 91.9 95.91 100.00 17 FC GRAMSCI FT Urbana Trafico 91.79 96.63 100.00 100.00 9 FT ROSSELLI FT Urbana Trafico 91.79 96.63 96.16 95.62 27 LI ANDICI EDOLET FL Urbana Trafico 91.79 96.84 95.62 95.62<	55 P1	T MONTALE	PT	Rurale	Fondo	SI	98.90	96.16	96 99		94 52				ACLE		Sec. Sec.	Ster 2	All and a second				1
17 PT Urbana Fondo S1 100.00 00 00 15 PL NOVOLI FL Urbana Fondo 98.90 77.53 00 15 PC-NOVA-GIOVANNI PO Perferica Fondo 98.90 77.53 00 16 EL-CABERO LI warale Fondo S1 49.90 0 16 EL-CABERO LI warale Fondo S1 49.99 0 <td>56 PT</td> <td>T MERLINI</td> <td>PT</td> <td>Urhana</td> <td>Fondo</td> <td></td> <td>99.18</td> <td>86.58</td> <td>97.53</td> <td></td> <td>0 1.02</td> <td></td> <td></td> <td>9-2-2-3-4-</td> <td>968.1</td> <td>No.</td> <td></td> <td>No We</td> <td>to and</td> <td></td> <td></td> <td></td> <td>1</td>	56 PT	T MERLINI	PT	Urhana	Fondo		99.18	86.58	97.53		0 1.02			9-2-2-3-4-	968.1	No.		No We	to and				1
61 F1 Viture Fundo 9133 10000 65 PD-PAPA-CIUVANIT F0 Fundo 9133 10000 65 PD-PAPA-CIUVANIT F0 Fundo 9133 10000 66 L-GARBRO LI Rurale Fondo S1 4930 71 FI CALENZANO Giovanni F1 Vitana Tarifico 91918 9733 1 71 FI CALENZANO Giovanni F1 Vitana Tarifico 91918 9733 1 71 FI CALENZANO Giovanni F1 Vitana Tarifico 91918 9733 1 9 FI ROSSE F1 Vitana Tarifico 91918 9733 1 10000 9 FI ROSSE F1 Vitana Tarifico 91980 9484 9261 20 GR SONNINO GR Vitana Tarifico 9188 9616 9562 9513 9431 9563 39 PLAVEGCIO LU Vitana Tarifico 9188 9561 9562 39 PLAVEG	57 P1	T SIGNORELLI	PT	Urhana	Fondo	SI	100.00	00.00	01.00					1	000	Trafficer	° ° °	14.70	11	Ver.			
GS PO-PAPA-GIOVANNI PO Perfects Fondo 99.90 7733 GC CF-ARPACMA GR Purale Fondo 97.753 490.4 GE LI-GARBRO LU Purale Fondo 97.753 490.4 GE LI-GARBANO LU Purale Fondo 99.18 97.83 490.4 3 AR FLORENTINA AR Urbana Traftico 99.18 97.83 47.81 3 AR FLORENTINA AR Urbana Traftico 99.18 97.83 47.81 4 AR EPLORENTINA AR Urbana Traftico 99.18 97.83 46.1 91 PTOSSELI FI Urbana Traftico 99.73 96.63 400.00 91 PTOSSELI FI Urbana Traftico 99.73 96.63 400.00 20 GR SONNINO GR Urbana Traftico 99.73 96.63 400.00 66.44 97.63 30 LU MICHELETIO LU Urbana Traftico 99.18 97.69.99 40.64 <td>61 FI</td> <td>NOVOLI</td> <td>FI</td> <td>Urbana</td> <td>Fondo</td> <td></td> <td>91.23</td> <td></td> <td>100.00</td> <td></td> <td></td> <td></td> <td></td> <td>1 K 🖗</td> <td>11-</td> <td>1</td> <td>0.00</td> <td>Still</td> <td></td> <td>distan.</td> <td>k</td> <td>1. </td> <td>1</td>	61 FI	NOVOLI	FI	Urbana	Fondo		91.23		100.00					1 K 🖗	11-	1	0.00	Still		distan.	k	1. 	1
17 CR - PARCO-MAREMMA CR turale Fondo 1 4904 16 EL-CARENANO LU Rurale Fondo 1 9753 16 EU-CARENANO LU Rurale Fondo 9173 17 FI CALENZANO Giovanni FI urbana Fondo 918 9751 13 AR IFORENTINA AR urbana Traffico S1898 9753 1 14 AR REPUBBLICA AR Urbana Traffico S19918 9753 1 15 FI GRANSCI FI Urbana Traffico S19978 9863 9616 20 GR SONNNO GR Urbana Traffico 9978 9863 9616 20 GR SONNNO GR Urbana Traffico 9978 9863 9516 30 UL MICHELETTO LU Urbana Traffico 9978 9863 9562 36 PI CASCINA PI Urbana Traffico 9946 9562 36 PI CASCINA PI Urbana Traffico 9959 <td>65 P0</td> <td>D-PAPA-GIOVANNI</td> <td>PO</td> <td>Periferica</td> <td>Fondo</td> <td></td> <td>98.90</td> <td></td> <td>77.53</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>~ 08V/</td> <td>5 00</td> <td>110</td> <td>ST KA</td> <td>12</td> <td>1. 9</td> <td>Star an</td> <td>1</td>	65 P0	D-PAPA-GIOVANNI	PO	Periferica	Fondo		98.90		77.53							~ 08V/	5 00	110	ST KA	12	1. 9	Star an	1
GB LI-GABERO LI Parale Fondo SI 9978 GB LI-GARGNANO LI Rurale Fondo SI 9989 9 3 AR FICRENTINA AR Urbana Fondo 97.81 - 4 AR REPUBELICA AR Urbana Traffoc 51.99 94.52 - B FI MOSSE FI Urbana Traffoc SI 99.79 96.89 - 15 FI REMDELICA AR Urbana Traffoc SI 99.18 97.53 - 15 FI ROSSELI FI Urbana Traffoc SI 99.79 98.68 96.16 23 GR SONNINC GR SONNINCI FI Urbana Traffoc SI 99.18 99.16 - 99.18 99.18 99.18 99.18 99.18 99.18 99.18 99.18 99.18 99.18 99.18 99.18 99.18 99.18 99.18 99.18 99.18 99.18 99.18	67 G	R-PARCO-MAREMMA	GR	Rurale	Fondo	SI			49.04					· · · · ·	18	8	DID 2 2 1	Ster 1	250	10	3 77	- Politica	1
69 UU-CARIGNANO UU Rurale Fondo SI 9699 71 FI CALENZANO Giovanni FI Urbana Fondo 97.18 97.81 3/A FICAENTINA AR Urbana Traffico SI 99.18 97.81 97.81 4/A R REPUBBLICA AR Urbana Traffico SI 94.79 94.62 0 7 FI GRAMSCI FI Urbana Traffico SI 96.63 96.16 9 FI ROSSE FI Urbana Traffico 99.73 99.63 96.64 97.62 23 LI CARDUCCI LU Urbana Traffico 99.73 99.63 96.64 97.62 27 LI Unité d'Italia LI Urbana Traffico 99.18 97.81 99.63 96.64 97.62 27 LI Unité d'Italia LI Urbana Traffico 99.18 97.81 97.81 99.69 96.16 30 LU YUAREGIO PI Urbana Traffico 99.18 97.81 97.81 99.69 96.16 97.31 99.69 96.16 97.31 99.69 97.31	68 L I	-GABBRO	LI	Burale	Eondo				97.53						•		di o	Star.	1105	C ALC		2x	
71 FI CALENZANO Glovanni FI Urbana Franco 99.18 97.81 3 AR FICRENTINA AR Urbana Trafico 99.88 97.53	69 LL	J-CARIGNANO	LU	Rurale	Fondo	SI			96.99					S HERE N	•		the for	5/1	12011	11 10	1	1	1
3 AP Urbana Traffico 95.89 87.95 4 AR REPUBBLICA AR Urbana Traffico 51 99.18 97.33 1 7 IGRAMSCI FI Urbana Traffico 51 99.78 98.63 100.00 9 FI GSRSELI FI Urbana Traffico 99.78 98.63 100.00 9 FI GSRSULI FI Urbana Traffico 99.78 98.63 96.16 20 GS SONNINO GR Urbana Traffico 99.78 98.63 96.16 20 ICARDUCCI LI Urbana Traffico 99.78 98.64 95.62 21 LARDUCCI LI Urbana Traffico 51.97.81 94.64 95.62 23 LI CANCHELETTO LU Urbana Traffico 99.18 96.99 1 30 PI ACXACCHIO PI Urbana Traffico 100.00 95.07 100.00 1 39 PI AVACCHIO PI Urbana Traffico <td>71 FI</td> <td>CALENZANO Giovanni</td> <td>FI</td> <td>Urbana</td> <td>Fondo</td> <td></td> <td>99.18</td> <td></td> <td>97.81</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Alt I</td> <td>a Britis</td> <td>the second</td> <td></td> <td>Contrast of</td> <td>an -</td> <td></td> <td>1</td>	71 FI	CALENZANO Giovanni	FI	Urbana	Fondo		99.18		97.81							Alt I	a Britis	the second		Contrast of	an -		1
4 AR REPUBBLICA AR AR REPUBBLICA AR 4 AR REPUBBLICA AR AR Ar AR 4 AR REPUBBLICA FI FI FI AR FI BFI MOSSE FI Vibana Traffico SI 9973 98.68 100 00 PI Vibana Traffico 9973 98.68 9973 98.68 96.16 96.44 9726 20 GR SONNINO GR Vibana Traffico 9973 98.68 96.16 96.44 9726 20 GR SONNINO GR Vibana Traffico 9973 98.68 96.16 96.44 9726 21 LUnità d'Italia LI Vibana Traffico 99.18 97.61 99.45 99.45 99.45 99.45 99.18 97.81 99.18 97.81 99.18 97.81 99.18 97.81 99.18 97.81 99.18 97.81 99.18 97.81 99.18 97.81 99.18 97.81 99.18 97.81 99.18 97.81 99.18 97.81 99.18 97.81	3 AF	R FIORENTINA	AR	Urbana	Traffic		95.89	87 95						000				WE LE	1. J.	•	O.C.		1
7 FI GRAMSCI FI Urbana Traffico SI 94.79 94.62 1 8 FI MOSSE FI Urbana Traffico SI 96.71 98.68 100.00 9 FI ROSSE FI Urbana Traffico SI 97.71 98.68 100.00 9 FI ROSSELLI FI Urbana Traffico 99.73 98.68 96.16 20 GR SONNINO GR Urbana Traffico 99.73 98.68 96.16 20 LI CARDUCCI U Urbana Traffico SI 99.90 96.16 96.44 97.61 30 UMICHELETICO U Urbana Traffico 99.18 97.81 99.66 99.66 99.67 39 PIAWACCHIO PI Urbana Traffico 99.90 44 97.61 99.06 44 97.61 42 PI BORGHETTO PI Urbana Traffico 100.00 95.07 100.00 50.7 100.00 50.7 100.00 50.7 100.00 50.7	4 AF	R REPUBBLICA	AR	Urbana	Traffico	SI	99.18	97.53							310	e willes	3300				the second		
B FI MOSSE FI Urbana Traffico SI 64.07 98.63 100.00 9 FI ROSSELLI FI Urbana Traffico 97.8 98.63 96.16 15 FI EMPOLI RIDOLFI FI Urbana Traffico 97.78 98.63 96.16 20 GR SONNINO GR Urbana Traffico 97.78 98.63 96.16 23 LI CAPDUCCI LI Urbana Traffico 51.9 99.08 96.16 96.14 23 LU VIAREGGIO LU Urbana Traffico 51.9 99.45 95.62 30 LU MICHELETTO LU Urbana Traffico 99.18 97.81 97.81 39 PI CASCINA PI Urbana Traffico 99.18 97.81 97.81 39 PI CASCINA PI Urbana Traffico 99.90 95.07 100.00 39 PI FAZIO PI Urbana Traffico 100.00 95.07 100.00 50 PO FERRUCCI PO Urbana Traffico 100.00 95.07 100.00 51 SO ZAMPINOCGLIO SI <td>7 FI</td> <td>GRAMSCI</td> <td>FT</td> <td>Lirbana</td> <td>Traffico</td> <td>SI</td> <td>9/1 79</td> <td>94.52</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- ANYS</td> <td></td> <td>The Table</td> <td></td> <td></td> <td>1</td> <td>ALL DE LE</td> <td></td> <td>1</td>	7 FI	GRAMSCI	FT	Lirbana	Traffico	SI	9/1 79	94.52							- ANYS		The Table			1	ALL DE LE		1
9 FI ROSSELLI FI Urbana Traffico 99.73 98.63 96.16 15 FI EMPOLI RIDOLFI FI Urbana Traffico 99.73 98.63 96.16 20 GR SONNINO GR Urbana Traffico 99.73 98.63 96.16 20 GR SONNINO GR Urbana Traffico 91.73 98.08 68.49 23 LI CARDUCCI LI Urbana Traffico 91.71 99.08 68.49 20 LU MICHELETTO LU Urbana Traffico 99.18 95.62 34 DU IVIAREGGIO LU Urbana Traffico 99.18 97.81 39 PI NAVACCHIO PI Urbana Traffico 99.18 96.99 1 42 PI BORGHETTO PI Urbana Traffico 98.90 1 1 54 POSTROZZI PO Urbana Traffico 100.00 95.07 100.00 100.00 95.07 58 PT ZAMENHOF PT Urbana Traffico 19.17.80 80.83 91.81 1 63 MIS-VIA-CARRIONA MS Urbana<	8 FT	MOSSE	FT	Urbana	Traffico	SI	96.71	98.63			100.00				Lange and		2 Kells		1. KAT		Toplat	1	
15 FI EMPOLI RIDOLFI FI Urbana Trafico 99.78 98.68 96.16 20 GR SONNINO GR Urbana Trafico 91.78 98.08 68.49 23 LI CARDUCCI LI Urbana Trafico 91.78 98.08 68.49 23 LI CARDUCCI LI Urbana Trafico 91.78 98.08 68.49 23 LI CARDUCCI LI Urbana Trafico 91.78 98.06 96.16 30 LU MICHELETTO LU Urbana Trafico 51.99.45 95.62 34 LU TVIAREGGIO LU Urbana Trafico 99.18 97.81 39 PI AXACCHIO PI Urbana Trafico 99.90 42 42 PI BORGHETTO PI Urbana Trafico 100.00 95.07 100.00 50 PO FERRUCCI PO Urbana Trafico 60.082 80.55 1 53 S1 CAMPIDOGLIO SI Urbana Trafico 51.97.81 97.40	9 FT	ROSSELLT	FT	Urbana	Traffico		00.11	00.00			100.00				1	the alt	Per ta						1
20 GR SONNING CC1 GR Orbana Traffico 9178 98.00 88.49 23 LI CARDUCCI LI Urbana Traffico SI 98.90 96.16 96.44 97.26 27 LU Inità d'Italia LI Urbana Traffico SI 97.81 98.00 96.44 97.26 30 LU IVIAPEGGIO LU Urbana Traffico 59.945 95.62 34 LU IVIAPEGGIO LU Urbana Traffico 59.945 95.62 38 PI CASCINA PI Urbana Traffico 99.18 96.99 1 42 PI SORGHETTO PI Urbana Traffico 100.00 95.07 100.00 1 42 PI FONTEDERA PI Urbana Traffico 100.00 95.07 100.00 1 1 50 PO ERRUCCI PO Urbana Traffico 100.00 96.05 1 1 1 53 PT ZAMENHOF PT Urbana Traffico S1 97.81 1 <td< td=""><td>15 EI</td><td>EMPOLI BIDOLEI</td><td>FI</td><td>Urbana</td><td>Traffico</td><td>-</td><td>99.73</td><td>98.63</td><td></td><td></td><td>96.16</td><td></td><td></td><td></td><td></td><td>Starter,</td><td>Stellin And</td><td></td><td></td><td></td><td></td><td></td><td>1</td></td<>	15 EI	EMPOLI BIDOLEI	FI	Urbana	Traffico	-	99.73	98.63			96.16					Starter,	Stellin And						1
23 LI CARDUCCI LI Urbana Traffico SI 98.90 96.16 96.44 97.26 27 LI Unità d'Italia LI Urbana Traffico SI 97.81 96.64 97.26 27 LI Unità d'Italia LI Urbana Traffico SI 97.81 96.65 95.62 36 LU MICHELETTO LU Urbana Traffico 99.18 97.81 96.62 38 PI CASCINA PI Urbana Traffico 99.18 97.81 96.66 39 PI AXACCHIO PI Urbana Traffico 99.18 96.99 96.16 42 PI BOGHETTO PI Urbana Traffico 99.90 96.16 43 PI FAZIO PI Urbana Traffico 100.00 95.07 100.00 50 PO FERVUCCI PO Urbana Traffico 100.00 98.08 95.95 54 POSTROZZI PO Urbana Traffico 19.93.68 91.51 95.95 95.91 59 SI CAMPIDOGLIO SI Urbana Traffico 89.59 <td>20 G</td> <td>R SONNINO</td> <td>GR</td> <td>Urbana</td> <td>Traffico</td> <td></td> <td>91.78</td> <td>98.08</td> <td></td> <td></td> <td>88.49</td> <td></td> <td></td> <td></td> <td></td> <td>6 Anna</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td>	20 G	R SONNINO	GR	Urbana	Traffico		91.78	98.08			88.49					6 Anna					1		1
27 L1 Unità d'Italia L1 Urbana Traffico SI 97.81 30 LU MICHELETTO LU Urbana Traffico 59.45 95.62 34 LU 1/LAREGGIO LU Urbana Traffico 59.45 95.62 38 PI CASCINA PI Urbana Traffico 99.18 97.81 1 39 PI NAVACCHIO PI Urbana Traffico 99.18 96.99 1 42 PI BORGHETTO PI Urbana Traffico 99.18 96.99 1 47 PI FONTEDERA PI Urbana Traffico 99.90 1 1 50 PO FERRUCCI PO Urbana Traffico 99.00 1 1 54 POSTROZZI PO Urbana Traffico 100.00 98.08 1 1 1 59 SI CAMPIDOGLIO SI Urbana Traffico 100.00 98.08 1 1 1 60 SI DUEPONTI SI Urbana Traffico 100.00 98.98 91	23 1	CARDUCCI	LT	Urbana	Traffico	SI	98.90	96.16		96.44	97.26				130	1.50	and the	1 4	M.S.	El.	2		1
Solution Traffico Solution Traffico Solution Traffico Solution	27 1	Unità d'Italia	IT.	Urbana	Traffico	SI	97.81	55.10		50,44	01.20			*	1.00	all y	1 Devil	1. Jan	ter poll	THE			1
Sector VIAREGGIO LU Orbana Traffico 59.45 38 PI CASCINA PI Urbana Traffico 59.45 39 PI NAVACCHIO PI Urbana Traffico 99.18 96.99 42 PI BORGHETTO PI Urbana Traffico 99.18 96.99 1 43 PI FAZIO PI Urbana Traffico 98.99 1 47 PI PONTEDERA PI Urbana Traffico 98.90 1 47 PI ONTEDERA PI Urbana Traffico 100.00 95.07 100.00 50 PO FERRUCCI PO Urbana Traffico 100.00 98.05 1 54 POSTROZZI PO Urbana Traffico 100.00 98.06 1 1 59 SI CAMPIDOGLIO SI Urbana Traffico 19.78 89.04 1 1 63 MS-VIA-FRASSINA MS Vebana Traffico	30 11		111	Linhana	Traffico	01	51.51	99.45			95.62			1	3	Se See	AND NE "	10. 10.	RA-RA	1 302	1		1
a) PC ASCINA PI Orbana marino 0.040 38 PI CASCINA PI Urbana marino 99.18 99.18 39 PI NAVACCHIO PI Urbana marino 99.18 96.99 42 PI BORGHETTO PI Urbana marino 98.99 42 43 PI FAZIO PI Urbana marino 98.99 42 47 PI ONITEDERA PI Urbana marino 60.00 73.15 54 POSTROZZI PO Urbana marino 60.00 73.15 58 PT ZAMENHOF PT Urbana marino 60.00 73.15 59 SI CAMPIDOGLIO SI Urbana marino 60.00 73.15 60 SI DUEPONTI SI Urbana marino 60.00 73.15 60 SI CAMPIDOGLIO SI Urbana marino 89.04 40 60 SI DUEPONTI SI Urbana marino 89.59 98.63 91.23 64	34 11		111	Urbana	Traffico		01.01	59.45			50.02				1	A THEY			FY		1		
39 PI NAVACCHIO PI Urbana Traffico 99.18 96.16 42 PI BORGHETTO PI Urbana Traffico 99.18 96.99 1 43 PI FAZIO PI Urbana Traffico 99.19 1 43 PI FAZIO PI Urbana Traffico 99.10 1 50 PO FERRUCCI PO Urbana Traffico 60.00 73.16 1 54 POSTROZZI PO Urbana Traffico 60.00 73.16 1 54 POSTROZZI PO Urbana Traffico 60.00 73.16 1 59 SI CAMPIDOGLIO SI Urbana Traffico 100.00 98.08 1 60 SI DUEPONTI SI Urbana Traffico SI 91.78 89.04 1 63 MS-VIA-CARRIONA MS Urbana Traffico 89.59 98.63 91.23 64 MS-VIA-CARRIONA MS Urbana Traffico 98.99 98.79 97.81 64	38 PI		PI	Urbana	Traffico	-	99.18	97.81							~	wet	1	1 jul	11	手が長く	<u>,</u>		1
39 I I NOV REAL 11 Orbata Intaffico 99.10 96.16 1 42 PI BORGHETTO PI Urbana Traffico SI 96.99 1 43 PI FAZIO PI Urbana Traffico 98.90 1 1 47 PI PONTEDERA PI Urbana Traffico 98.90 1 1 47 PI PONTEDERA PI Urbana Traffico 60.00 73.15 1 58 PT ZAMENHOF PU Urbana Traffico 100.00 98.08 1 1 59 SI CAMPIDOGLIO SI Urbana Traffico SI 98.90 1 1 60 SI DLEPONTI SI Urbana Traffico 89.04 1 1 0 Stazioni ARPAT 64 MS-VIA-CARRIONA MS Urbana Traffico 89.59 98.63 91.23 1 1 1 Stazioni Fondo 64 MS-VIA-FRASSINA MS Periferica Traffico 98.59 98.79 87.40 97.81 5 5	30 DI		DI	Urbana	Traffico		00.10	06.00		-				A.		THE I		27	2.53				
12 P1 Orbana Inanto 01.01 01.03 01.01 01.03 01.01 01.	42 PI		PI	Urbana	Traffico	ST	95.10	96.35						con Still		1		11		-Ç			1
47 PI PONTEDERA PI Urbana Traffico 100.00 95.07 100.00 50 PO FERRUCCI PO Urbana Traffico 100.00 95.07 100.00 54 POSTROZZI PO Urbana Traffico 60.00 73.15 58 PT ZAMENHOF PT Urbana Traffico 100.00 98.08 59 SI CAMPIDOGLIO SI Urbana Traffico SI 99.44 100.00 98.08 60 SI DUEPONTI SI Urbana Traffico SI 99.98.63 91.23 64 MS-VIA-CARRIONA MS Vrbana Traffico 89.59 98.63 91.23 64 MS-VIA-FRASSINA MS Periferica Traffico 98.99 97.81 64 Urbana Traffico 98.99 97.81 97.81 Stazioni Traffico	42 DI		DI	Urbana	Traffico	-01	90.99	50.10		-				Carre .		and the second s	. · · · · · · · · · · · · · · · · · · ·	1 -1-1					1
S0 PO FERRUCCI PO Urbana Traffico 60.00 90.01 100.00 90.01 100.00 90.01 100.00 90.01 100.00 90.01 100.00 90.01 100.00 90.01 100.00 90.01 100.00 90.01 100.00 90.01 100.00 90.01 100.00 90.01 100.00 90.01 100.00 90.01 <	43 F1		DT	Urbana	Traffice		100.00	95.07	100.00									10-10-	1216.20	F.			1
Stal POSTROZZI PO Urbana Traffico 60.00 78.10 54 POSTROZZI PO Urbana Traffico 60.82 80.55 5 58 PT ZAMENHOF P Urbana Traffico 100.00 98.06 5 59 SI CAMPIDOGLIO SI Urbana Traffico SI 91.78 89.04 5 63 MS-VIA-CARRIONA MS Urbana Traffico 89.59 98.63 91.23 64 MS-VIA-FRASSINA MS Periferica Traffico 89.59 98.70 98.70 66 LU-TANGENZIALE LU Urbana Traffico 98.90 97.81 5 5	50 D(Urbana	Traffice	-	60.00	79.16	100.00		-						No. of the second secon	Second Second	5-1-2	1'			1
SB PT ZAMENHOF PT Urbana Traffico 100.00 98.06 Stazioni ARPAT 59 SI CAMPIDOGLIO SI Urbana Traffico SI 91.78 89.04 Stazioni ARPAT 60 SI DUEPONTI SI Urbana Traffico SI 91.78 89.04 Stazioni ARPAT 63 MS-VIA-CARRIONA MS Urbana Traffico 89.59 98.63 91.23 Stazioni Fondo Stazioni Fondo 64 MS-VIA-FRASSINA MS Periferica Traffico 98.90 97.81 Stazioni Traffico Stazioni Fondo	54 Dr	ASTROZZI	PO	Urbana	Traffice	-	60.00	90.66						4		14	1	VALUE -	1500				1
So SI CAMPIDOGLIO SI Urbana Traffico SI 91.78 89.04 60 SI DUEPONTI SI Urbana Traffico SI 91.78 89.04 64 MS-VIA-CARRIONA MS Urbana Traffico 89.59 98.63 91.23 64 MS-VIA-FRASSINA MS Periferica Traffico 89.59 94.79 87.40 66 LU-TANGENZIALE LU Urbana Traffico 98.90 97.81	50 DT		БТ	University	Traffico	-	100.02	00.00										74	1990	~ ~		DAT	1
60 SI DUEPONTI SI Orbana Traffico SI 91.78 89.04 60 SI DUEPONTI SI Urbana Traffico SI 98.36 91.51 63 MS-VIA-CARRIONA MS Urbana Traffico 89.59 98.63 91.23 Stazioni Industriali 64 MS-VIA-FRASSINA MS Periferica Traffico 89.59 98.740 Stazioni Traffico Stazioni Traffico 66 LU-TANGENZIALE LU Urbana Traffico 98.90 97.81 Stazioni Traffico	50 C1		CT CT	Urbana	Traffico	ST	04.70	98.08		-									100	Stazio	oni AF	PAT	1
63 MS-VIA-CARRIONA MS Urbana Traffico 31 96.36 91.31 0 Stazioni Industriali 64 MS-VIA-FRASSINA MS Periferica Traffico 89.59 98.63 91.23 0 Stazioni Industriali 64 MS-VIA-FRASSINA MS Periferica Traffico 89.59 98.740 0 Stazioni Traffico 98.90 97.81	59 51		51	Urbana	Traffico	SI	91.78	89.04									Arr		and the second		Obereley 1		1
Opinio-Via-General Via-General Institution 11/2 (11/2)	60 SI		MC	Urbana	Iramco Traffico	31	90.35	91.01	04.00											0	stazioni	ndustriali	1
66 LUTANGENZIALE LU Urbana Traffico 98.99 94.9 87.40 97.81	64 M		MS	Urbana	Traffico	-	89.59	98.63	91.23		-			-Bi		1				0 9	Stazioni	Fondo	1
	66	J-TANGENZIAI F	111	Urhana	Traffico	-	09.09	98.79 98.90	07.40		97.81						*				Stazioni	Fraffico	1

Fig. 20- Serie storiche giornaliere di NO2 e PM10 nelle stazioni di Boboli (FI) e Carducci (LI).

Fig. 21- Serie storiche giornaliere di PM10 e PM2.5 nella stazione di via Roma (PO).

Fig. 22– *Serie storiche orarie di O3 nelle stazioni di Boboli (FI), Settignano (FI), M.Gordato (LI), Montale (PT).*

Nei grafici delle figure precedenti sono riportati gli andamenti delle concentrazioni medie orarie di NO2 (Fig.20) e di PM10 (Fig.21) stimate e misurate nelle stazioni di Boboli (urbana-fondo, Firenze) e di viale Carducci (urbana-traffico, Livorno). L'andamento della concentrazione di NO2 è ben riprodotto in entrambi i siti, mentre il PM10 è sottostimato, soprattutto a Boboli. Nei grafici di Fig. 22 è riportato l'andamento del PM10 e del PM2.5 nella stazione di via Roma (urbana-fondo, Prato): si nota che l'andamento delle due frazioni di PM ottenuto da modello è praticamente lo stesso e che, confrontando le stime con le misure, c'è un buon accordo nel periodo caldo, soprattutto per il PM2.5, mentre le concentrazioni simulate sono molto sottostimate nel periodo freddo. Per l'ozono sono stati elaborati grafici relativi al mese di giugno di siti diversi (urbane, periferiche, in aree interne, sulla costa). Il ciclo giornaliero dell'ozono è riprodotto, seppur con variazioni di prestazione da sito a sito; tuttavia, nei valori massimi il modello tende a sottostimare.

In generale, da questo tipo di grafici si ha un'idea, seppur qualitativa, delle prestazioni del modello, anche in funzione del sito geografico e della tipologia della stazione di misura.

Gli scatter-plot, su base oraria o giornaliera (Fig.23), evidenziano l'accordo o il disaccordo tra stime e misure in ciascuna stazione di monitoraggio: nel caso ideale i punti si distribuirebbero lungo la bisettrice. E' possibile tuttavia definire un'area di confidenza, delimitata da due rette con coefficienti angolari stabiliti, all'interno della quale i punti rappresentano una simulazione numerica adeguata [7]. Se i punti ricadono nell'area sopra la retta con coefficiente angolare maggiore si ha una sovrastima, mentre al di sotto della retta con coefficiente minore si evidenzia una sottostima.

Fig. 23- Scatter-plot orari e giornalieri di NO2 nella stazione di Boboli (FI).

LaMMA Sistema di modelli WRF-CAMx

Fig. 24- Scatter-plot annuali di NO2, PM10, O3, SO2 in tutte le stazioni .

Fig. 25– Scatter-plot annuali di NO2, PM10, O3, SO2 nelle stazioni di fondo.

Gli scatter-plot relativi alle medie annue (Fig. 24, 25) mostrano, per ogni inquinante, che una buona percentuale di punti, associati in questo caso alla concentrazione media annua stimata e misurata nelle stazioni di monitoraggio, cadono all'interno dell'area di confidenza. Nella figura 24 sono riportati i grafici in cui si considerano tutte le stazioni, mentre nella figura 25 i grafici in cui sono presenti solo le stazioni di fondo: in questo caso la percentuale di punti all'interno dell'area di confidenza aumenta.

I grafici evidenziano anche una modesta sottostima nel caso di NO2, una leggera sovrastima per l'ozono, mentre il PM10 è sempre sottostimato. Il biossido di zolfo invece è sempre sovrastimato.

2.5 Gli indicatori statistici per la valutazione dei risultati

Per effettuare una valutazione quantitativa delle prestazioni della catena modellistica sono stati utilizzati alcuni indicatori statistici, comunemente utilizzati in letteratura [6,7,8]. Nelle seguenti tabelle sono elencati gli indicatori scelti (Tab. 7), mentre nelle tabelle 8 – 12 sono riportati valori ottenuti per le coppie stime-misure relative a tutte le stazioni di monitoraggio, per NO2, SO2, O3, PM10, PM2.5.

NOME	FORMULA	NOTE
MEDIA OSSERVAZIONI	$\frac{1}{N}\sum_{i=1}^{N}X_{i}$	
MEDIA MODELLO	$\frac{1}{N}\sum_{i=1}^{N}Y_{i}$	
NORMALIZED MEAN BIAS	$\frac{\sum_{i=1}^{N} (Y_i - X_i)}{\sum_{i=1}^{N} X_i}$	Valori tra -1 e inf. Valore ottimo = 0
NORMALIZED MEAN ERROR	$\frac{\sum_{i=1}^{N} Y_i - X_i }{\sum_{i=1}^{N} X_i}$	Valori tra 0 e inf. Valore ottimo = 0
FRACTIONAL BIAS	$\frac{\sum_{i=1}^{N} (Y_i - X_i)}{\sum_{i=1}^{N} \frac{(Y_i + X_i)}{2}}$	Valori fra -2 e +2 Valore ottimo=0
FRACTIONAL ERROR	$\frac{\sum_{i=1}^{N} Y_i - X_i }{\sum_{i=1}^{N} \frac{(Y_i + X_i)}{2}}$	Valori fra 0 e 2 Valore ottimo 0
STANDARD DEVIATION MODELLO	$\sqrt{\frac{1}{N}\sum_{i=i}^{N}(Y_i - \overline{Y})^2}$	
STANDARD DEVIATION OSSERVAZIONI	$\sqrt{\frac{1}{N}\sum_{i=1}^{N}(X_i - \overline{X})^2}$	
ROOT MEAN SQUARE ERROR	$\sqrt{\frac{1}{N}\sum_{i=1}^{N}(Y_i - X_i)^2}$	Valore ottimo = 0
CORRELATION	$\frac{\sum\limits_{i=1}^{N} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum\limits_{i=1}^{N} (X_i - \overline{X})^2} \sqrt{\sum\limits_{i=1}^{N} (Y_i - \overline{Y})^2}}$	Valori tra -1 e 1 Valore ottimo = 1
BIAS	$\frac{1}{N}\sum_{i=1}^{N}(Y_i - X_i)$	Valore ottimo = 0
INDEX OF AGREEMENT (WILLMOTT)	$1 - \frac{\sum_{i=1}^{N} (Y_i - X_i)^2}{\sum_{i=1}^{N} (X_i - \overline{X}) + Y_i - \overline{X})^2}$	Valori fra 0 e 1 Valore ottimo =1

Tab. 7 – Indicatori stati	stici.
---------------------------	--------

N = numero osservazioni presenti

 X_i = dati osservati

 $Y_i = dati simulati$

		skill	giornalieri												
ID	NOME_STAZ	MEDIA STAZ.	MEDIA MOD.	DATI PRES. STAZ	DATI PRES. STAZ (%)	nmb	nme	fb	fe	rmse	corr	bias	std mod.	std staz.	ioa
1	1-AR-CASA-STABBI-NO2	5.65	3.83	334	91.76	-0.26	0.39	-0.37	0.54	32.24	0.28	-1.77	2.55	1.88	0.5
2	2-AR-VIA-ACROPOLI-NO2	20.13	12.55	360	98.9	-0.37	0.46	-0.47	0.57	144.3	0.4	-7.62	7.65	12.02	0.58
3	3-AR-VIA-FIORENTINA-NO2	40.22	14.18	349	95.88	-0.65	0.65	-0.97	0.97	505.8	0.28	-27.11	8.49	12.6	0.4
4	4-AR-PIAZZA-REPUBBLICA-NO2	45.72	26.79	361	99.18	-0.41	0.42	-0.53	0.53	359.1	0.59	-18.93	11.86	13.66	0.59
5	5-FI-BASSI-NO2	46.26	33.9	364	100	-0.27	0.37	-0.31	0.42	237.1	0.46	-12.44	13.85	18.98	0.64
б	6-FI-BOBOLI-NO2	29.01	25.13	357	98.08	-0.14	0.34	-0.15	0.36	81.33	0.62	-4.31	12.06	15.34	0.75
7	7-FI-GRAMSCI-NO2	82.3	41.83	345	94.78	-0.49	0.49	-0.65	0.66	767.4	0.28	-41.38	13.39	20.37	0.43
8	8-FI-MOSSE-NO2	67.32	41.14	352	96.7	-0.39	0.4	-0.49	0.5	499.7	0.56	-26.67	13.54	19.09	0.57
10	10-FI-SETTIGNANO-NO2	16.4	29.74	364	100	0.8	0.93	0.55	0.67	251.7	0.32	13.21	13.64	9.75	0.46
11	11-FI-SIGNA-NO2	29.88	25.62	359	98.63	-0.15	0.26	-0.17	0.29	82.95	0.74	-4.38	12.28	12.31	0.83
12	12-FI-SCANDICCI-BUOZZI-NO2	44.63	26.28	364	100	-0.41	0.47	-0.5	0.62	352.8	0.36	-18.52	22.32	22.86	0.55
14	14-FI-CAMPI-BISENZIO-NO2	40.16	23.31	359	98.63	-0.41	0.45	-0.51	0.56	318.2	0.56	-16.82	10.79	19.18	0.64
15	15-FI-EMPOLI-RIDOLFI-NO2	58.94	27.39	363	99.73	-0.54	0.54	-0.69	0.78	602.7	0.18	-31.68	28.39	17.57	0.44
16	16-FI-GREVE-PASSO-PECORAI-NO2	20.3	18.04	362	99.45	-0.12	0.42	-0.03	0.53	46.2	0.24	-2.43	27.34	9.94	0.31
17	17-FI-MONTELUPO-VIA-ASIA-NO2	31.42	23.31	358	98.35	-0.26	0.35	-0.31	0.41	160.7	0.55	-8.51	10.61	13.08	0.7
20	20-GR-VIALE-SONNINO-NO2	43.29	24.48	334	91.76	-0.43	0.45	-0.54	0.57	363.2	0.51	-19.9	9.75	13.02	0.59
21	21-GR-VIA-URSS-NO2	16.32	13.62	311	85.44	-0.22	0.41	-0.26	0.46	89.18	0.6	-5.06	7.43	12.19	0.67
22	22-LI-PIAZZA-CAPPIELLO-NO2	24.38	35.75	364	100	0.46	0.56	0.54	0.64	214	0.29	11.23	52.93	10.02	0.22
23	23-LI-VIALE-CARDUCCI-NO2	48.85	40.41	360	98.9	-0.17	0.32	-0.08	0.46	158	0.11	-8.34	44.05	18.44	0.26
24	24-LI-VIA-GOBETTI-NO2	26.75	33.35	360	98.9	0.24	0.45	0.35	0.55	125.7	0.21	6.64	47.01	12.88	0.23
25	25-LI-VILLA-MAUROGORDATO-NO2	10.72	28.62	361	99.18	1.63	1.68	1.02	1.08	341.4	0.44	17.99	53.5	9	0.26
26	26-LI-COTONE-RETE-LI-NO2	23.03	13.49	363	99.73	-0.41	0.44	0.09	0.89	181.5	-0.03	-9.54	62.85	9	0.07
27	27-LI-GIARDINI-PUBBLICI-NO2	43.2	13.49	356	97.8	-0.68	0.68	-0.75	1.14	560.4	-0.16	-29.74	45.38	15.74	0.23
28	28-LI-VIA-VENETO-NO2	14.75	23.47	358	98.35	0.57	0.76	0.7	0.85	164.3	0.23	8.7	54.39	8.71	0.16
29	29-LI-POGGIO-SAN-ROCCO-ROSIGNA	8.73	10.98	339	93.13	0.18	0.5	0.17	0.46	35.53	0.38	1.93	6.11	5.99	0.63
32	32-LU-CAPANNORI-NO2	47.35	26.14	325	89.29	-0.44	0.48	-0.58	0.62	398	0.41	-22.07	12.17	15.09	0.61
33	33-LU-PORCARI-NO2	41.45	27.87	339	93.13	-0.32	0.37	-0.4	0.46	258.2	0.72	-14.05	13.55	20.76	0.75
35	35-LU-2VIAREGGIO-NO2	60.16	23.86	343	94.23	-0.59	0.6	-0.87	0.89	676.9	0.67	-36.55	11.74	27.59	0.62
38	38-PI-CASCINA-NO2	39.1	21.82	361	99.18	-0.44	0.45	0.03	0.91	326.5	-0.1	-17.21	77.98	12.74	0.09
39	39-PI-NAVACCHIO-NO2	27.59	26.17	361	99.18	-0.05	0.32	0.49	0.76	27.14	0.2	-1.43	78.85	11.91	0.14
42	42-PI-BORGHETTO-NO2	39.86	42.13	353	96.98	0.04	0.31	0.29	0.55	33.38	0.22	1.78	64.66	16.21	0.22
43	43-PI-FAZIO-NO2	42.53	35.91	360	98.9	-0.16	0.28	0.27	0.65	127.2	0.07	-6.71	78.71	15.77	0.14
44	44-PI-ORATOIO-NO2	20.83	32.06	362	99.45	0.54	0.61	0.86	0.93	213.7	0.43	11.25	84.53	11.33	0.21
45	45-PI-PASSI-NO2	22.2	23.27	362	99.45	0.04	0.39	0.71	0.93	19.14	0.27	1.01	88.35	13.1	0.16
47	47-PI-PONTEDERA-NO2	38.26	21.73	364	100	-0.43	0.44	0.27	0.99	315.5	-0.08	-16.56	93.56	13.48	0.08
48	48-PI-SANTA-CROCE-COOP-NO2	29.45	28.07	363	99.73	-0.05	0.24	0.59	0.79	26.99	0.35	-1.42	93.64	14.75	0.21
51	51-PO-FONTANELLE-NO2	34.52	32.85	314	86.26	-0.03	0.3	-0.02	0.33	23.62	0.56	-1.34	12.75	18.08	0.73
52	52-PO-ROMA-NO2	35.53	36.23	292	80.22	-0.01	0.43	0.04	0.49	7.58	0.33	-0.44	14.3	22.99	0.58
55	55-PT-MONTALE-NO2	23.61	13.44	360	98.9	-0.42	0.5	0.6	1.23	191.8	0.02	-10.12	99.68	10.72	0.08
56	56-PT-MONT-VIA-MERLINI-NO2	30.71	28.25	361	99.18	-0.08	0.31	0.61	0.88	49.21	0.28	-2.59	98.29	13.13	0.15
57	57-PT-SIGNORELLI-NO2	22.52	26.58	364	100	0.17	0.45	0.84	1.01	75.21	0.46	3.95	102	14.78	0.23
58	58-PT-ZAMENHOF-NO2	31.06	26.58	364	100	-0.15	0.35	0.62	0.95	87.41	0.27	-4.59	103.5	14.87	0.17
59	59-SI-LARGO-CAMPIDOGLIO-NO2	45.33	10.89	335	92.03	-0.73	0.74	-0.62	1.3	661.4	-0.25	-36.19	63.42	17.72	0.18
60	60-SI-LOC-DUE-PONTI-NO2	31.05	11.69	358	98.35	-0.61	0.63	0.37	1.38	368.9	-0.39	-19.52	103.8	10.67	0.03
63	61-FI-NOVOLI-NO2	47.78	41.14	332	91,21	-0.16	0.3	0.06	0.51	154.1	0.23	-8.47	57.45	17.8	0.29
62	62-LI-VIA-GUIDO-ROSSA-NO2	19.93	17.42	361	99.18	-0.14	0.35	0.94	1.17	53.42	-0.05	-2.82	108	9.09	0.03
63	63-MS-VIA-CARRIONA-NO2	37.08	12.17	326	89,56	-0.64	0.65	-0.57	1.08	457.3	-0.09	-25.37	47.49	17.41	0.27
64	64-MS-VIA-FRASSINA-NO2	39.15	22.32	326	89.56	-0.41	0.43	-0.23	0.7	307.8	0.03	-17.07	50.07	16.54	0.25
65	65-PO-PAPA-GTOVANNT-NO2	30.74	21.46	360	98 9	-0.31	0.51	0.68	1.16	181.9	0.04	-9.6	110.2	18.46	0.11
71	71 ET GALENGANO GIOUANNI NO2	25.02	20.60	261	00.19	0.41	0.51	0 50	1 10	276 5	0.04	14 57	112 1	10.64	0.00

Tab. 8 – Indicatori statistici, calcolati sui valori medi giornalieri, per NO2, SO2, O3, PM10, PM2.5.

SO2 - skill gior									giornalieri									
ID	NOME_STAZ	MEDIA STAZ.	MEDIA MOD.	DATI PRES. STAZ	DATI PRES. STAZ (%)	nmb	nme	fb	fe	rmse	corr	bias	std mod.	std staz.	ioa			
5	5-FI-BASSI-SO2	2.3	3.18	364	100	0.37	0.61	0.32	0.51	16.41	0.4	0.86	1.79	1.27	0.57			
6	6-FI-BOBOLI-SO2	1.19	3.2	359	98.63	1.59	1.62	0.89	0.91	38.15	0.42	2.02	1.38	0.83	0.42			
8	8-FI-MOSSE-SO2	2.85	4.01	364	100	0.4	0.56	0.33	0.47	21.85	0.55	1.15	2.17	1.6	0.65			
12	12-FI-SCANDICCI-BUOZZI-SO2	1.53	3.37	364	100	1.16	1.23	0.73	0.78	34.7	0.43	1.82	1.48	1.05	0.47			
15	15-FI-EMPOLI-RIDOLFI-SO2	1.31	6.35	350	96.15	3.68	3.69	1.31	1.31	98.33	0.27	5.26	3.73	0.58	0.14			
20	20-GR-VIALE-SONNINO-SO2	1.34	3.16	321	88.19	1.67	1.92	0.85	1.02	47.43	0.07	2.65	2.59	1.31	0.3			
21	21-GR-VIA-URSS-SO2	1.14	2.25	325	89.29	1.27	1.62	0.73	0.98	31.06	0	1.72	2.1	1.14	0.23			
22	22-LI-PIAZZA-CAPPIELLO-SO2	5.42	12.39	363	99.73	1.27	1.48	0.77	0.9	132.4	0.19	6.96	7.46	4.9	0.36			
23	23-LI-VIALE-CARDUCCI-SO2	6.05	16.29	354	97.25	1.66	1.94	0.89	1.04	196.4	0.2	10.45	9.59	7.03	0.42			
28	28-LI-VIA-VENETO-SO2	1.36	6.14	357	98.08	3.31	3.48	1.23	1.3	94.5	0.28	5.01	3.71	1.85	0.33			
30	30-LU-MICHELETTO-SO2	0.38	3.13	348	95.6	5.44	5.56	1.49	1.53	57.81	0.57	3.1	2.36	1.08	0.42			
33	33-LU-PORCARI-SO2	0.47	3.23	357	98.08	4.74	4.84	1.41	1.44	55.87	0.61	2.96	2.72	1.25	0.48			
35	35-LU-2VIAREGGIO-SO2	1.09	3.05	364	100	1.74	1.87	1.36	1.43	37.19	0.25	1.95	32.84	1.26	0.04			
46	46-PI-MONTECERBOLI-BIS-SO2	0.54	1.97	360	98.9	2.55	2.94	1.06	1.28	27.93	0.22	1.47	1.18	1.12	0.45			
52	52-PO-ROMA-SO2	2.62	3.15	341	93.68	0.3	0.76	0.2	0.64	14.87	0.23	0.81	1.41	2.2	0.47			
55	55-PT-MONTALE-SO2	1.58	2.29	344	94.51	0.58	0.97	0.46	0.76	17.41	0.23	0.94	1.02	1.59	0.46			
62	62-LI-VIA-GUIDO-ROSSA-SO2	0.7	5.13	347	95.33	6.16	6.2	1.51	1.52	85.32	0.15	4.58	2.74	0.91	0.17			
66	66-LU-TANGENZIALE-SO2	1.24	3.01	356	97.8	1.42	1.52	1.01	1.11	34.18	0.08	1.81	19.19	1.3	0.03			
70	70-PI-SANTA-CROCE-CERRI-SO2	2.21	3.36	356	97.8	0.57	0.91	0.68	0.92	24.24	0.12	1.29	19.21	1.97	0.06			

	03 - skill giornalieri														
ID	NOME_STAZ	MEDIA STAZ.	MEDIA MOD.	DATI PRES. STAZ	DATI PRES. STAZ (%)	nmb	nme	fb	fe	rmse	corr	bias	std mod.	std staz.	ioa
1	1-AR-CASA-STABBI-03	71.17	77.73	346	95.05	0.08	0.19	0.08	0.18	112	0.63	6.03	15.18	19.29	0.76
2	2-AR-VIA-ACROPOLI-03	48.57	66.47	364	100	0.36	0.44	0.3	0.37	336.5	0.69	17.66	19.3	26.46	0.73
б	6-FI-BOBOLI-03	50.24	53.94	357	98.08	0.08	0.29	0.07	0.28	74.34	0.77	3.94	23.07	29.06	0.86
10	10-FI-SETTIGNANO-03	68.37	51.94	352	96.7	-0.24	0.33	-0.27	0.37	306.9	0.62	-16.38	19.31	27.73	0.69
12	12-FI-SCANDICCI-BUOZZI-03	45.37	52.99	356	97.8	0.17	0.31	0.16	0.29	147.3	0.76	7.82	23.45	24.09	0.85
13	13-FI-CALENZANO-BOCCACCIO-03	47.6	59.74	345	94.78	0.23	0.43	0.2	0.38	208.1	0.59	11.22	20.18	28.09	0.72
17	17-FI-MONTELUPO-VIA-ASIA-03	50.65	55.77	355	97.53	0.1	0.27	0.1	0.26	99.35	0.72	5.28	21.13	23.48	0.83
21	21-GR-VIA-URSS-03	65.55	65.85	341	93.68	0.01	0.33	-0.01	0.32	11.63	0.47	0.63	17.81	28.17	0.64
22	22-LI-PIAZZA-CAPPIELLO-03	65.99	56.88	360	98.9	-0.13	0.25	-0.15	0.26	166.9	0.71	-8.81	23.91	26.13	0.82
25	25-LI-VILLA-MAUROGORDATO-03	67.69	61.96	355	97.53	-0.09	0.22	-0.09	0.23	117	0.66	-6.22	22.23	22.52	0.8
29	29-LI-POGGIO-SAN-ROCCO-ROSIGNA	83.59	74.95	314	86.26	-0.08	0.17	-0.09	0.16	132.7	0.72	-7.5	18.44	23.94	0.81
33	33-LU-PORCARI-03	44.69	53.34	348	95.6	0.18	0.31	0.16	0.28	155.5	0.77	8.35	24.95	24.9	0.86
45	45-PI-PASSI-03	45.6	62.57	359	98.63	0.37	0.43	0.31	0.38	320.1	0.58	16.92	30.19	21.89	0.67
46	46-PI-MONTECERBOLI-BIS-03	72.57	79.04	360	98.9	0.09	0.2	0.1	0.22	121.2	0.41	6.4	33.59	24.82	0.58
47	47-PI-PONTEDERA-03	37.89	57.29	364	100	0.51	0.55	0.5	0.55	365.6	0.25	19.19	51.04	20.21	0.36
49	49-PI-SANTA-CROCE-SERAO-03	35.95	56.99	362	99.45	0.57	0.64	0.53	0.59	393.8	0.23	20.72	49.25	17.93	0.34
52	52-PO-ROMA-03	50.43	46.42	340	93.41	-0.09	0.32	-0.1	0.33	90	0.69	-4.89	20.44	28.47	0.8
55	55-PT-MONTALE-03	46.86	68.16	353	96.98	0.44	0.51	0.34	0.42	391.8	0.52	20.88	28.08	27.58	0.66
56	56-PT-MONT-VIA-MERLINI-03	42.12	53.63	355	97.53	0.26	0.38	0.29	0.4	208.7	0.35	11.09	40.54	25.31	0.52
61	61-FI-NOVOLI-03	44.88	41.68	364	100	-0.07	0.28	0.22	0.52	63.52	-0.05	-3.33	65.31	25.26	0.25
63	62-LI-VIA-GUIDO-ROSSA-03	47.9	75.1	362	99.45	0.56	0.58	0.54	0.57	510.3	0.19	26.86	57.95	17.56	0.23
62	63-MS-VIA-CARRIONA-03	50.64	69.93	332	91.21	0.34	0.42	0.27	0.34	339	0.69	18.63	18	25.62	0.73
64	64-MS-VIA-FRASSINA-03	36.9	65.94	318	87.36	0.73	0.76	0.54	0.55	535.7	0.76	30.09	21.53	19.89	0.64
65	65-PO-PAPA-GIOVANNI-03	54.24	58.89	281	77.2	0.16	0.39	0.08	0.33	160.5	0.65	9.57	19.05	29.91	0.76
68	68-LI-GABBRO-03	72.49	57.45	355	97.53	-0.2	0.24	-0.05	0.39	283.1	-0.06	-15.04	57.19	23.7	0.29
69	69-LU-CARIGNANO-03	64.34	68.8	353	96.98	0.06	0.25	0.18	0.36	78.54	0.13	4.19	54.51	30.72	0.39
71	71-FI-CALENZANO-GIOVANNI-03	47.38	59.58	356	97.8	0.25	0.39	0.38	0.5	230.8	0.03	12.25	62.88	27.35	0.28

Γ		gio	rnali	eri											
ID	NOME_STAZ	MEDIA STAZ.	MEDIA MOD.	DATI PRES. STAZ	DATI PRES. STAZ (%)	nmb	nme	fb	fe	rmse	corr	bias	std mod.	std staz.	ioa
3	3-AR-VIA-FIORENTINA-PM10	31.43	10.93	320	87.91	-0.61	0.62	-0.94	0.95	361.8	0.61	-20.26	6.39	20.52	0.53
4	4-AR-PIAZZA-REPUBBLICA-PM10	32.59	16.76	354	97.25	-0.48	0.51	-0.65	0.68	296.2	0.43	-15.74	9.44	11.58	0.5
5	5-FI-BASSI-PM10	33.76	14.14	354	97.25	-0.57	0.59	-0.8	0.83	367.8	0.29	-19.55	6.89	15.88	0.49
6	6-FI-BOBOLI-PM10	26.51	14.87	346	95.05	-0.44	0.48	-0.57	0.62	230	0.44	-12.36	6.18	14.03	0.53
7	7-FI-GRAMSCI-PM10	41.37	17.73	344	94.51	-0.57	0.58	-0.81	0.83	454.5	0.23	-24.5	8.05	16.43	0.46
8	8-FI-MOSSE-PM10	31.67	22.2	358	98.35	-0.3	0.38	-0.35	0.45	179.6	0.42	-9.49	9.6	15.5	0.61
12	12-FI-SCANDICCI-BUOZZI-PM10	39.19	14.4	351	96.43	-0.62	0.63	-0.91	0.92	469.5	0.4	-25.09	6.69	18.34	0.49
15	15-FI-EMPOLI-RIDOLFI-PM10	26.41	14.43	359	98.63	-0.45	0.47	-0.58	0.61	227.5	0.52	-12.02	6.84	11.44	0.62
17	17-FI-MONTELUPO-VIA-ASIA-PM10	38.83	12.91	351	96.43	-0.66	0.66	-0.98	0.99	489.5	0.45	-26.16	5.49	14.97	0.51
20	20-GR-VIALE-SONNINO-PM10	35.31	17.18	357	98.08	-0.51	0.52	-0.71	0.72	345.8	0.47	-18.33	8.39	11.4	0.56
21	21-GR-VIA-URSS-PM10	17.24	13.6	333	91.48	-0.24	0.38	-0.27	0.44	86.96	0.38	-4.77	5.78	8.27	0.55
23	23-LI-VIALE-CARDUCCI-PM10	35.95	24.27	350	96.15	-0.32	0.38	-0.38	0.45	225.9	0.43	-12.09	10.57	12.78	0.62
24	24-LI-VIA-GOBETTI-PM10	27.81	19.76	355	97.53	-0.29	0.38	-0.36	0.46	157.1	0.42	-8.35	8.85	11.05	0.62
25	25-LI-VILLA-MAUROGORDATO-PM10	17.46	15.99	354	97.25	-0.08	0.37	-0.1	0.39	28.3	0.41	-1.51	7.71	7.86	0.64
26	26-LI-COTONE-RETE-LI-PM10	32.06	11.55	355	97.53	-0.63	0.64	-0.79	0.98	389.5	0	-20.7	27.07	15.24	0.33
28	28-LI-VIA-VENETO-PM10	34.05	14.28	342	93.96	-0.57	0.58	-0.82	0.83	380.3	0.23	-20.59	6.77	13.05	0.47
30	30-LU-MICHELETTO-PM10	33.89	19.6	362	99.45	-0.42	0.45	-0.17	0.78	274.2	0.16	-14.43	56.4	15.32	0.22
32	32-LU-CAPANNORI-PM10	30.86	20.5	347	95.33	-0.35	0.43	-0.43	0.54	218.2	0.57	-11.73	10.4	21.75	0.63
33	33-LU-PORCARI-PM10	33.97	20.31	351	96.43	-0.41	0.46	-0.44	0.63	281.3	0.24	-15.04	27.94	19.83	0.45
35	35-LU-2VIAREGGIO-PM10	38.11	20.95	356	97.8	-0.45	0.46	-0.25	0.77	328	0.1	-17.38	53.62	15.26	0.21
38	38-PI-CASCINA-PM10	36.25	14.24	356	97.8	-0.6	0.6	-0.35	1.03	421.4	-0.07	-22.37	58.06	14.74	0.16
39	39-PI-NAVACCHIO-PM10	39.68	16.26	353	96.98	-0.59	0.59	-0.43	0.98	457.8	-0.02	-24.4	54.56	17.29	0.2
40	40-PI-LARI-PM10	27.85	14.83	359	98.63	-0.47	0.49	0.06	0.94	252.6	0.02	-13.35	64.76	13.85	0.12
41	41-PI-SAN-ROMANO-PM10	31.62	14.22	362	99.45	-0.55	0.56	0	1.09	331.2	-0.07	-17.43	71.41	16.06	0.1
42	42-PI-BORGHETTO-PM10	31.23	20.44	350	96.15	-0.36	0.41	-0.06	0.71	224.9	0.11	-12.04	54.36	14.95	0.19
44	44-PI-ORATOIO-PM10	35.33	18.18	356	97.8	-0.49	0.51	-0.08	0.92	332	-0.05	-17.62	64.44	14.14	0.13
46	46-PI-MONTECERBOLI-BIS-PM10	17.33	7.98	357	98.08	-0.54	0.56	0.27	1.22	183.6	-0.12	-9.73	68.65	9.55	0.03
47	47-PI-PONTEDERA-PM10	36.45	16.3	346	95.05	-0.55	0.56	-0.36	0.92	387.4	0.04	-20.86	52.03	18.56	0.24
48	48-PI-SANTA-CROCE-COOP-PM10	30.38	17.25	357	98.08	-0.44	0.47	0.15	0.94	256.7	0.03	-13.6	71.38	14.85	0.12
49	49-PI-SANTA-CROCE-SERAO-PM10	26.17	16.66	345	94.78	-0.37	0.43	-0.03	0.77	196.4	0.11	-10.59	55.07	13.3	0.15
51	51-PO-FONTANELLE-PM10	20.79	17.23	277	76.1	-0.27	0.49	-0.08	0.47	138.4	0.48	-8.33	6.84	12.2	0.7
52	52-PO-ROMA-PM10	33.78	17.86	290	79.67	-0.45	0.5	-0.55	0.62	330.9	0.45	-19.47	8.28	19.96	0.63
54	54-PO-STROZZI-PM10	34.57	14.56	293	80.49	-0.55	0.57	-0.76	0.78	410.6	0.41	-24.03	7.08	18.85	0.59
55	55-PT-MONTALE-PM10	41.91	10.64	350	96.15	-0.73	0.73	-0.33	1.31	595	-0.16	-31.85	71.41	26.09	0.19
56	56-PT-MONT-VIA-MERLINI-PM10	37.22	17.66	315	86.54	-0.58	0.6	-0.84	0.87	489.4	0.16	-27.62	8.46	25.37	0.4
58	58-PT-ZAMENHOF-PM10	35.19	19.07	357	98.08	-0.46	0.5	0.24	1.03	312.3	0.05	-16.55	86.93	22.42	0.16
59	59-SI-LARGO-CAMPIDOGLIO-PM10	43.85	10.35	324	89.01	-0.74	0.74	-1.15	1.15	678	0.45	-37.72	8.35	21.66	0.49
60	60-SI-LOC-DUE-PONTI-PM10	26.85	11.61	333	91.48	-0.58	0.6	-0.45	0.99	336.8	0.04	-18.48	46.77	19.51	0.15
63	63-MS-VIA-CARRIONA-PM10	38.56	8.99	359	98.63	-0.76	0.76	0.09	1.49	564	-0.4	-29.81	94.12	19.4	0.1
64	64-MS-VIA-FRASSINA-PM10	72.05	12.94	344	94.51	-0.82	0.82	-0.71	1.45	1129	-0.3	-60.87	73.37	38.1	0.34
66	66-LU-TANGENZIALE-PM10	50.53	17.76	360	98.9	-0.65	0.65	0.04	1.26	624.8	-0.28	-32.93	98.28	23.9	0.13

	PM2.5 - skill giornalieri														
ID	NOME_STAZ	MEDIA STAZ.	MEDIA MOD.	DATI PRES. STAZ	DATI PRES. STAZ (%)	nmb	nme	fb	fe	rmse	corr	bias	std mod.	std staz.	ioa
23	23-LI-VIALE-CARDUCCI-PM2.5	16.34	15.19	351	96.43	-0.07	0.33	-0.06	0.34	20.51	0.5	-1.1	7.09	7.78	0.71
29	29-LI-POGGIO-SAN-ROCCO-ROSIGNA	13.69	9.17	347	95.33	-0.32	0.47	-0.4	0.59	87.23	0.35	-4.69	5.33	7.99	0.55
52	52-PO-ROMA-PM2.5	20.81	11.65	359	98.63	-0.44	0.55	-0.53	0.68	173.9	0.44	-9.19	5.6	18.75	0.52

LaMMA Sistema di modelli WRF-CAMx

Gli indicatori statistici riportati nelle precedenti tabelle danno modo di effettuare una analisi di dettaglio per la valutazione delle prestazioni della catena di modelli. Si sottolinea che sono stati utilizzati tutti i dati, non solo quelli rilevati nelle stazioni di monitoraggio di fondo. In particolare, il confronto con gli indici statistici ottenuti dal modello nazionale MINNI alla risoluzione di 4 Km relativi ad alcune stazioni di monitoraggio (appartenenti al database BRACE [8]) evidenzia una sostanziale congruenza tra i risultati ottenuti dai due sistemi modellistici.

VAR.	TIPO STAZ.	media_staz	media_mod	nmb	nme	fb	fe	std_staz	std_mod	corr	ioa
NO2	FONDO	30.04	25.57	-0.15	0.29	-0.16	0.32	11.98	8.96	0.51	0.33
NO2	TRAFF.	44.44	27.27	-0.39	0.39	-0.48	0.48	10.69	8.56	0.48	0.51
NO2	IND	22.19	24.21	0.09	0.30	0.09	0.28	8.44	7.70	0.49	0.30
03	FONDO	55.16	59.67	0.08	0.20	0.08	0.19	21.48	19.49	0.78	0.13
03	TRAFF.	41.99	60.82	0.45	0.48	0.37	0.39	7.56	13.29	0.00	0.71
03	IND	39.51	61.16	0.55	0.56	0.43	0.44	10.38	15.87	0.71	0.48
PM10	FONDO	40.65	18.28	-0.55	0.55	-0.76	0.76	9.33	6.43	0.13	0.63
PM10	TRAFF.	37.45	17.47	-0.53	0.54	-0.73	0.74	14.10	7.07	0.53	0.51
PM10	IND	29.05	15.99	-0.45	0.46	-0.58	0.59	9.97	6.02	0.53	0.48
PM2.5	FONDO	39.55	25.63	-0.35	0.35	-0.43	0.43	8.98	5.23	0.83	0.45
PM2.5	TRAFF.	16.74	15.77	-0.05	0.31	-0.04	0.32	7.71	7.86	0.60	0.78
PM2.5	IND										
SO2	FONDO	29.52	6.98	-0.76	0.76	-1.24	1.24	8.58	1.83	0.48	0.63
SO2	TRAFF.	27.67	9.96	-0.64	0.64	-0.94	0.94	10.57	3.32	0.78	0.53
SO2	IND	16.14	6.66	-0.59	0.59	-0.83	0.83	6.50	2.14	0.88	0.50

Tab. 9 – Indicatori statistici accorpati per NO2, SO2, O3, PM10, PM2.5.

In ultimo, gli indicatori statistici sono stati accorpati, in modo da ottenere, per ciascun inquinante e per ciascun indicatore, un valore unico per tipologia di stazione, fondo, industriale e traffico (Tab. 9). Nei grafici riportati in Fig. 28-32, sono rappresentati i valori della media misurata e simulata, per le tre tipologie e per il dato totale. Nei grafici delle Fig. 33-37 sono riportati invece gli indicatori nmb, nme, fb, fe (valore ottimale pari a zero), correlazione, index of agreement (valore ottimale pari a uno) (Tab.7).

In generale, l'insieme degli indicatori evidenzia un risultato migliore per le stazioni di fondo, soprattutto per il biossido di azoto e l'ozono, mentre per le stazioni di traffico si hanno prestazioni inferiori. Gli indicatori di questi due inquinanti mostrano i risultati inferiori, mentre confermano una sistematica sottostima per i valori simulati di PM10 e una sovrastima per i valori di SO2.

In conclusione, i risultati ottenuti dal sistema modellistico WRF-CAMx , confrontati con quanto ottenuto dal modello di riferimento nazionale MINNI, sono coerenti, sia nella buona capacità di riprodurre l'andamento di alcuni inquinanti (NO2, O3), sia nei limiti nel simularne altri (PM10, PM2.5, SO2), limiti peraltro comuni in ambito modellistico a livello internazionale. Si sottolinea come l'aumento di risoluzione , da 4 Km a 2 Km, non

migliori le prestazioni, soprattutto per quanto riguarda situazioni locali rappresentate dalle stazioni di traffico.

Fig. 30 – Bar-plot delle medie annuali di PM2.5.

Fig. 31 – Bar-plot delle medie annuali di SO2.

Fig. 32 – Bar-plot delle medie annuali di O3.

Fig. 33 – Bar-plot di alcuni indicatori statistici – nmb, nme, fb, fe, corr, ioa - per NO2.

Fig. 34 – Bar-plot di alcuni indicatori statistici – nmb, nme, fb, fe, corr, ioa - per PM10.

Fig. 35 – Bar-plot di alcuni indicatori statistici – nmb, nme, fb, fe, corr, ioa - per PM2.5.

Fig. 36 – Bar-plot di alcuni indicatori statistici – nmb, nme, fb, fe, corr, ioa - per SO2.

Fig. 37 – Bar-plot di alcuni indicatori statistici – nmb, nme, fb, fe, corr, ioa - per O3.

2.6 GIS-QA

Per la visualizzazione e la fruizione dei risultati ottenuti dalla simulazione modellistica, in particolare per gli elaborati grafici (mappe e grafici), è stato sviluppato un modulo per il trasferimento di questi in ambiente MAPGIS, per fornire layer informativi alla piattaforma GIS-QA. Il sistema "GIS-QA", già operativo per gli elaborati meteo, ha le caratteristiche di un servizio client che si attiva a partire da una pagina web dedicata del sito del Consorzio LaMMA. Attraverso tale pagina ogni utente, autorizzato previo rilascio di account, può accedere via web al servizio. Il server del sistema si trova presso il Consorzio LaMMA e consiste in una macchina che ospita il database del sistema. L'ambiente GIS è costituito dal software "MAPSERVER", che consente la fruizione interattiva via web del servizio.

Fig. 38 – Mappe tematiche visualizzabili nella piattaforma GIS-QA.

Fig. 39- Grafici visualizzabili nella piattaforma GIS-QA.

Conclusioni

Scopo di questo lavoro è stato quello di implementare una catena modellistica in grado di fornire campi tridimensionali di concentrazione dei principali inquinanti atmosferici, sia primari che secondari, e di configurarla sul territorio della Regione Toscana ad una risoluzione di 2 Km.

La catena modellistica è basata sulle stime prodotte dal modello meteorologico WRF-ARW e dal modello CAMx, con cui viene simulato il trasporto, la dispersione, le trasformazioni chimiche e la deposizione secca e umida di inquinanti aeriformi ed aerosol. Il sistema di modelli è in grado di gestire emissioni diffuse e puntuali e le condizioni al contorno. In particolare le emissioni sono fornite dall'inventario regionale IRSE, con passo temporale orario e con speciazione chimica (SAPRC99 + CF). Le emissioni relative alle aree esterne alla regione Toscana incluse nel dominio di calcolo e le condizioni al contorno sono fornite dal modello di riferimento nazionale MINNI.

Per lo sviluppo della catena di modelli sono stati implementati preprocessori, moduli di interfaccia e postprocessori per le elaborazioni grafiche e di analisi; inoltre sono state messe a punto procedure di validazione e di verifica. Infine, per la visualizzazione e la fruizione dei risultati ottenuti dalla simulazione modellistica, in particolare per gli elaborati grafici (mappe e grafici), è stato sviluppato un modulo per il trasferimento di questi in ambiente MAPGIS, per fornire layer informativi alla piattaforma GIS-QA.

Il sistema modellistico è stato applicato all'anno 2007. I risultati della simulazione, confrontati con quanto ottenuto dal modello di riferimento nazionale MINNI, sono coerenti, sia nella buona capacità di riprodurre l'andamento di alcuni inquinanti (NO2, O3), sia nei limiti nel simularne altri (PM10, PM2.5, SO2), limiti peraltro comuni in ambito modellistico a livello internazionale.

In prospettiva, le potenzialità di questo strumento modellistico saranno pienamente sfruttate utilizzandolo per analisi di scenario, come supporto per la pianificazione di interventi di mitigazione degli effetti degli inquinamento atmosferico. In questo modo, a fronte delle mutazioni degli scenari emissivi, sarà possibile valutare l'efficacia delle misure di contenimento delle emissioni in atmosfera e quindi ottenere una stima ex-ante dei costi-benefici delle politiche di risanamento.

Bibliografia

- 1. NCAR TECHNICAL NOTE, (2008): A Description of the Advanced Research WRF Version3 <u>http://www.mmm.ucar.edu/wrf/users/</u>
- **2. ENVIRON,** (2011): CAMx (Comprehensive Air Quality Model with extensions), User's Guide Version 5.40, Internal Report, Environ Int. Corp.
- **3. Carter W.P.L.**, (2000): Programs and files implementing the SAPRC-99 mechanism and its associates emissions processing procedures for Models-3 and other regional models. <u>http://pah.cert.ucr.edu/^carter/SAPRC99.html</u>
- **4. Rapporto CESI -** Progetto di Ricerca di Sistema SCENARI (sotto progetto. EVAMB) L17807K: Messa a punto degli strumenti modellistici RAMS e CAMx.
- **5. DECRETO LEGISLATIVO n.155,** (2010): Attuazione della direttiva 2008/50/CE relativa alla qualità dell'aria ambiente e per un'aria piu' pulita in Europa. (10G0177).
- 6. Atmospheric Environment, Uarporn Nopmongcol, Bonyoung Koo, Edward Tai, Jaegun Jung, Piti Piyachaturawat, Chris Emery, Greg Yarwood, Guido Pirovano, Christina Mitsakou, George Kallos (2012): Modeling Europe with CAMx for the Air Quality Model Evaluation International Initiative (AQMEII). Volume 53, Pages 177-185, ISSN1352-2310:<u>http://dx.doi.org/10.1016/j.atmosenv.2011.11.023;</u> (http://www.sciencedirect.com/science/article/pii/S1352231011012064)
- **7. APAT-CTN-ACE Marco Deserti et al,** (2005-2006): RAPPORTO TECNICO SULLA APPLICAZIONE DI MODELLISTICA AL BACINO PADANO ADRIATICO.
- 8. **Progetto MINNI–ENEA,** (2013): PROGETTO MINNI Sistema Modellistico per le politiche di Qualità dell'Aria a supporto di Governo e Regioni. ISBN 978-88-8286-287-9

APPENDICE DELLE TAVOLE DEGLI INDICATORI DI QUALITA' DELL'ARIA

20/12/2013, Sesto Fiorentino

47

In questa Appendice sono fornite le tavole relative agli inquinanti NO2, PM10, PM2.5, SO2 e O3 riferiti a tutti gli indicatori statistici di stato della qualità dell'aria secondo il D.Lgs. 155/2010.

In particolare vengono forniti i prodotti elencati nella seguente tabella:

NO2	Mappa media annua
PM10	Mappa media annua
	Mappa dei superamenti
PM2.5	Mappa media annua
S02	Mappa media annua
	Mappa media ottobre-marzo
	Mappa dei superamenti
03	Mappa media annua
	• AOT40 per la protezione della vegetazione (1 maggio –
	31 luglio 2007)
	• AOT40 per la protezione delle foreste (1 aprile – 30
	settembre 2007)
	• Mappa dei superamenti relativa alla media massima
	giornaliera su 8 ore.

La mappa dei superamenti orari per NO2 ed SO2 non sono riportate poiché il modello non ha rilevato alcun superamento della media oraria rispetto a nessuna delle soglie individuate dalla normativa (Soglia di Valutazione Inferiore, Soglia di Valutazione Superiore ed Valore Limite). Inoltre, dato che il modello non ha evidenziato alcun superamento della soglia di allarme per SO2, NO2 ed Ozono, né il superamento della soglia di informazione per l'ozono, per questi superamenti non vengono riportate mappe.

NO2 – Mappa Media Annua

PM10 – Mappa Media Annua

50

PM10 – Mappa dei Superamenti

SO2 – Mappa Media Annua

SO2 – Mappa Media Inverno (Ottobre-Marzo)

54

SO2 – Mappa dei Superamenti

O3 – Mappa Media Annua

57

O3 – AOT40 protezione vegetazione

O3 – AOT40 protezione foreste

O3 - Mappa dei Superamenti relativa alla media massima giornaliera su 8 ore